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Abstract

Competitive facility location is concerned with the
strategic placement of facilities by competing market
players. In the Discrete Voronoi Game V G(k, l), two
players P1 and P2, respectively, strive to attract as
many of n users as possible. Initially, P1 first chooses a
set F of k locations in the plane to place its facilities.
Then, P2 chooses a set S of l locations in the plane to
place its facilities, where S ∩ F = ∅. Finally, the users
choose the facilities based on the nearest-neighbour rule.
The goal for each player is to maximize the number of
users served by its set of facilities.

By establishing a connection between V G(2, 1) and
ε-nets, we provide an algorithm running in O(n log4 n)
time to find a 7

4 -factor approximation of the optimal
strategy of P1 in V G(2, 1). We also prove that for any
real number 0 < α < 1, there exists a placement of 42

α
facilities by P1 such that P2 can serve at most αn users
by placing one facility.

1 Introduction

Competitive facility location is concerned with the
strategic placement of facilities by competing market
players. The main objective is to judiciously place a set
of facilities, represented as points in the plane, serving
a set of users such that certain optimality criteria are
satisfied. Each facility has its service zone, consisting of
the set of users it serves. Competitive facility location
has been studied in several contexts [1, 7, 8, 9].

In this paper, we assume that the facilities are equally
equipped in all respects, and a user always avails the
service from its nearest facility. The Voronoi Game
refers to the following facility location problem [1, 13].
Two players alternately place one point in the plane,
until each of them has placed a given number of points.
Then we subdivide the plane according to the nearest-
neighbour rule. The player whose points control the
larger area wins. To solve a Voronoi game corresponds
to find an optimal strategy for each player.

In the discrete version [4], users are also represented
as points in the plane (refer to Figure 1). In such a
scenario, when the users choose the facilities based on
the nearest-neighbour rule, the optimization criteria is
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Figure 1: Distribution of users, denoted by the small
points, among two competing market players denoted
by red and blue large points.

to maximize the number of users served by each player.
Moreover, in this paper, we study a version of the dis-
crete Voronoi game where P1 first places all its facilities,
after which P2 places all its facilities.

Consider a set U of users and a set F of facilities. For
every facility f ∈ F , we define the service zone U(f,F)
as the set of users in U that are served by f . The
discrete Voronoi game is a competitive facility location
problem where given a set of users U , two competitive
companies or players P1 and P2 place two disjoint sets
of facilities. Any user ui ∈ U is said to be served by
Pj , j ∈ {1, 2}, if the facility closest to ui is owned by
Pj . For any placements of facilities F and S by P1 and
P2, respectively, the payoff of P2 (or the value of the
game) V(F, S) is defined as the cardinality of the set
of users in U that are served by a facility owned by P2.
More formally, V(F, S) = |⋃f∈S U(f, F ∪S)|. Similarly,
the payoff of P1 is |U | − V(F, S) = |⋃f∈F U(f, F ∪ S)|.
With these notations, the Discrete Voronoi Game on
the plane, noted V G(k, l), can be formally described as
follows.

Definition 1 (Discrete Voronoi Game V G(k, l))
Let U be a set of n users and P1 and P2 be two players.
Initially, P1 chooses a set F of k locations in the
plane to place its facilities. Then P2 chooses a set S
of l locations in the plane to place its facilities, where
S ∩ F = ∅.

1. Given any choice of F by P1, the objective of P2 is
to find a set S∗ of l points that maximizes V(F, S),
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where the maximum is taken over all sets of l points
S ⊂ R2. Formally, the objective of P2 is to find a
set S∗ of l points such that

V(F, S∗) = max
S⊂R2

|S|=l

V(F, S).

2. The objective of P1 is to choose a set F ∗ of k fa-
cilities to minimize the maximum payoff of P2. In
other words, the objective of P1 is to find a set F ∗

of k points such that

max
S⊂R2

|S|=l

V(F, S)

is minimized when F = F ∗, where the minimum is
taken of over all sets of k points F ⊂ R2.

Banik et al. [3] studied a version of V G(k, k), where
U is restricted to a line. They showed that, if the sorted
order of points in U along the line is given, then for any
given placement of facilities of P1, an optimal strategy
for P2 can be computed in linear time. They also pro-
vided results for determining an optimal strategy for
P1.

