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Abstract

We consider the question under which circumstances the
straight skeleton and the Voronoi diagram of a given in-
put shape coincide. More precisely, we investigate con-
vex distance functions that stem from centrally symmet-
ric convex polyhedra as unit balls and derive sufficient
and necessary conditions for input shapes in order to ob-
tain identical straight skeletons and Voronoi diagrams
with respect to this distance function.

This allows us to present a new approach for general-
izing straight skeletons by means of Voronoi diagrams,
so that the straight skeleton changes continuously when
vertices of the input shape are dislocated, that is, no dis-
continuous changes as in the Euclidean straight skeleton
occur.

1 Introduction

Straight skeletons and Voronoi diagrams are two promi-
nent examples of so-called skeleton structures of shapes.
Roughly speaking, a skeleton structure of a shape in Rd

is a (d − 1)-dimensional contraction of this shape that
captures certain topological and geometric features of
the shape.

Though the first roots can be traced back to an ar-
ticle of Peschka on roof design in 1877 [11], straight
skeletons were introduced to computational geometry
by Aichholzer et al. [1] in the mid 90s. Given a polygon
P in R2, possibly with holes, they considered a wave-
front propagation process where all edges of P move
inwards in parallel and with unit speed. At any time t
the wavefront WS(t) forms a mitered offset of P . Over
time the wavefront undergoes structural changes: Edges
may shrink to length zero and vanish, or edges may be
split by hitting reflex vertices. The straight skeleton
S(P ) of P is the set of loci that are traced out by the
wavefront vertices, see Figure 1. Later this concept was
generalized to planar straight-line graphs as input [2]
and to polyhedra in three-space [3, 4, 5].

It was shown [2] that the straight skeleton cannot be
interpreted as an abstract Voronoi diagram in the frame-
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work of Klein [10]. In particular, the straight skeleton
does not constitute a Voronoi diagram under some ap-
propriate distance function. In this sense, straight skele-
tons and Voronoi diagrams are in general fundamentally
different. For instance, computing straight skeletons of
polygons with holes is P -complete [9], but computing
Voronoi diagrams is not. Straight skeletons can change
discontinuously when input vertices are moved [6], but
the Voronoi diagram does not.

Under these circumstances, it is most interesting that
for rectilinear input in general position (that is, a rec-
tilinear polygon where no two edges are collinear) the
straight skeleton and the Voronoi diagram under L∞-
metric indeed coincide [2]. Barequet et al. [5] carried
over this fact to rectilinear polyhedra in three-space.
Furthermore, Tănase and Veltkamp [12] showed that the
straight skeleton of polygons approximates the Voronoi
diagram under L2-metric if each reflex vertex of the
polygon is replaced by a particular polygonal approx-
imation of a circular arc of infinitesimal size.

1.1 Our contribution

In this paper, we shed further light on the question un-
der which circumstances the straight skeleton and the
Voronoi diagram coincide. We consider convex distance
functions that stem from appropriate convex polyhedra
as unit balls and investigate necessary conditions for (an
approximation of) an input shape in order to have an
identical straight skeleton and Voronoi diagram under
this distance function. We will see that prior results for
the L2- and L∞-metric constitute the extremal cases of
our general approach.

Figure 1: The straight skeleton (dashed) of a simple
polygon (bold) and a couple of mitered offsets (thin).
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Motivation for investigating this question is manifold.
First of all, Voronoi diagrams tend to be easier to com-
pute than straight skeletons while straight skeletons are
sometimes preferred over Voronoi diagrams since they
comprise only straight-line segments and no parabolic
arcs. In particular, Klein presented a time-optimal
O(n log n) algorithm for abstract Voronoi diagrams in
the plane and several other time-optimal algorithms
are known for specialized settings [10]. For straight
skeletons of polygons with holes, on the other hand,
there is a gap between the best known lower bound
of Ω(n log n) [8] and the currently fastest deterministic
algorithm by Eppstein and Erickson [6] with a worst-
case time complexity of O(n17/11+ε). Hence, Voronoi
diagrams under certain polyhedral distance functions
provide a more efficient access to straight skeletons.

