
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

A Note on Online Steiner Tree Problems

Gokarna Sharma∗ Costas Busch∗

Abstract

We introduce and study a new Steiner tree problem
variation called the bursty Steiner tree problem where
new nodes arrive into bursts. This is an online prob-
lem which becomes the well-known online Steiner tree
problem if the number of nodes in each burst is exactly
one and becomes the classical Steiner tree problem if
all the nodes that need to be connected appear in a
single burst. In undirected graphs, we provide a tight
bound of Θ(min{log k,m}) on the competitive ratio for
this problem, where k is the total number of nodes to
be connected and m is the total number of different
bursts. In directed graphs of bounded edge asymme-
try α, we provide a near tight competitive ratio for this
problem. We also consider a bursty variation of the ter-
minal Steiner tree problem and provide the upper bound
of min{4ρ, 3λm} and the lower bound of min{ρ/2,m/4}
on the competitive ratio in undirected complete graphs,
where λ is the current best approximation for the termi-
nal Steiner tree problem and ρ = 1

2 log k. These are the
first such results which provide clear performance trade-
offs for the novel Steiner tree problem variations that
subsume both of their online and classical versions.

1 Introduction

The Steiner tree problem [8] and its variations have
been extensively studied in the literature, e.g. [1–4, 7–
9, 12, 13]. Given a set of k vertices S = {v1, v2, . . . , vk}
in an arbitrary undirected graph G = (V,E) (vertices
in S ⊆ V are called terminals and other vertices V \S
are called Steiner or optional vertices) with a length (or
weight) function w : E → R+ on the edges, a Steiner
tree for this terminal set S is a connected subgraph T
that connects all k terminals minimizing the length.
The length of a Steiner tree is defined to be the sum
of the lengths of all its edges. Steiner trees and their
variations are very useful due to their applications in
VLSI design, network and group communication, mul-
tipoint and multicast routing, video broadcasting, com-
putational biology, and so on; see [8, 9, 12].

The extensively studied Steiner tree problem is the
classical Steiner tree problem (STP) [4, 8, 13]. STP is
the problem of finding the minimum Steiner tree T (or a

∗School of Electrical Engineering and Computer Science,
Louisiana State University, {gokarna, busch}@csc.lsu.edu

good approximation of it) for a set S of k terminals that
are known in advance. Here the approximation means
the ratio of the length of the tree T produced by an
algorithm and the length of the optimal tree OPT for
the terminals in S. STP is an NP-hard [8] and MAX
SNP-hard problem [3]. The current best approximation
is σ = ln(4) + ε < 1.39 due to Byrka et al. [4].

One variation of STP that is also very well-studied is
the online Steiner tree problem (OSTP) [2, 9]: given a
sequence S of k terminals in G that appear one at a time
sequentially, construct online a connected subgraph T
that connects all the terminals minimizing its length.
There exists a lower bound of ρ and a very simple greedy
algorithm with the upper bound of 2ρ due to Imase and
Waxman [9] in undirected graphs, where ρ = 1

2 log k.

As actual communication networks may contain
links that are asymmetric in the quality of service they
offer, STP and OSTP are also studied in graphs where
asymmetric links are present, e.g. [1, 2, 7, 12]. Let A
denote the set of pairs of vertices in V such that if the
pair u, v is in A, then either (u, v) ∈ E or (v, u) ∈ E
(i.e., there is an edge from u to v or an edge from v
to u or both). Then, the edge asymmetry is defined

as α := max{u,v}∈A
w(u,v)
w(v,u) . According to this measure,

undirected graphs are the class of graphs of asymmetry
α = 1. Directed graphs have asymmetry α = ∞ when
there is at least one pair of vertices u, v such that
(u, v) ∈ E but (v, u) /∈ E. Between these two extremes,
graphs of bounded asymmetry exist which are useful in
modeling networks with certain type of link hetero-
geneity [2, 12]. The problem is then to find a minimum
length arborescence rooted at some node ℘ which spans
all the vertices in S. For STP, there is an algorithm
with a tight approximation factor of Θ(min{α, k}) [7] in
directed graphs of asymmetry α. For OSTP, there ex-
ists an approximation algorithm with the upper bound

of O
(

min
{

max
{
α log k

logα , α
log k

log log k

}
, k
})

and the lower

bound of Ω
(

min
{

max
{
α log k

logα , α
log k

log log k

}
, k1−ε

})
from a long series of work [2]. These bounds are
optimal for α ∈ O(k1−ε) or α ∈ Ω(k).

