
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Forest-Like Abstract Voronoi Diagrams in Linear Time∗

Cecilia Bohler, Rolf Klein, and Chih-Hung Liu †

Abstract

Voronoi diagrams are a well-studied data structure of
proximity information, and although most cases require
Ω(n log n) construction time, it is interesting and use-
ful to develop linear-time algorithms for certain Voronoi
diagrams. For example, the Voronoi diagram of points
in convex position, and the medial axis and constrained
Voronoi diagram of a simple polygon are a tree or forest
structure and can be computed in linear time. In order
to provide a more general approach, we study abstract
Voronoi diagrams in a domain where each site has a
unique face touching the boundary of the domain, im-
plying that the diagram is a forest-like structure, and
develop a linear-time algorithm. Since abstract Voronoi
diagrams are a category of Voronoi diagrams, our algo-
rithm works for many concrete Voronoi diagrams.

1 Introduction

Voronoi diagrams [2, 3, 9] are a well-studied data struc-
ture of proximity information, used in many different
engineering and science applications [4, 19]. In princi-
ple, given a set S of sites on the plane, the Voronoi
diagram is a planar subdivision such that all points in
a region share the same nearest site in S. Sites can be
points, line segments, circles, polygons, and so on, and
the distance measure can be the Euclidean distance, Lp

norms, convex distance function, geodesic distance, and
so on. There have been O(n log n)-time construction
algorithms for many concrete cases by randomized in-
cremental construction, divide-and-conquer paradigm,
or plane-sweep method.

In order to provide a unifying construction method,
Klein [10] introduced Abstract Voronoi Diagrams
(AVDs, for short). Here, no sites, circles, or distance
measures are given. Instead, for each pair of sites p and
q from S one takes an unbounded curve J(p, q) = J(q, p)
as primary object, together with the open domains
D(p, q) and D(q, p) it separates. Abstract Voronoi re-

∗This work was supported by the European Science Foun-
dation (ESF) in the EUROCORES collaborative research
project EuroGIGA/VORONOI. Chih-Hung Liu was supported by
Alexander von Humboldt-Foundation, Germany.
†University of Bonn, Institute of Computer Science I,

Germany, bohler@cs.uni-bonn.de, rolf.klein@uni-bonn.de,
chliu 10@citi.sinica.edu.tw

gions are defined by

VR(p, S) :=
⋂

q∈S\{p}
D(p, q)

and the abstract Voronoi diagram by

V (S) := R2 \
⋃
p∈S

VR(p, S).

The following axioms were required to hold for each
subset S′ of S.

(A1) Each curve J(p, q), where p 6= q, is unbounded.
After stereographic projection to the sphere, it can
be completed to a closed Jordan curve through the
north pole.

(A2) Each nearest Voronoi region VR(p, S′) is nonempty
and pathwise connected.

(A3) Each point of the plane belongs to the closure of a
Voronoi region VR(p, S′).

The abstract Voronoi diagram can be constructed in
O(n log n) steps by the divide-and-conquer paradigm
[10] and the randomized incremental construction [15].

However, certain practical applications require only a
specific substructure of the entire diagram or a special
kind of Voronoi diagram. Although the construction
time is Ω(n log n) for many kinds of Voronoi diagrams,
it is still possible to compute a specific part or a spe-
cial case faster. Aggarwal et al. [1] developed a linear-
time algorithm for Euclidean Voronoi diagrams of points
in convex position. Their algorithm further allows to
delete a site from Euclidean Voronoi diagrams in time
linear to the structural changes, and also speeds up the
algorithm for the kth-order Voronoi diagram in [17] by
a O(log n) factor.

Later, Klein and Lingas [12] generalized their idea to
abstract Voronoi diagrams where a Hamiltonian path
passing each bisecting curve exactly once is given called
Hamiltonian abstract Voronoi diagrams, and proposed
a linear-time algorithm. For all subsets S′ of S such a
Hamiltonian path runs through each Voronoi region of
V (S′) exactly once.

Moreover, there are two kinds of Voronoi diagrams
of a simple polygon, both consisting of a tree or for-
est structure, who have received considerable attention.
First, the medial axis of a simple polygon is the Voronoi

26th Canadian Conference on Computational Geometry, 2014

diagram of its polygonal edges. Lee [16] first proposed
an O(n log n)-time algorithm for this medial axis, and
Chin et al. [6] later developed a linear-time algorithm.
Second, the constrained Voronoi diagram of a simple
polygon is the Voronoi diagram of its polygonal vertices
constrained by its polygonal edges. Lee and Lin [18] first
derived an O(n log n)-time algorithm for these kinds of
constrained Voronoi diagrams, and then Klein and Lin-
gas [13] proposed a linear-time algorithm in the L1 met-
ric. Furthermore, in the Euclidean metric, Klein and
Lingas [13] later developed a randomized linear-time al-
gorithm, and Chin and Wang [7] finally gave a deter-
ministic linear-time algorithm.

However, the convex position is not applicable for
many other geometric objects and other distance mea-
sures. Furthermore, computing a Hamiltonian path for
a given AVD is NP-complete, which we will prove by
Corollary 4 in Section 2. Besides, those linear-time al-
gorithms [6,7,14] for the medial axis and the constrained
Voronoi diagram of a simple polygon depend on a de-
composition of a simple polygon, which prevents them
from being extended to a more general setting.