Second, while the definition of Voronoi diagrams is
naturally generalized to higher dimensions, defining
straight skeletons of polyhedra turns out to be non-
trivial and ambiguous. For d = 3, Barequet et al. [5] ex-
plicitly explain sources of ambiguity and propose a con-
struction for (one possibility of) a valid straight skele-
ton. Aurenhammer and Walzl [4, 3] present an approach
for generating all possible solutions, as well as an algo-
rithm for a straight skeleton with certain special prop-
erties. For d > 3, no definitions have been presented
so far. Using our approach, we can transfer both, the
unambiguous definition and the algorithms of Voronoi
diagrams, to straight skeletons for certain polyhedra.

2 Voronoi diagrams by means of wavefronts

In contrast to the straight skeleton, the Voronoi diagram
is typically defined by means of a distance function f :
Given a finite set S of input sites in d-dimensional space
Rd, the Voronoi region R(s, S) of s ∈ S is defined as the
set of loci that are at least as close to s as to all other
s′ ∈ S. The Voronoi diagram V(S) of the input sites
S is then defined as the union of the boundaries of the
Voronoi regions. When we speak of the Voronoi diagram
V(P ) of a polyhedron P (with holes) then we interpret
the vertices, edges, and higher-dimensional faces of ∂ P
as the set of input sites. Hence, V(P ) tessellates the
interior of P into Voronoi regions, and each region com-
prises those loci that are closer to a particular face of P
than to all others, see Figure 2.

Note that the above definition misses some details,
especially when considering arbitrary convex distance
functions and degeneracies in the input polyhedra. For
a precise definition (of the skeleton) of V(P ), special
care needs to be taken in order to avoid faces of V(P ) to
possess non-zero measure. See for instance the concept
of “cone of influence” in [7].

To avoid the discussion of these technical details, we
interpret the Voronoi diagram as the interference pat-

P
unit ball
(non-Euclidean)

Figure 2: The Voronoi diagram V(P ) of the polygon P .
The distance function is induced by the given unit ball.
P is tessellated into Voronoi regions. Two Minkowski
offsets are shown in red. V(P ) is the interference pattern
of the wavefront forming Minkowski offsets.

tern of a wavefront process, similar to the one of the
straight skeleton. But while straight skeletons are based
on mitered offsets, Voronoi diagrams are related to off-
sets based on the Minkowski sum. For two non-empty
sets X and Y in a vector space, the Minkowski sum
X ⊕ Y is defined as the set {x + y : x ∈ X, y ∈ Y }.
The Minkowski difference X 	 Y is then defined as
{z ∈ Rd : {z} ⊕ Y ⊆ X}, which is, roughly speaking,
the largest set whose Minkowski-sum with Y still fits
into X. That is, (X 	 Y ) ⊕ Y ⊆ X, and if Y contains
the origin o, then X 	 Y ⊆ X.

For the remainder of this paper, we assume that the
convex distance function f is induced by a norm ‖.‖ on
Rd, i.e., for all x, y ∈ Rd it holds that f(x, y) = ‖x− y‖.
This allows us to define by B := {x ∈ Rd : ‖x‖ ≤ 1}
the unit ball of the normed vector space (Rd, ‖.‖). It
is easy to see that a unit ball is a compact, centrally
symmetric, convex set. We define the Minkowski offset
WV(t) at time t ≥ 0 by ∂(P 	 t · B), that is, as the
boundary of the Minkowski difference of P with the unit
ball scaled by t. Since B is o-symmetric, i.e., B = −B,
we obtain

WV(t) = P ∩ ∂(∂ P ⊕ t ·B). (1)

The Minkowski offsetWV of P and the Voronoi diagram
V(P ) of P are in an intimate relationship: Any point p
of WV(t) is in the Voronoi region of some face s of P .
Moreover, p has infimum distance t to ∂ P , and as p lies
in the Voronoi region R(s, P ) of s ⊂ ∂ P , this distance
is attained at a point of s. Plugging this observation
into (1), we can construct WV(t) within each Voronoi
region of V(P ) independently:

WV(t) = P ∩
⋃

face s of ∂ P

R(s, P ) ∩ ∂(s⊕ t ·B). (2)

On points of the Voronoi diagram — that is, on the
boundaries of Voronoi regions — the Minkowski offsets
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of two different faces of ∂ P interfere. In this sense, we
can interpret the Voronoi diagram V(P ) as the interfer-
ence pattern of Minkowski offsets, see again Figure 2.