The discrete Voronoi game when the user set consists
of a finite set of n points in R2 was first considered by
Banik et al. [4], where they studied the following version
of the game. The players P1 and P2 already own two
sets of facilities F and S, respectively. The player P1

wants to place one more facility knowing that P2 will
place another facility afterwards. This game is called
the One-Round Discrete Voronoi Game in Presence of
Existing Facilities, or One-Round-V G(F, S) for short.
The optimal strategy of P2, given any placement of P1,
is identical to the solution of the MaxCov problem stud-
ied by Cabello et al. [5]. Consider a set U of users, two
sets of facilities F and S, and any placement of a new
facility f by P1. Let U1 ⊆ U denote the subset of users
that are served by P1, in presence of F , S, and f . For
every point u ∈ U1, consider the nearest facility disk Cu
centered at u and passing through the facility in F ∪{f}
which is closest to u. Note that a new facility s placed
by P2 serves any user u ∈ U1 if and only if s ∈ Cu.
Let C = {Cu|u ∈ U1}. Any optimal strategy for P2 is
a point which is inside a maximum number of circles
among the circles in C. This is the problem of finding
the maximum depth in an arrangement of n disks, and
can be computed in O(n2) time [2]. Banik et al. [4]
study how this arrangement changes as f and s move
in the plane. They provide a complete characterization
of the event points and obtain an algorithm running in
O(n8) time for computing an optimal placement of P1.

In the One-Round-V G(F, S), if S = Ø, the game re-
sembles V G(k, 1). The difference is that in V G(k, 1),
P1 can choose the location of all of its facilities whereas

in the One-Round-V G(F,Ø), P1 can only choose the
location of one facility. Moreover, the solution to the
One-Round-V G(F,Ø) takes polynomial time, where the
polynomial has a very high degree. In this paper, we fo-
cus on achieving approximate solutions to V G(k, 1) with
significantly better running times.

In Section 2, we provide an approximate solution to
the optimal strategy of P1 in V G(2, 1) by establishing
a connection between V G(2, 1) and ε-nets. To the best
of our knowledge, this is the first time that Voronoi
game is studied from the point of view of ε-nets. We
also extend the study to provide a bound on the payoff
of P1 in V G(k, 1). We prove that for any real number
0 < α < 1, there exists a placement of 42

α facilities by
P1 such that P2 can serve at most αn users by placing
one facility.

2 An Approximate Solution

In this section, we provide an approximate solution to
V G(2, 1) by establishing a connection between ε-nets
and Voronoi games. Let us begin our discussion by
defining what is an ε-net.

Definition 2 (Weak ε-net) Consider any real num-
ber ε ∈ [0, 1]. Let X be a finite set of points in R2 and
R be a set of subsets of X. We call the pair (X,R) a
range space. The elements of X and R are called points
and ranges of the range space, respectively. A finite set
N ∈ R2 is a weak ε-net for (X,R) if N intersects every
set K ∈ R with |K| > ε|X|.

Mustafa and Ray [12] proved the following theorem.

Theorem 1 Let P be a set of n points in R2. There
exist two distinct points z1(P ) and z2(P ) such that any
convex set containing at least 4

7n points of P also con-
tains at least one point in {z1(P ), z2(P )}.

Given a set P of n points, Langerman et al. [10] de-
scribed an O(n log4 n) time algorithm to find z1(P ) and
z2(P ). We will show if a set U of n users is given and
if P1 places its facilities at points z1(U) and z2(U), P1

can guarantee a payoff of 3
7n. Suppose P1 placed its

facilities at points z1(U) and z2(U), and there exists a
placement of facility s by P2 which serves more than
4
7n users. Observe that P2 will serve the set of users
present in the Voronoi region of s in the Voronoi dia-
gram of f1, f2 and s. The Voronoi region of s is a convex
set which does not contain any of f1 and f2 but contains
more than 4

7n points of U . This contradicts Theorem 1.
Therefore we have the following observation.

Observation 1 For any given set of n users U , there
exist two points p1 and p2 such that placing its facilities
at those two points, P1 can guarantee a payoff of at least
3
7n.
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Next we prove that given any placement of facilities
{f1, f2} by P1, there exists a placement by P2 such that
P2 can guarantee a payoff at least n

4 . Let ` be the
line joining f1 and f2 (see Figure 2). Denote the lines

f1 f2
`

`2`1

R1

R2

R3

`3

Figure 2: Minimum payoff of P2.

perpendicular to ` and passing through f1 and f2 by `1
and `2, respectively. Observe that `1 and `2 divides R2

into three regions R1, R2 and R3, respectively. Observe
that by placing one facility in R1 or R3, P2 can serve
all the users in R1 or R3. Hence if one of R1 or R3

contains more than n
4 users, P2 can serve n

4 users. On
the other hand if none of R1 or R3 contains more than
n
4 users, R2 contains at least n

2 users. Consider the line
`3, parallel to `1 and `2 and bisecting the line segment
joining f1 and f2. Observe that by placing a facility
very close to f1, on the line segment joining f1 and f2,
P2 can serve all the users in the region bounded by the
lines `1 and `3. Similarly by placing a facility very close
to f2, on the line segment joining f1 and f2, P2 can
serve all the users in the region bounded by the lines
`2 and `3. As R2 contains at least n

2 users one of these
two regions must contain at least n

4 users. Hence, P2

can still serve at least n
4 users. Therefore we have the

following observation.