Therefore, we consider the abstract Voronoi diagram
in a domain where its structure is a forest and each of
its sites has exactly one face, see Figure 1. Let D ⊆ R2

be a bounded domain, e. g. a domain bounded by Γ,
where Γ is a simple closed curve intersecting each bisec-
tor exactly twice such that no two bisectors intersect in
a connected component entirely enclosed by the outer
domain of Γ. In the following, without explicit indi-
cation, V (S′) means V (S′) ∩ D and VR(p, S′) means
VR(p, S′) ∩D.

p

q
r

s

t

u

∂D

(a) V (S)

q

s

t

u

∂D

(b) V (S′)

Figure 1: (a) Abstract Voronoi diagram V (S) in a
domain D, the ordering of the regions along ∂D is
p, q, r, s, t, u.
(b) For a subset S′ ⊂ S, V (S′) may be a forest, the
ordering of the regions along ∂D is here t, q, t, s, t, u.

We require the additional axiom:

(A4) V (S) is a tree. For all S′ ⊆ S, V (S′) is a forest
and each Voronoi region has exactly one face.

This axiom implies that each bisector crosses D ex-
actly once, any two related bisectors, J(p, q) and J(p, r)
having one site in common, cross at most once and, to-
gether with axiom (A2), ∂D runs through each Voronoi

region of V (S) exactly once. Based on our axioms we
prove the following result.

Theorem 1 Given a domain D together with the or-
dering of the Voronoi regions along ∂D we can compute
V (S) in time O(n).

On the other hand, if each bisector crosses D exactly
once, no two related bisectors intersect in more than
one point and each Voronoi region of V (S) intersects
the boundary of D, meaning that no region is empty,
then we know that V (S′) is a forest for all subsets S′ of
S. Further, if we know in advance which region of V (S)
is intersected by ∂D more than once, we would know
how to separate V (S) into trees and could adapt the
theorem for each tree. Otherwise this would already
be an element-uniqueness-test which would need time
Ω(n log n).

There is also a possibility of normalizing the bisector
system in the sense that afterwards each pair of related
bisectors cross exactly once, see Section 3. Then V (S′)
would be a tree for all S′ ⊆ S. But there are

(
n
3

)
pairs

of related bisectors, and none of these pairs must cross
from the beginning. Thus it takes time Ω(n3) to nor-
malize them. And even afterwards ∂D may be a curve
intersecting each region of V (S) exactly once but it is
unclear whether this is also true for subsets S′ of S, be-
cause only related bisectors are claimed to cross exactly
once.

That is why in this paper we chose a different defini-
tion than in [12]. Compared to this algorithm for Hamil-
tonian abstract Voronoi diagrams our algorithm has two
major differences in the coloring (Section 4.1) and se-
lection (Section 4.2), and we prove the corresponding
theoretical properties for the correctness. For the col-
oring, our algorithm needs to consider two more sub-
cases, and two consecutive sites in the sequence can be
both colored red, while no consecutive sites in [12] are
colored red. For the selection, our algorithm needs to
modify V (S′) into a tree for applying Aggarwal’s select-
ing lemma [1].

A preliminary version of this work appeared in [5].

2 NP-completeness

A Hamiltonian path with respect to an AVD is an un-
bounded simple curve visiting each Voronoi region ex-
actly once. We show that it is NP-complete to decide
whether such a curve exists or not.

Let V (S) denote an arbitrary AVD. In [10], Theorem
2.7.3, it has been shown that V (S) together with the
large curve Γ around the diagram is a biconnected pla-
nar graph with vertex-degree ≥ 3, the vertices on Γ are
of degree 3. Also the opposite is true, namely each graph
fulfilling these properties represents an AVD. In this
book a slightly different definition of AVD’s was used,

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

but it is easy to see that the Theorem is still true for
our setting based on axioms (A1) to (A3). This means
that the dual of V (S), the dual of the graph structure
of V (S) inside Γ, is a biconnected planar graph and vice
versa. Thus a Hamiltonian curve with respect to V (S)
is equivalent to a Hamiltonian path, with its endpoints
on the outer face, in a biconnected planar graph.

To show that it is NP-hard to even decide the exis-
tence of such a path, we reduce the problem of deciding
whether a Hamiltonian cycle exits in a Delaunay trian-
gulation. In [8] it has been shown that this problem is
NP-complete.

Lemma 2 Let G be a biconnected planar graph. The
problem to determine whether a Hamiltonian path P
with endpoints on the outer face of G exists is NP-
complete.

Proof. It is clear that the problem is in NP. So, let G be
a Delaunay triangulation. A Hamiltonian cycle C exists
inG iff C visits each vertex v ofG exactly once. Thus, iff
there exists a Hamiltonian path P with endpoints v and
w such that there is an edge from v to w in G. Let v be
an arbitrary vertex of G. Because G is a triangulation,
there are O(n) triangles adjacent to v. Each triangle
consists of 3 vertices which are pairwise connected by
an edge. If G contains a Hamiltonian cycle, then there
must be a Hamiltonian path having its endpoints in one
of the triangles. For each triangle T adjacent to v turn
the graph inside out, such that T becomes the outer
face and the outer face becomes a bounded face. The
resulting graph G′ is biconnected and planar. Now a
Hamiltonian cycle exists in G iff for a triangle adjacent
to v a Hamiltonian path, with its endpoints on the outer
face, exists in G′. This proves the lemma. �

From this lemma we get our theorem.