With this interpretation of the Voronoi diagram, the
above mentioned technical details would be needed
for precisely defining the interference patterns of the
Minkowski offset. However, for the purpose of our work,
which is comparing the straight skeleton of a polyhedron
with its Voronoi diagram, it is sufficient to compare their
respective wavefronts. Therefore, we will consider the
Minkowski offsets instead of the (actual) Voronoi dia-
gram for the remainder of this paper.

3 Proper unit balls and input shapes

The aim of our paper is to investigate when the Voronoi
diagram w.r.t. some distance function is equal to the
straight skeleton. The distance function is induced by a
norm, and the norm, on the other hand, can be specified
by the unit ball B, i.e., ‖x‖B = inf{t ≥ 0: x ∈ tB}.
Together with the interpretation of Voronoi diagrams
from the previous section, we can rephrase our main
question as follows:

For which unit balls and for which input shapes
is the Minkowski offset WV(t) equal to the
mitered offset WS(t) for all t ≥ 0?

3.1 Proper unit balls

As B is the unit ball corresponding to a convex distance
function, B has to be convex and o-symmetric.

The wavefront WS(t) at any time t has a piecewise
linear geometry. Each of its facets are parallel and at
distance t to one of the facets of the input polyhedron P .
In general, the Minkowski offset of P comprises features
of ∂ P and ∂ B. Hence, B needs to be polyhedral in
order for the Minkowski offset to be polyhedral for all
polyhedra P .1

Furthermore, at least for the most basic polyhe-
dron P , namely P = B, the Minkowski and mitered
offsets should be equal. Note that P = B implies
WV(t) = (1− t) ·B. At t = 1 the wavefront collapsed to
a point at the origin o. In two dimensions, V(P ) forms
a star graph with a single vertex at o and each edge e
of P has a triangle spanned by e and o as Voronoi re-
gion. In higher dimensions, the Voronoi region of each
facet s is given by the convex hull spanned by o and s.
On the other hand, the facets of the wavefront WS(t)
all move at unit speed. In order for WS(t) = WV(t) to

1For convex polyhedra P , the Minkowski offset of P would be
polyhedral even if ∂ B is a smooth surface. In particular, it is
known that S(P ) = V(P ) w.r.t. the L2-norm for convex polyhe-
dra P . In fact, it is possible that B is only piecewise polyhedral
and the Minkowski offset of P would still be polyhedral for certain
non-convex polyhedra P . However, for the sake of simplicity, we
assume for this paper that B is polyhedral.

hold, the facets of B need to have unit distance to o.
In other words, the Euclidean unit ball centered at o is
tangential to all facets of B. We say that B is isotropic
if all facets have unit distance to the origin.2

Definition 1 A proper unit ball is a convex, isotropic,
o-symmetric polyhedron.

Lemma 1 For a proper unit ball B and any v ∈ Rd it
holds that ‖v‖2 ≥ ‖v‖B, and equality holds exactly when
v is a normal vector of a facet of B.

Proof. The inequality holds as the Euclidean unit ball
O is contained in B. Furthermore, ‖v‖2 = ‖v‖B holds
for exactly those v for which v/‖v‖B ∈ ∂ B ∩ ∂ O, i.e.,
where v/‖v‖B is a contact point of a facet of B with the
boundary of O. �

3.2 Proper input shapes

For the remainder of this paper, let B denote a proper
unit ball. In the following, we will investigate necessary
conditions for a polyhedral input shape P such that
the Minkowski offset and mitered offset are equal. A
restriction to connected sets is not essential, as we can
consider each component independently. We will denote
by P an input shape in the following sense.

Definition 2 A (d-dimensional) input shape P is a
connected, compact set in Rd whose boundary forms a
polyhedral surface that constitutes an orientable (d−1)-
manifold.

Denote by relintA(X) the relative interior of X w.r.t.
A, i.e, the interior of X in the subspace topology on A.
Furthermore, let relintX be a shorthand notation for
relintaff(X)X, where aff(X) is the affine hull of X.

Definition 3 A face f of P of dimension at most d−2
is called reflex if for any point p ∈ relint f and for any
Euclidean ball O that is centered at p and has sufficiently
small but positive radius, O \ P is contained in a half-
space whose boundary supports p.