Observation 2 Let a set U of n users and the place-
ment of two facilities by P1 be given. There exists a
placement of one facility by P2 such that P2 can guar-
antee a payoff of n

4 .

Denote the optimal payoff for P1 in V G(2, 1) by λ.
From Observation 2, we have λ < 3n

4 . From Observa-
tion 1, we know there exist a placement which guaran-
tees a payoff of 3n

7 . Therefore, we have the following
lemma.

Lemma 2 There exists an algorithm running in
O(n log4 n) time to find a 7

4 -factor approximation of the
optimal strategy of P1 in V G(2, 1).

We have already proved that in V G(2, 1) there exists
a placement strategy by P1 such that P2 can get at
most 4

7n users. We want to extend this study for any
real number 0 < α < 1. That is, given any 0 < α <

1, determine whether there exists an integer f(α) such
that, in V G(f(α), 1), there is a placement strategy by
P1 such that P2 can get at most αn users. It is known
that for any convex range spaces and any 0 < ε < 1
there exists an ε-net of size O( 1

εpolylog 1
ε ) [6]. Hence

for any real number 0 < α < 1, f(α) ∈ O( 1
αpolylog 1

α ).
The question is whether f(α) ∈ O( 1

α )? We answer this
question affirmatively.

Lemma 3 Let be given a set U of n users, a set of fa-
cilities F placed by P1 and a facility s placed by P2, such
that s serves αn users. There exists a circle which does
not contain any of the facilities from F and contains at
least dαn6 e users.

Proof. Denote by Us the set of at least αn users served
by s. Consider any six rays emerging from s such that
the angle between any two consecutive rays is 60◦ (see
Figure 3). These six rays divide the plane into six re-
gions. At least one of these regions contains at least αn

6
users from Us. Let λ be such a region and U ′ ⊂ Us be
the users present in λ.

Consider any user u ∈ U ′ which is farthest from s.
Denote the circle centered at s and passing through u
by Cs (see Figure 3).

s

u

uj

d

Cu

λ

Cs

Figure 3: Illustration of lemma 3.

Let the distance between u and s be d. As u ∈ U ′

is farthest from s, therefore all the users of λ lie in the
region λ ∩ Cs. Since the angle between the bounding
lines of λ is 60◦, the maximum distance between any
two points in λ ∩ Cs is d. Hence the circle Cu centered
at u with radius d contains all the users in λ∩Cs. Since
u is served by s, Cu does not contain any other facility
from F . Hence the result holds. �

The following theorem is due to Matoušek, Seidel and
Welzl [11].
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Theorem 4 Let 0 < ε ≤ 1 be a real number and let
D be a family of disks. For every finite point set S in
the plane there exists an ε-net with respect to D of size
O(1/ε).

We prove the following theorem using Lemma 3 and
Theorem 4.

Theorem 5 For any real number 0 < α < 1 and any
set U of n users, there exists an integer k ∈ O( 1

α ) such
that in V G(k, 1), P1 can choose k points to place its
facilities such that P2 can serve at most αn users by
placing one facility.

Proof. Fix ε = α
6 . Find the ε-net E for disks of

size k ∈ O(1/ε) such that any disk which contains εn
users contains at least one point from E. Therefore,
k ∈ O(1/α). We claim that if P1 places its facilities
at E, P2 will get at most αn users. Suppose there ex-
ists a placement of facility by P2 which serves αn + 1
users. From Lemma 3, we know that there exist a disk
which does not contain any point from E and contains
dαn+1

6 e > εn users. This contradicts the fact that E is
an ε-net for the set of users. �

Let P be any set of n points in the plane and 0 < ε < 1
be any real number. Given a set of points Q and a
set of disks D, we say that Q pierces D if for any disk
D ∈ D, D∩Q 6= ∅. We know by Theorem 4 that for any
0 < ε ≤ 1, there exists a set of k ∈ O(1/ε) points which
pierces all the disks that contain εn points. However the
constant hidden in the O−notation is fairly big. Next,
we prove that given any set P of n points, there exists
a set of 7/ε points which pierces any disk that contains
εn points.

Given a set of n points P , let the minimum disk that
contains εn points from P be D∗. Consider the set D
of all disks D such that D∗ ∩D 6= ∅ and D contains at
least εn points from P .

Lemma 6 The set D can be pierced by 7 points.