Theorem 3 It is NP-complete to determine if for a
given abstract Voronoi diagram there exists an un-
bounded simple curve visiting each Voronoi region ex-
actly once.

Corollary 4 For a given system of bisecting curves it
is NP-comlete to determine if there exists an unbounded
simple curve crossing each bisecting curve exactly once.

Proof. An unbounded simple curve crossing each bi-
secting curve exactly once visits each Voronoi region in
V (S) exactly once, see Lemma 3 in [12]. �

3 Normalizing a Bisector System

Let {J(p, q) | p, q ∈ S} be a system of bisecting curves
in general position fulfilling axioms (A1) to (A3) and a
relaxed version of (A4):

(A4’) V (S′) is a forest for all S′ ⊆ S.

Axiom (A4’) implies that any two related bisectors
cross at most once. Would all pairs of related bisectors
cross exactly once then V (S′) would be a tree for all
subsets S′ of S. Let Γ be a closed curve encircling all
intersection points of bisecting curves, so that each
bisecting curve consists of two unbounded segments
outside of Γ and a bounded segment inside.

Notation: We shall write p|q to denote a segment of
J(p, q) that hasD(p, q) to its left andD(q, p) to its right,
if no confusion can arise.

Theorem 5 By introducing crossings of neighboring
bisecting curves outside of Γ (and afterwards enlarg-
ing Γ to include all new intersection points) we can
transform {J(p, q) | p, q ∈ S} into a normal system
{J ′(p, q) | p, q ∈ S} of bisecting curves such that

(i) axioms (A1) to (A3) and (A4’) are fulfilled,

(ii) each pair of related bisectors cross exactly once,

(iii) V (S) = V ′(S) ∩ int(Γ).

Property (ii) is equivalent to saying that the Voronoi
diagram of any three sites contains exactly one Voronoi
vertex. Namely, because of general position, we know
that two related bisectors J(q, p), J(p, r) can only cross
in a point, where they intersect, and J(q, r) must pass
through this point, too. Such triplet crossing points
correspond to Voronoi vertices in the diagrams of the
three sites involved. From the original bisector system,
all of these

(
n
3

)
many crossings may be missing.

Proof. If the bisector system is not normal
there exist three different sites p, q, r in S where
J(q, p), J(q, r), J(p, r) fail to cross but instead run as
shown in Figure 2. By axiom (A4’), the Voronoi region
of p in V (S) extends to infinity, w.l.o.g. through the
northern part of the strip (the southern part may
be blocked by other sites in V (S)). Let m denote
the number of unbounded southern bisector segments
between q|p and p|r. Clearly, m ≥ 1 because q|r is
situated between q|p and p|r. We call q|p and p|r a
“strip of width m”.

The theorem follows by applying the following lemma
repeatedly.

Lemma 6 If there is a strip of width m ≥ 1 we can in-
troduce another triplet crossing point while maintaining
properties (1) to (3).

(We observe that the crossing point introduced need
not be the one of the strip boundaries!)

26th Canadian Conference on Computational Geometry, 2014

Γ

q p p rq r

V R(p, S)

q p t u

m

Figure 2: In principle we want to move q|p and p|r to-
gether such that they cross on q|r. This may require re-
ordering the bisector segments in between, as we must
not cause related bisectors to cross more than once.

Γ

q p
t q

t p

q r

Figure 3: Illustration of the case t|u = t|q.

Proof. By induction on m. If m = 1 then q|p, q|r, p|r
are direct neighbors and can be “braided” to obtain a
triplet crossing point, v. We enlarge Γ to include v,
and have obtained the new ordering p|r, q|r, q|p. Ax-
ioms (A1) to (A4’) are still fulfilled.

Now let m > 1, and let t|u be the right hand side
neighbor of q|p, as shown in Figure 2. If t|u = q|r then
we are done with moving q|p to the right, and start to
move p|r to the left towards q|r in a symmetric way.

If t, u are different from q, p we can simply make q|p
cross t|u without difficulty. This reduces m to m−1, and
the claim follows by induction. Otherwise, we analyze
the following cases.

t|u = p|u. Impossible, because q|u must appear be-
tween q|p and p|u.

t|u = t|p. Here t|p and p|r form a strip of width m− 1,
so that induction applies. t|u = t|q. We observe that
t 6= p because q|p runs to the north. Similarly, we have
t 6= r. Since the region of q is nonempty, q|p and t|q
must intersect, as shown in Figure 3. But then t|p must
appear in between—a contradiction.

Γ
u
p

q p q u q r
pr

u r

Figure 4: An impossible situation.

t|u = q|u. This case splits into three subcases, depend-
ing on the intersection behavior of q|u.