In order for the facets of the wavefronts of WV and
WS to propagate at the same speed, it follows from
Lemma 1 that the orientations of the facets correspond
to orientations of facets of B. We denote by n(f) the
normal vector of the facet f of P pointing to the interior.

Lemma 2 Every facet f of P has a corresponding facet
fB of B that has n(f) as the outer normal vector, unless
WV(ε) 6=WS(ε) for some ε > 0.

2By considering weighted straight skeletons, one could assign
the facet’s distance to o as weight. Hence, each wavefront’s facet
would again reach o at time 1.
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Proof. Let p be a point in relint f . For a sufficiently
small ε > 0, the point p′ = p + εn(f) is in the relative
interior of the facet ofWS(ε) emanated by f . Assuming
thatWS(ε) =WV(ε), p′ is also in the relative interior of
the same facet ofWV(ε) and, thereby, ‖p−p′‖B = ε. By
Lemma 1, n(f) is a normal vector of a facet of B. �

3.2.1 Two-dimensional input shapes

Let us assume that d = 2, i.e., P is a polygon with zero
or more holes. Lemma 2 tells us that for any edge e of
P there is an edge eB of B whose normal vectors match
if the wavefronts WS and WV are equal. The following
lemma states that, in addition, P and B look locally
the same at reflex vertices of P .

Lemma 3 Let v be a reflex vertex of P with incident
edges e1 and e2. Then there is a corresponding vertex
vB of B that is incident to eB1 and eB2 , unless WV(ε) 6=
WS(ε) for some ε > 0.

Proof. For a sufficiently small ε > 0, the two edges e′1
and e′2 of WS(ε), which were emanated from e1 and e2

respectively, are incident to a vertex v′ of WS(ε). By
WS(ε) = WV(ε), we have ‖v′ − v‖B = ε. Hence, the
point vB = (v′−v)/ε lies on ∂ B, is incident to eB1 and
eB2 , and, thereby, is a vertex of B. �

It turns out that the two necessary conditions for
WS(ε) = WV(ε) collected by Lemma 2 and Lemma 3
are also sufficient, see Theorem 5 below. This motivates
the following definition.

Definition 4 A proper input shape P w.r.t. a proper
unit ball B in R2 is a polygon with holes such that

(I1) for each edge e of P there is a corresponding edge
eB of B whose outer normal vector is n(e) and

(I2) for each reflex vertex v of P , incident to edges e1

and e2, there is a corresponding vertex vB of B that
is incident to eB1 and eB2 .

We can distinguish between three different events that
can happen during the wavefront propagation: the so
called vertex, edge, and split events. For details see for
instance [8]. In the following lemma we prove that some
of these events cannot arise in our setting.

Lemma 4 For a proper input shape P w.r.t. a proper
unit ball B in R2 no vertex events happen for WS . Fur-
ther, no split events where a single reflex vertex splits a
single wavefront edge into two, happen for WS .

Proof. We first prove that no vertex event can happen,
i.e., no new reflex wavefront vertex is created because
two (or more) reflex vertices meet, see Figure 3 (a). As-
sume to the contrary that a vertex event happens at

some time t and the new reflex wavefront vertex is in-
cident to edges e1 and e. Then e1 and another edge
e2 were incident to a reflex vertex just before time t.
W.l.o.g. we assume that the clockwise-angle between
n(e1) and n(e2) is less than π. By (I2) in Definition 4,
there would be no edge of B whose normal vector is be-
tween n(e1) and n(e2) in clockwise direction, but n(e) is,
which is a contradiction and proves the first statement.

e1
e

e2

n(e1)
n(e)

n(e2)

(a)

> π

(b)

p

e1

e

e2

−n(e)

n(e2)n(e1)

Figure 3: Two events violating (I2) in Definition 4. (a)
A vertex event. (b) A split event, where a reflex wave-
front vertex meets a single edge that is split into two.

To prove the second statement assume that a single
reflex vertex between edges e1 and e2 meets and splits
a single wavefront edge e into two, see Figure 3 (b). We
again assume w.l.o.g. that the clockwise angle between
n(e1) and n(e2) is less than π. By the symmetry of B,
−n(e) is a normal vector of an edge of B. Again, (I2) in
Definition 4 is violated as −n(e) lies between n(e1) and
n(e2) in clockwise order. �

Theorem 5 Let B be a proper unit ball B and P be an
input shape in R2. Then WS(t) = WV(t) for all t ≥ 0
if and only if P is proper.