Proof. Let D∗ be centered at c and denote the radius
of D∗ by r. Consider the disk D∗∗ centered at c with
radius 2r (see Figure 4). We construct a set Q, con-
taining 7 points, that pierces D. We first include c in
Q. Consider any six rays emerging from c such that
the angle between any two consecutive rays is 60◦ (see
Figure 5). Let λ be any of the six sectors defined by
these rays. Consider the set Dλ ⊂ D of disks that do
not contain c and whose centers are in λ. We show that
there exists a point that pierces Dλ.

Observe that the center of any disk in Dλ must lie
outside of D∗ because D∗ is the minimum radius disk
that contains εn points. The disks D∗ and D∗∗ inter-
sect the boundary of λ in four points p1, p2, p3 and p4,
respectively (see Figure 5). Using elementary geome-
try, we can show that there exists a point q such that

c r

2r

D∗

D∗∗

Figure 4: Minimum disk containing εn points.

c

λp1

p2

p3

p4

q

D∗

D∗∗

Figure 5: Illustration of Lemma 6.

|p1q| = |p2q| = |p3q| = |p4q| = r (see Figure 5). Let
p ∈ λ\D∗ be the center of a disk Di in Dλ. We consider
two cases: (1) p ∈ λ\D∗∗ or (2) p ∈ λ ∩D∗∗.

1. Without loss of generality, assume that p is on the
line joining p2 and p4 (see Figure 6). From the def-

c p2 p4

q

D∗

D∗∗

r

r r
p

ρ
Di

Figure 6: Illustration of the proof of Lemma 6, Case
(1).

inition of q, we have d(q, p2) = d(q, p4) = r, where
d(a, b) denotes the distance between the points a
and b. Furthermore, d(p2, p4) = r. Therefore,
4qp2p4 is an equilateral triangle. Hence, the angle
∠qp2p4 = 60◦. Let the distance between p4 and p
be ρ. Let the radius of Di be ri. Since Di∩D∗ 6= ∅,
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we have
ri ≥ r + ρ. (1)

Consider the triangle 4qp4p. From the triangle
inequality we have

r + ρ ≥ d(p, q). (2)

From equation 1 and 2 we have ri ≥ d(p, q). Hence,
q pierces Di.

2. Without loss of generality, assume that p is on the
line joining p2 and p4 (see Figure 7). The radius

c p2 p4

q

D∗

D∗∗

r r

p
Di

Figure 7: Illustration of the proof of Lemma 6, Case
(2).

of Di is at least r because D∗ is the minimum-
radius disk that contains εn points. As 4qp2p4 is
equilateral, the distance from any point on the line
p2p4 is less than d(p2, q) = r. Hence, q pierces Di.

�

Given a set P of n points, we provide an iterative
algorithm to find an ε-net Qε of size 7/ε. At each stage
of the algorithm, we find the minimum disk D∗ that
contains εn points of P . From Lemma 6, we know there
exists a set Q of 7 points which pierces the set of all
disks containing εn points of P and having a nonempty
intersection with D∗. We include the points in Q to Qε
and remove all points of P which are inside D∗. We
continue this process until P contains no more than εn
points. Therefore, the cardinality of Qε at the end of
the process is at most 7/ε. We claim that this algorithm
correctly finds an ε-net for P .

Suppose Qε is not an ε-net for P . Hence, there exists
a disk D̂, which contains at least εn points, that is not
pierced by any of the points in Qε. Denote by Di the
minimum disk, which contains εn points from P , that
we choose at stage i of the algorithm. If D̂ did not
intersect with any of the Di’s, then D̂ would contain
less than εn points. Therefore, let Dj be the first disk

that has a nonempty intersection with D̂. Notice that
none of the points in D̂ has been removed from P at
earlier stages. Thus, from Lemma 6, D̂ must be pierced
by one of the 7 points chosen at stage j. Hence, we have
the following theorem.

Theorem 7 Given any set P of n points, there exists
a set of 7/ε points which pierces the set of all the disks
that contain at least εn points.

From Theorem 7 and Lemma 3, we have the following
theorem.

Theorem 8 For any real number 0 < α < 1, there
exists a placement of 42

α facilities by P1 such that P2

can serve at most αn users by placing one facility.

3 Conclusion

Using an approach similar to that of Banik et al. [4],
we can solve V G(2, 1) exactly. If we fix the locations
of the facilities (f1 and f2 for P1, and s for P2), we
can define a nearest facility disk for each user (refer to
Section 1 or to [4]). This defines an arrangement of
cells. We claim that the boundary of each cell in this
arrangement is made of circular arcs or line segments.
By studying how this arrangement changes as we move
f1, f2 and s, we can compute the optimal strategy for
P1 and P2. However, this leads to a polynomial time
algorithm, where the polynomial has a very high degree.

We would like to find a different approach to solve the
problem exactly which would lead to a faster algorithm.
This will be the subject of further research.
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