First, if q|p and q|u cross we have the situation shown
in Figure 4. We observe that q|u cannot cross q|r, too,
because it would need to cross it twice in order to run
to q|p. Since the region of p is unbounded to the north,
u|p and p|r cannot cross, so u|r must run between them
to the north. If u|r were situated, on the southern part
of Γ, between q|p and q|u, as shown in Figure 4, it could
not run to the north because it could not cross q|u (the
crossing would have to lie on q|r, too, which is impos-
sible as q|u and q|r are disjoint). Thus, u|r appears
between q|u and p|r, and q|u and u|r form a strip of
width < m. Induction applies because the region of u
is unbounded to the north.

Second, let us assume that q|u intersects neither q|p
nor q|r, as shown in Figure 5. In the Voronoi diagram
of p, q, u, bisector q|u must run between q|p and p|u
without crossing, because the region of p runs to the
north. If, on the southern boundary of Γ, bisector p|u
appears to the left of p|r then q|p and p|u form a strip
of width < m, and induction applies. Otherwise, we
have the situation depicted in Figure 5. Since q|u and
q|r are disjoint by assumption, q|r and u|r cannot cross.
Thus, q|u and u|r form a strip of width < m, and we
can apply induction since the region of u is unbounded
to the north.

Third, we assume that q|u intersects q|r but not q|p;
see Figure 6. As in the previous case, bisector q|u must
run between q|p and p|u without crossing, and if p|u
appears to the left of p|r we can apply induction to the
strip formed by q|p and p|u. Let us assume that p|u is
situated to the right of p|r. If p|r and p|u were disjoint,
either the region of r or of u would be empty in the
Voronoi diagram of p, r, u, because r|u would run to the
left of p|r; see Figure 7.

Thus, there must be a crossing, as shown in Figure 6.
But there is no way the two segments of r|u can be
connected, since multiple crossings are not allowed—a

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Γ

q p q u q r
pr

p u

u r

Figure 5: Bisectors q|u and u|r form a strip of width
< m.

Γ

q p q u q r
pr

p u

u
ru

r

Figure 6: An impossible situation, since the two seg-
ments of J(r, u) cannot be connected.

Γ

pr

p u

r
u

Figure 7: The Voronoi region of r or of u would be
empty.

contradiction.
This concludes the proof of the Lemma and of the

Theorem. �

�

4 The Algorithm

Let us get back to our actual problem. Here a domain D
together with the ordering of the Voronoi regions along
its boundary is given.

Definition 1 For each set of sites S′ ⊆ S let π(S′) be
the sequence of regions of V (S′) along ∂D. Since V (S)
partitions ∂D into |π(S)| pieces, each element of π(S)
corresponds to a unique piece. For each element p of
π(S), d(p) is a point on its corresponding piece.

Remark that VR(p, S) ⊆ VR(p, S′), thus d(p) ∈
VR(p, S′) for all subsets S′ of S. Actually, π(S) depends
on the starting point and the direction of a traversal
along ∂D. W. l. o. g. , we assume the starting point is
known and the direction is clockwise. Axiom (A4) im-
plies that each element in π(S) occurs only once. For
subsets S′ of S we have the following observation.

Lemma 7 π(S′) is a Davenport-Schinzel-Sequence of
order 2.

Proof. By definition no element of the sequence ap-
pears twice without another site in between. So, sup-
pose there are p 6= q ∈ S′ such that p, q, p, q occur in
this ordering in π(S′). Then either the two p’s or the
two q’s can not be connected in D, a contradiction to
axiom (A4). �

We want to use a recursive algorithm to compute
V (S). To be able to recursively compute V (S′) from
V (S) it is important that the input, the sequence of sites
π(S′), fulfills the same properties as the sequence π(S).
But π(S) is a Davenport-Schinzel-Sequence (DSS) of
order 1, whereas π(S′) may be a DSS of order 2. For
this purpose we will use the following definition.

Definition 2 Let π′(S′) be the subsequence of π(S)
containing all elements from S′, i. e. π′(S′) is a DSS
of order 1.

In the following we show that it indeed suffices to con-
sider the subsequence π′(S′) in order to compute V (S′).
Now our algorithm can be summarized as follows:

1. Color each element of π(S) either blue or red, i.e.,
π is partitioned into π′(B) and π′(R), and S is
partitioned into B and R, such that both |B| and
|R| are a constant fraction of |S|, and for each two
consecutive red sites, r1, and r2, in π, VR(r1, B ∪
{r1, r2}) and VR(r2, B ∪{r1, r2}) are not adjacent.
See Section 4.1 for details.

26th Canadian Conference on Computational Geometry, 2014

2. Compute V (B) from π′(B) recursively.

3. Select a subset C from R such that |C| is a constant
fraction of |R|, and for any two sites, c1 and c2,
VR(c1, B ∪ {c1, c2}) and VR(c2, B ∪ {c1, c2}) are
not adjacent. See Section 4.2 for details.