Proof. IfWS(t) =WV(t) for all t ≥ 0, then P is proper
by Lemma 2 and Lemma 3. Let us now prove the con-
verse. We first show that both wavefronts are equal until
the first (edge or split) event. Then we prove that each
event causes the same structural change to either wave-
front. Hence, by induction, the wavefronts are equal at
all times.

Note that due to (I1) in Definition 4 the wavefront
edges inWS andWV start to propagate at equal speeds.
For all sufficiently small ε > 0, each vertex and edge
of WS(ε) is emanated from exactly one vertex and
edge of P , and hence P and WS(ε) are combinato-
rially equal by definition of straight skeletons. The
same holds for WV(ε) for all edges and convex vertices
and due to (I2) in Definition 4 also for reflex vertices.
Hence, WS(ε) = WV(ε) for all sufficiently small ε > 0.
Both wavefronts propagate continuously as their ver-
tices move at constant speed. Therefore, at least until
the first event both wavefronts are equal.

Assume that an event happens at some fixed time t
and WS(t− ε) =WV(t− ε) for all ε ≥ 0. By Lemma 4
this event is neither a vertex event nor a split event,
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where a single reflex vertex meets and splits a single
wavefront edge e into two.

(a)

e

e1 e2

p

q

(b)

p

Figure 4: (a) Edge and (b) split events cause the same
structural transformations for WS and WV .

Let us assume that an edge event happened at point
p when the edge e collapsed and the edges e1 and e2

become adjacent in WS , see Figure 4 (a). We denote
by b(ei, ej) the bisector between two edges ei and ej .
Two straight-skeleton edges on the bisectors b(e, e1) and
b(e, e2), respectively, end at p and a new one on b(e1, e2)
originates. In WS the wavefront is locally modified by
removing edge e and making e1, e2 adjacent. We show
that WV undergoes the same structural change locally
at p. Let q be any point locally at p that was not yet
swept by the wavefront. Note that q lies at the side of e1

w.r.t. b(e1, e) or at the side of e2 w.r.t. b(e2, e). Hence, q
is closer to e1 or e2 than to e with respect to B after the
event. More specifically, locally at p any point of WS
after the event is closer to e1 or e2 than to e. By a similar
analysis it can be seen that split events transform WS
and WV in the same way, see Figure 4 (b). �

Note that unlike Voronoi diagrams, the straight skele-
ton of a polygon may change discontinuously when ver-
tices of the polygon are dislocated [6, 8]. However, this
can only happen at the presence of vertex events. By
Theorem 5, the straight skeleton of proper input shapes
changes continuously as the Voronoi diagram does, and
Lemma 4 tells us why.

3.2.2 Higher-dimensional input shapes

Let P denote an input shape in Rd for any d ≥ 2. In
the two-dimensional setting, we observed that at non-
convex locations of the input shape, the input shape
locally looks the same as the unit ball, in order for the
wavefronts to be equal. For dimensions greater than
two, we make the same general observation. However,
since there is a much larger diversity of non-convexity
in dimension three or higher, the situation becomes sig-
nificantly more complicated. For instance, for d = 3 a
vertex may be neither convex nor reflex, but constitute
a saddle point. Furthermore, both convex and reflex
edges may be incident to a convex (or reflex) vertex.

Nevertheless, an edge e of an input shape R3 is ei-
ther convex or reflex, as the two incident faces form
either an interior angle of ≤ π or > π. In fact, for

arbitrary dimensions d ≥ 2, the (d − 2)-dimensional
faces are incident to exactly two facets as ∂ P forms
a (d− 1)-manifold. This observation enables us to gen-
eralize Lemma 3 to arbitrary dimension:

Lemma 6 Let P be an input shape in Rd, where d ≥ 2.
For each reflex (d−2)-dimensional face e of P , which is
incident to facets f1 and f2, it holds that fB1 ∩ fB2 6= ∅,
unless WV(ε) 6=WS(ε) for some ε > 0.

Proof. The case d = 2 is established by Lemma 3. As-
sume that d ≥ 3 and consider a point p in the relative
interior of e. The affine hull aff(e) of e can be depicted
as p+H, where H is a (d−2)-dimensional vector space.
Let us denote by H⊥ the orthogonal complement of H,
which is of dimension 2.