• Add artificial Voronoi edges to obtain a tree
structure V ∗(B)

• Apply Aggarwal et al.’s selecting Lemma [1]
on V ∗(B)

4. Compute V (B ∪ C) by sequentially inserting each
element of C into V (B).

5. Compute V (G) from π′(G) recursively, where G =
R\C and π′(G) is obtained from π′(R) by removing
all elements in C.

6. Merge V (B ∪ C) and V (G).

Step 1 can be carried out in linear time according to
Section 4.1, Step 3 and Step 4 can be completed in linear
time according to Section 4.2 and 4.4, and Step 6 can
be implemented in linear time using the general merge
method described in [10]. Since |B| and |G| is a constant
fraction of |S|, the above claims conclude Theorem 1.

Definition 3 For a set S of sites, a subset S′ of S,
and a site p of S′, a connected intersection between
VR(p, S′) and ∂D is redundant if it does not contain the
connected intersection between VR(p, S) and ∂D. From
the viewpoint of π′(S′), which is a subsequence of π(S),
a connected intersection between VR(p, S′) and ∂D is
redundant if it does not contain d(p) for p in π′(S′).

Definition 4 For all S′ ⊆ S, a pqr-vertex of V (S′)
is a Voronoi vertex adjacent to VR(p, S′), VR(q, S′),
and VR(r, S′) clockwise. If VR(p, S′) is the only region
bordering VR(q, S′), VR(p, S′) encloses VR(q, S′), for
brevity we say p encloses q in V (S′).

4.1 Red-Blue-Coloring Scheme

The coloring scheme consists of two steps, where a site
is blue as long as it is not colored red. See also Figure 8.

1. For every 5 consecutive sites along π(S),
(l,m, p, q, r), p is colored red if one of the following
conditions holds. Let T be {l,m, p, q, r}.

(i) There is a mpq-vertex in V (T).

(ii) VR(m,T) encloses VR(p, T).

(iii) VR(q, T) encloses VR(p, T).

2. For every 3 consecutive sites along π(S) that are
all blue, the middle one is colored red.

l

m

p

q

r

l

m

p

q

r

Figure 8: Two cases where p is colored red.

Let R be the set of red sites, and B be the set of blue
sites. Observe that the final diagram V (S) is a tree, but
in the recursion V (S) may be a forest, e. g. when S = B.
Then we use the sequence π′(S) instead of π(S).

Lemma 8 No 3 consecutive sites in π(S) are all colored
red.

Proof. For the sake of a contradiction assume that
three consecutive sites r1, r2, r3 are all red. Let s1 and
s2 be the two consecutive sites previous to r1, and s3
and s4 the two consecutive sites after r3. By definition
r1, r2 and r3 can not be colored red by step 2. Thus
we need only consider step 1. There are three different
cases for r1 to be colored red.

Case 1: There is an s2r1r2-vertex in
V ({s1, s2, r1, r2, r3}). This vertex is still an s2r1r2-
vertex in V ({s2, r1, r2, r3}) implying that there can not
exist an r1r2r3-vertex in V ({s2, r1, r2, r3}) and hence
also no r1r2r3-vertex in V ({s2, r1, r2, r3, s3}). This
means that r2 must be colored red because r1 or r3
encloses it in V ({s2, r1, r2, r3, s3}). But then r2 can
not be adjacent to a vertex in V ({s2, r1, r2, r3}), i.e.,
no s2r1r2 vertex exists, a contradiction.

Case 2: r1 is colored red because s2 encloses r1
in V ({s1, s2, r1, r2, r3}). But then the regions of
r1 and r2 are not adjacent in V ({s2, r1, r2, r3}) and
there can be no r1r2r3-vertex in V ({s2, r1, r2, r3, s3}).
Further r1 can not enclose r2. This means that
r2 must be colored red because r3 encloses it in
V ({s2, r1, r2, r3, s3}). But then there can be no r2r3s3-
vertex in V ({r1, r2, r3, s3, s4}) and r3 can not be en-
closed by r2 or s3 in V ({r1, r2, r3, s3, s4}). Thus r3 is
not colored red, a contradiction.

Case 3: r1 is enclosed by r2 in V ({s1, s2, r1, r2, r3})
but then because of the same reasons as in case two r2
is not colored red. �

Corollary 9 Let s1, s2, r1, r2, s3, s4 be 6 consecutive
sites in π(S). If r1 and r2 are both red, then
s2 and s3 are both blue. Further s2 encloses
r1 in V ({s1, s2, r1, r2, s3}) and s3 encloses r2 in
V ({s2, r1, r2, s3, s4}). In particular s2 encloses r1 and
s3 encloses r2 in V ({s2, r1, r2, s3}).

Proof. Lemma 8 shows that s2 and s3 are both red.
The case two in the proof of Lemma 8 is the only case

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

where two consecutive sites r1 and r2 are both colored
red. Here s2 encloses r1 in V ({s1, s2, r1, r2, s3}) and
r3 encloses r2 in V ({s2, r1, r2, s3, s4}), implying that s2
encloses r1 and s3 enclose r2 in V ({s2, r1, r2, s3}). �

It can happen that two consecutive sites are both col-
ored red, see Figure 9. However, we still have the fol-
lowing property.

s1

s2

r1
r2

s3
s4

π′(S) = (s1, s2, r1, r2, s3, s4)

π(S) = (s1, s2, r1, s2, s3, r2, s3, s4)

Figure 9: Two consecutive sites r1 and r2 in π′(S) are
both colored red, but their regions are not adjacent

Lemma 10 Let r1 and r2 be two consecutive red sites.
Then VR(r1, B ∪ {r1, r2}) and VR(r2, B ∪ {r1, r2}) are
not adjacent.

Proof. Let s1 be the site previous to r1 and s2 the site
after r2 in π. There are three cases.

Case 1: There is no blue site between r1 and r2. Be-
cause of Corollary 9, s1 and s2 are both blue and s1
encloses r1 and s2 encloses r2 in V (s1, r1, r2, s2). Thus
it follows directly that the regions of r1 and r2 can not
be adjacent in V (B ∪ {r1, r2}).

Case 2: There is exactly one blue site b between
r1 and r2. For the sake of a contradiction suppose
VR(r1, B ∪ {r1, r2}) and VR(r2, B ∪ {r1, r2}) are ad-
jacent. Then the regions of r1 and r2 are the only
regions that may be adjacent to the region of b in
V (B ∪ {r1, r2}). If they both are adjacent to the re-
gion of b, then there is a r1br2-vertex in V (B∪{r1, r2}).
If only the region of r1 is adjacent to the region of b,
then r1 encloses b in V (B ∪ {r1, r2}) and if only the re-
gion of r2 is adjacent to the region of b, then r2 encloses
b in V (B ∪ {r1, r2}).

Now if s1 and s2 are both blue, then
{s1, r1, b, r2, s2} ⊆ B ∪ {r1, r2} and b would have
been colored red, a contradiction to the assumption
that b is blue.

Now assume s1 is red and let s0 be the predeces-
sor of s1. Corollary 9 tells us that b encloses r1 in
V ({s0, s1, r1, b, r2}), but then the regions of r1 and r2
can not be adjacent in V (B ∪ {r1, r2}). The case that
s2 is red is symmetric.

Case 3: There are exactly two blue sites b1 and
b2 between r1 and r2. As in case 2, for the sake
of a contradiction suppose VR(r1, B ∪ {r1, r2}) and
VR(r2, B ∪ {r1, r2}) are adjacent. Then the regions of
r1, r2, b1 and b2 are the only regions that may be adja-
cent to the regions of b1 and b2 in V (B ∪ {r1, r2}).

Now there are two subcases:

Case 3.1. The region of b1 or b2 is not adjacent to any
of the regions of r1 or r2 in V (B ∪ {r1, r2}). Then b1
encloses b2 or b2 encloses b1 in V (B ∪{r1, r2}). W.l.o.g.
let b1 enclose b2, the other case is symmetric. If s2 is
blue, then b1 also encloses b2 in V ({r1, b1, b2, r2, s2}),
and b2 must be colored red. But if s2 is red, then by
Corollary 9 b2 has to enclose r2 in V ({b1, b2, r2, s2)}),
both a contradiction.

Case 3.2. Both the regions of b1 and b2 are adjacent
to the region of r1 or r2. Because all Voronoi regions
are connected the region of b1 or b2 is adjacent to the
region of r1 but not r2 or vice versa. Let b1 be adjacent
to the region of only r1 and b2, the other 3 constella-
tions are symmetric. Then there is a r1b1b2-vertex v in
V (B ∪ {b1, b2}). If s1 is blue, then v is also a r1b1b2-
vertex in V ({s1, r1, b1, b2, r2}) and thus b1 would be red,
a contradiction.

If s1 is red, then r1 would be enclosed by b1 in
V ({s0, s1, r1, b1, b2}), a contradiction as in Case 2. �

4.2 Choosing Crimson Sites

We want to apply the following combinatorial lemma
from [1] to obtain an independent set of crimson sites.

Lemma 11 Let T be a binary tree embedded in the
plane and for each leaf l a subtree Tl rooted at l is de-
fined. Further, the subtrees of two consecutive leaves in
the topological ordering around T are disjoint. Then one
can in linear time find a fixed fraction of leaves whose
subtrees are pairwise disjoint.

To use this lemma we modify the forest V (B), gener-
ated by the blue sites, by adding some edges and leaves
to obtain a tree V ∗(B) fulfilling the claimed properties.
We start with the following observation.

Lemma 12 We can detect all redundant intersections
of V (B) in time O(n).

Proof. First compute π(B) by deleting all sites from R
from π(S). This takes time O(n).

Recall that π(B) is the sequence of sites along ∂D in
V (B). This is a Davenport-Schinzel-Sequence of order
2, whereas π′(B) is a Davenport-Schinzel-Sequence of
order 1. Let |B| = m ≤ n, π′(B) = (p1, . . . , pm) and
π(B) = (q1, . . . , ql), where q1 = p1 refers to a non re-
dundant intersection. Further l ≤ 2m−1, because π(B)
is a DSS of order 2.

Let qij = pj refer to a non redundant intersection
and let qij+1

be the first pj+1 after qij . We claim that
qij+1

= pj+1 refers to a non redundant intersection im-
plying that all q between qij and qij+1

refer to redundant
intersections.