By aff(e) ⊂ aff(f1) it follows that aff(f1) ∩ (p+H⊥)
is an 1-dimensional affine sub-space. Hence, f1 ∩ (p +
H⊥) forms a line-segment that is incident to p, and
the same holds for f2 ∩ (p + H⊥). As n(f1), n(f2) ⊥
aff(e) it follows that n(f1), n(f2) ∈ H⊥. This means
that also the intersections of the facets of the wavefront
with p+H⊥ constitute line segments that move at unit
speed within H⊥ w.r.t. Euclidean metric and w.r.t. B∩
H⊥. This allows us to reduce the problem to the two-
dimensional case within p+H⊥. By a similar argument
as in Lemma 3 we see that fB1 ∩H⊥ and fB2 ∩H⊥ have
a point in common, and so have fB1 and fB2 . �

Note that from fB1 ∩ fB2 6= ∅ it does not necessarily
follow that the face fB1 ∩fB2 of B is (d−2)-dimensional.
That is, roughly speaking, the face e of the last lemma
might not have a corresponding face eB in B. In fact, a
polyhedron P and a proper unit ball B exist in R3 such
that both wavefronts are equal at all times, but still
P contains a reflex edge incident to two facets whose
corresponding facets do not form an edge of B.

Definition 5 An input shape P in Rd is called proper
w.r.t. a proper unit ball B if

(I1) for each facet f of P there is a corresponding facet
fB of B whose outer normal vector is n(f) and

(I2) for all points p on all facets f of P , there is a point
p′ such that infq∈P ‖p′ − q‖B = ‖p′ − p‖B > 0 and
p ∈ relintf (f ∩ (p′ + ‖p′ − p‖B ∂ B)).

Note that in the above definition condition (I1) is
implied by condition (I2). We chose to state both con-
ditions nevertheless, to illustrate the similarity to Defi-
nition 4. In fact, for d = 2 Definition 4 and Definition 5
agree as the condition (I2) of the latter is equivalent to
conditions (I1) and (I2) of the former.

The intuitive interpretation of this definition is the
following: to any point p on the surface of a proper
input shape P one can always attach a sufficiently small
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unit ball B from outside that has an intersection with
∂ P with non-empty relative interior. If ∂ P is locally
convex at p, then this is a trivial statement.

Lemma 7 For any 0 < ε < 1, one can depict B as the
union of finitely many translates of εB.

Proof. We can place at each vertex of B a translate
of µB such that this translate is contained in B and
covers the vertex. By setting µ ≥ 1/2, every point within
B is covered by one translate. By setting µ ≤ 1, the
translates stay within B. By repeating this method at
most (− log2 ε) times, we obtain finitely many translates
of εB that cover B. �

Lemma 8 For any proper input shape P w.r.t. B there
is a finite point set S and some ε > 0 such that ∂ P ⊆
∂(S ⊕ εB).

Proof. (Sketch) Let us consider a facet f of P . For
every point p ∈ f we consider its point p′ according to
(I2). Let us endow f with the relative topology from
Rd. Then the sets relintf (f ∩ (p′ + ‖p′ − p‖B ∂ B) yield
an open cover of the compact space f . Hence, there is a
finite sub-cover, and thus a finite point set S such that

∂ P ⊂ ∂
⋃
p′∈S

p′ + ( inf
q∈P
‖p′ − q‖B)B.

Let us set ε = minp′ infq∈P ‖p′−q‖B . By Lemma 7 we
can replace each (infq∈P ‖p′ − q‖B)B by finitely many
translates of εB. �

The last lemma allows us to see the wavefront WV as
the wavefront that started from a finite point set S. For
sufficiently small t, the set S ⊕ tB consists of disjoint
translates of scaled unit balls. As balls grow they start
to merge and at time t = ε the set S⊕tB tightly encloses
P in the sense that ∂ P ⊂ (S ⊕ εB).

Note that S⊕ εB plays the role of the complement of
P and, thereby, reflex features of P are convex features
of S⊕ εB. During the growth of S⊕ tB the convex fea-
tures do not change orientation and no convex features
with new orientations are introduced. That means:

Lemma 9 Locally at reflex faces proper input shapes P
look the same as B.

We will give formal details in the full version of this
paper.