Suppose qij+1 = pj+1 is redundant. Then there must
be a q′ = pj+1 after qij+1

in π(B) referring to the non
redundant intersection of pj+1. This means that all q

26th Canadian Conference on Computational Geometry, 2014

between qij+1
and q′ are redundant and thus for all such

q 6= pj+1 there is another q before qij+1
or after q′ in

π(B). Because all faces of V (B) ∩ D are connected in
D, the intersection of qij+1 can be connected to the in-
tersection of q′ by path in D ∩ VR(pj+1, B). But then
no q 6= pj+1, there must be at least one between qij+1

and q′, can be connected to any intersection of q before
qij+1

or after q′ by a path in D∩VR(q,B), a contradic-
tion. �

Now we construct V ∗(B) out of V (B) by the following
operations, compare Figure 10.

(i) For all redundant intersections on ∂D link the two
leaves bounding it along ∂D.

If the redundant intersection borders another redun-
dant intersection on its right end, then let the leaf be-
tween them now be a vertex in V ∗(B). Observe that
this is a vertex of degree 3. Otherwise connect the right
end of the link to V (B) without creating a vertex. The
same is done on the left side of the redundant intersec-
tion.

Next we attach some leaves to V ∗(B) outside of D
such that between each pair of consecutive blue sites
bi and bi+1 having one (or two) red site(s) in between,
there is exactly one (or between one and two) leaves in
V ∗(B). If there is no red site between bi and bi+1 there
is also no leaf.

(ii) If there are one or two red sites r1 and r2 between
two consecutive blue sites bi and bi+1 but no leaf
between them, then there is a connected set of re-
dundant intersections between bi and bi+1. If d(rj),
j = 1, 2 lies within this sequence we attach a leaf
to V ∗(B) at d(rj), otherwise if d(rj) lies to the left
(right) of the sequence we attach a leaf at the left-
most (rightmost) point of the sequence. If both
d(rj), j = 1, 2 are to the left (right) of the redun-
dant intersection sequence, only one leaf is attached
at the leftmost (rightmost) point.

Between two consecutive blue sites there are at most
two red site. Thus for every connected sequence of re-
dundant intersections at most two leaves are attached.
Further, between each pair of consecutive blue sites sep-
arated by one or two red sites there is now at least one
leaf.

(iii) If there is a leaf in V (B) between two consecutive
blue sites bi and bi+1, which are not separated by
a red site, it is pruned like in [12].

Lemma 13 V ∗(B) is a binary tree and can be con-
structed in time O(n).

l p

r

t
u

y

π(S) = (k, l,m, p, q, r, s, t, u, v, w, x, y . . .)

π′(B) = (l, p, r, t, u, x, y . . .)

d(k)

d(v)

d(w)

π(B) = (t, l, p, r, t, u, t, y, x, y, . . .)

x

Figure 10: V ∗(B), fat edges indicate redundant inter-
sections and new leaves.

Proof. It is clear that V ∗(B) is a forest. So assume
it is disconnected. Then there is a site b ∈ B whose
Voronoi region in V (B) intersects ∂D in more than one
component. By (i) all these components are non redun-
dant. But then b has to appear several times in π(S),
a contradiction. Definitions (i) to (iii) imply that all
internal nodes of V ∗(B) are of degree 3.

By lemma 12 we can detect all redundant intersec-
tions in time O(n). In the same time operation (i) can
be accomplished. For operation (ii) and (iii) we have
to walk once around ∂D and look at consecutive blue
sites.

For each pair of consecutive blue sites bi and bi+1 we
test if there are zero, one or two red sites in between.
If there is no red site between bi and bi+1 but a leaf,
we prune the leaf in constant time. If there are one
or two red sites r1 and r2 but no leaf between bi and
bi+1 we test if d(r1) and d(r2) lie to the left, within
or to the right of the redundant intersection sequence
between the two blue sites and attach one or two leaves
like described in (ii). For each redundant intersection
this takes constant time and there are O(n) redundant
intersections altogether. �

4.3 Coloring Crimson

If two blue sites bi and bi+1 are separated by a red site
r in π(S) but the leaf between them is not contained in
VR(r,B∪{r}), then r is enclosed by the region of bi (or
bi+1) in V (B ∪ {r}). In this case color r crimson with
respect to bi (bi+1) and if the leftmost (rightmost) leaf
between bi and bi+1 is not contained in the region of a
consecutive site, associate with r the subtree containing
only this leaf. If two red sites are between bi and bi+1

and both are colored crimson because of bi (bi+1) as-
sociate only one of them with the leftmost (rightmost)
leaf.

Up to now we may already have colored some red
sites crimson. To make sure we receive a fixed fraction
of crimson sites we apply lemma 11 in the following
way. For each leaf l of V ∗(B) contained in a red region
VR(r,B ∪ {r}) define Tl by the subtree spanned by all
vertices of V ∗(B) contained in VR(r,B∪{r}). The next
lemma shows that this is possible.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Lemma 14 Let r be a red site. If VR(r,B ∪ {r}) in-
tersects a leaf of V ∗(B), then VR(r,B ∪ {r}) ∩ V ∗(B)
is connected. Otherwise it is empty.

Proof. Suppose VR(r,B ∪ {r}) intersects a leaf of
V ∗(B) and VR(r,B ∪ {r}) ∩ V ∗(B) is not connected.
Then VR(r,B ∪ {r}) would disconnect the region of a
blue site in V (B ∪ {r}), a contradiction.

If VR(r,B∪{r}) does not intersect a leaf of V ∗(B) it
must be contained within a single blue region of V (B),
thus it can not intersect V ∗(B). �

Now Lemma 10 and 11 imply the requested property.

Lemma 15 No regions of two crimson sites are adja-
cent in V (B ∪ C).

Proof. To test whether the parent node of a leave is
contained in the region of a red site it is enough to con-
sider the diagram of the three sites adjacent to the node
and the red site. Thus this test can be done in constant
time. Further each leaf of F ′ is associated with the re-
gion of a red site. This ensures a correct application of
Lemma 11 and finishes the proof. �

4.4 Insertion of Crimson Sites

We can now insert the crimson sites into V (B) in order
to receive V (B ∪ C). For each crimson site c whose
region does not intersect a leaf of V ∗(B) we know that
it is enclosed by the region of a blue site bi or bi+1.
Let it be bi, then we just have to insert the part of the
bisector J(r, bi) contained in VR(bi, B) as a new edge in
V (B∪C). The other crimson sites can be inserted along
the subtrees of V ∗(B) associated with them. Thus also
the insertion takes time O(n).

5 Discussion

A natural question is if it is possible to relax axiom
(A4) and still have a linear time algorithm for com-
puting the Voronoi diagram. There exist applications
where Voronoi regions restricted to the domain D are
disconnected. This is something that can happen for
the farthest Voronoi diagram of line segments or when
the domain D corresponds to a Voronoi region which is
to be deleted from a given Voronoi diagram.

References

[1] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor.
A linear-time algorithm for computing the Voronoi dia-
gram of a convex polygon. Discrete and Computational
Geometry 4, pp. 591–603, 1989.

[2] F. Aurenhammer. Voronoi Diagrams: A Survey of a
Fundamental Geometric Data Structure. ACM Com-
puting Surveys 23(3), pp. 345–405, 1991.

[3] F. Aurenhammer and R. Klein. Voronoi Diagrams. In:
J.R. Sack and G. Urrutia (Eds.), Handbook on Com-
putational Geometry, Elsevier, pp. 201–290, 1999.

[4] F. Aurenhammer, R. Klein, and D.-T. Lee. Voronoi Di-
agrams and Delaunay Triangulations. World Scientific
Publishing Company. 2013.

[5] C. Bohler, R. Klein, and C.-H. Liu. Forest-Like Ab-
stract Voronoi Diagrams in Linear Time. Proc. 30th Eu-
ropean Workshop on Computational Geometry. 2014.

[6] F. Chin, J. Snoeyink, and C. A. Wang. Finding the
medial axis of a simple polygon in linear time. Discrete
Computational Geometry 21, pp. 405–420, 1999.

[7] F. Chin and C. A. Wang. Finding the constrained De-
launay triangulation and constrained Voronoi diagram
of a simple polygon in linear time. SIAM Journal on
Computing 28(2), pp. 471–486, 1998.

[8] M. Dillencourt. Finding Hamiltonian Cycles in Delau-
nay triangulations is NP-complete. Discrete Applied
Mathematics 64, pp. 207-217, 1996.

[9] S. Fortune. Voronoi diagrams and Delaunay triangu-
lations. In: J.E. Goodman and J. O’Rourke (Eds.),
Handbook of Discrete and Computational Geometry,
Chapter 20, CRC Press LLC, pp. 377–388, 1997.

[10] R. Klein. Concrete and Abstract Voronoi Diagrams.
Lecture Notes in Computer Science 400, Springer-
Verlag, 1987.

[11] R. Klein, E. Langetepe, and Z. Nilforoushan. Abstract
Voronoi Diagrams Revisited. Computational Geome-
try: Theory and Applications 42(9), pp. 885-902, 2009.

[12] R. Klein and A. Lingas. Hamiltonian abstract Voronoi
diagrams in linear time. 1994 International Symposium
on Algorithms and Computation (ISAAC’94), pp. 11–
19, 1994.

[13] R. Klein and A. Lingas. Manhattonian proximity in
a simple polygon. International Journal of Computa-
tional Geometry and Applications 5, pp. 53–74, 1995.

[14] R. Klein and A. Lingas. A linear-time randomized al-
gorithm for the bounded Voronoi diagram of a simple
polygon. International Journal of Computational Ge-
ometry and Applications 6(3), pp. 263–278, 1996.

[15] R. Klein, K. Mehlhorn, and St. Meiser. Randomized
incremental construction of abstract Voronoi diagrams.
Computational Geometry 3, pp. 157–184, 1993.

[16] D. T. Lee. Medial axis transformation of a planar shape.
IEEE Transaction on Pattern Analysis and Machine In-
telligence 4(4), pp. 363–369, 1982.

[17] D. T. Lee. On k-Nearest Neighbor Voronoi Diagrams in
the Plane. IEEE Trans. Computers 31(6), pp. 478-487,
1982.

[18] D. T. Lee and A. Lin, Generalized Delaunay trian-
gulations for planar graphs, Discrete Computational
Geometry 1, pp. 201–217, 1986

[19] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu.
Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. Wiley Series in Probability and
Statistics, 2000.