The intention of our argumentation until this point
was to show that the wavefronts of the straigt skeleton
and the Voronoi diagram conincide for a proper input
shape w.r.t. a proper unit ball. Therefore the wavefront
of the straight skeleton is uniquely defined for this spe-
cial setting. We conclude with the following theorem
which can also be considered as a definition for straight
skeletons of proper input shapes in dimension three and
higher.

Theorem 10 For a proper input shape P w.r.t. a
proper unit ball B in Rd it holds that WS(t) = WV(t)
for all t ≥ 0.

Let us finally remark that any given shape can be
approximated by a proper input shape. This can be
achieved by standard approximation techniques. De-
tails will be presented in the full version of this work.

4 Conclusion

In this paper we presented a new approach for general-
izing straight skeletons by means of Voronoi diagrams.
All previous approaches have common constitutive prin-
ciples, which are also fulfilled by our approach: (i) All
facets of the wavefront WV are parallel copies of facets
of P that move at unit speed. (ii) No facet of WV is
emanated from a face of a facet, i.e., every facet of WV
was emanated by a facet of P , cf. Lemma 9.

Our presented combination of proper unit balls and
corresponding proper input shapes ensures that the
straight skeleton and the Voronoi diagram essentially
coincide. This concept is stated in Theorem 10. For
d = 2, where the straight skeleton is thoroughly de-
fined, this fact is proven in Theorem 5. For d = 3, dif-
ferent approaches already exist to transfer the concept
of straight skeletons to three-space. Due to lack of space
we adjourn a detailed comparision to a full length ver-
sion of this work. For d > 3, there is no prior work that
aims to define straight skeletons. Hence, for this case
Theorem 10 could be read as a definition for straight
skeletons for a proper setting.

References

[1] O. Aichholzer, D. Alberts, F. Aurenhammer, and
B. Gärtner. A novel type of skeleton for polygons. Jour-
nal of Universal Computer Science, 1(12):752–761, Dec.
1995.

[2] O. Aichholzer and F. Aurenhammer. Straight skele-
tons for general polygonal figures in the plane. In
A. Samoilenko, editor, Voronoi’s Impact on Modern
Science, Book 2, pages 7–21. Institute of Mathematics
of the National Academy of Sciences of Ukraine, Kiev,
Ukraine, 1998.

[3] F. Aurenhammer and G. Walzl. Structure and com-
putation of straight skeletons in 3-space. In Lecture
Notes in Computer Science (LNCS), Proc. 24th Inter-
national Symposium on Algorithms and Computation
(ISAAC2013), pages 44–54, Hong Kong, 2013.

[4] F. Aurenhammer and G. Walzl. Three-dimensional
straight skeletons from bisector graphs. In Proc. 5th
International Conference on Analytic Number Theory
and Spatial Tessellations, pages 58–59, Kiev, Ukraine,
2013.

[5] G. Barequet, D. Eppstein, M. T. Goodrich, and A. Vax-
man. Straight skeletons of three-dimensional polyhedra.



CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

In Lecture Notes in Computer Science (LNCS), Proc.
16th European Symposium on Algorithms (ESA2008),
volume 5193, pages 148–160, 2008.

[6] D. Eppstein and J. Erickson. Raising roofs, crashing cy-
cles, and playing pool: Applications of a data structure
for finding pairwise interactions. Discrete & Computa-
tional Geometry, 22(4):569–592, 1999.

[7] M. Held and S. Huber. Topology-oriented incremen-
tal computation of Voronoi diagrams of circular arcs
and straight-line segments. Computer-Aided Design,
41(5):327–338, May 2009.

[8] S. Huber. Computing Straight Skeletons and Motorcycle
Graphs: Theory and Practice. Shaker Verlag, Apr. 2012.
ISBN 978-3-8440-0938-5.

[9] S. Huber and M. Held. Approximating a motorcy-
cle graph by a straight skeleton. In Proc. 23rd An-
nual Canadian Conference on Computational Geometry
(CCCG ’11), pages 261–266, Toronto, Canada, Aug.
2011.

[10] R. Klein, E. Langetepe, and Z. Nilforoushan. Abstract
voronoi diagrams revisited. Computational Geometry:
Theory and Applications, 42(9):885–902, Nov. 2009.

[11] G. A. Peschka. Kotierte Ebenen und deren Anwendun-
gen. Verlag Buschak & Irrgang, Brünn, 1877.
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