A STP is a terminal Steiner tree problem (TSTP) or
a full Steiner tree problem if all terminals S are the
leaves of the Steiner tree [11]. Terminal Steiner trees
have applications in the reconstruction of evolutionary
trees in biology. TSTP is shown to be NP-hard and
MAX SNP-hard [10], even when the lengths of edges

26th Canadian Conference on Computational Geometry, 2014

are restricted to be either 1 or 2 [11]. There exists
an algorithm which achieves the approximation ratio of

λ = 2σ − (σβ2−βσ)
(β+β2)(σ−1)+2(β−1)2 for TSTP and this is the

current best for β = 3 and 4 [5].
In this paper, we consider following two variations:

i. BSTP (Bursty Steiner tree problem)
Instance: A graph (directed or undirected) G =
(V,E) with w : E → R+, and a subset S ⊂ V, |S| =
k, of terminals appearing online in a sequence of
m groups (or bursts) B = {B1, B2, . . . , Bm}, Bi ⊆
S, 1 ≤ i ≤ m, one burst at a time.
Question: Find a Steiner tree (arborescence in
directed case) for S in G with minimum length.

ii. BTSTP (Bursty terminal Steiner tree problem)
Instance: A complete undirected graph G =
(V,E) with w : E → R+, and a proper sub-
set S ⊂ V, |S| = k, of terminals appearing on-
line in a sequence of m groups (or bursts) B =
{B1, B2, . . . , Bm}, Bi ⊆ S, 1 ≤ i ≤ m, one burst at
a time, where the length function w is metric.
Question: Find a terminal Steiner tree for S in G
with minimum length.

BSTP (similarly BTSTP) is a new natural variation
of both STP (TSTP) and OSTP (online TSTP (OT-
STP)). BSTP and BTSTP model the online situations
in which terminals in S arrive in groups, called bursts,
one burst after another (instead of only one new node at
a time in OSTP and OTSTP). We have that terminals
in each burst Bi ⊆ S and ∪mi=1Bi = S. BSTP (BTSTP)
become OSTP (OTSTP) if |Bi| = 1 for 1 ≤ i ≤ m
(one terminal in each burst) and becomes STP (TSTP)
if m = 1 (a single burst). These problems are inter-
esting in the sense that they provide clear trade-offs to
both of their classical and online versions. Since BSTP
(BTSTP) allows more than one nodes to join the con-
nection at a time, it provides a flexibility to OSTP (OT-
STP). Therefore, BSTP (BTSTP) subsumes its two ex-
isting variations STP (TSTP) and OSTP (OTSTP) and
generalizes them by capturing an intermediate variation
which is not completely online like OSTP (OTSTP) and
not completely offline like STP (TSTP).

We provide lower and upper bounds for both BSTP
and BTSTP. We consider BSTP in both undirected and
directed graphs of bounded asymmetry α. We con-
sider BTSTP in complete graphs whose length func-
tion is metric. By definition, any terminal Steiner
tree T = (S, ES) for S in G = (V,E) contains no
edge {(u, v)|u, v ∈ S, u 6= v} in ES . Moreover, BSTP
(BTSTP) is online, we need to construct a Steiner
tree (a terminal Steiner tree) incrementally, as termi-
nals (bursts) appear one after another. At the end of
step i, a minimum length tree Ti of terminals (bursts)
is constructed without the knowledge of terminals vj
(terminal set Bj) for any j > i. Denote by Bi =

{B1, B2, . . . , Bi} ⊆ S the sequence of bursts that ar-
rived in the system from step 1 up to step i ≤ m. Given
an instance I of BSTP (BTSTP) and an algorithm A,
let CA(Ti) be the length of the tree generated by A for
the terminal burst set Bi and let OPT be the length
of an optimal Steiner tree (terminal Steiner tree) for
Bi. Then, the performance of A on instance I of BSTP

(BTSTP) is measured by CRA(I) = max1≤i≤m
CA(Ti)
OPT ,

which is the competitive ratio of A. For all instances I,
we consider the supremum CRA(I) over all instances I,
which is denoted by CRA. When the context is clear,
we denote CA(Ti) by CA(Bi) and CRA(I) by CRA(B).

Contributions: The first result is the tight bound
of Θ(min{log k,m}) on the competitive ratio of
any deterministic algorithm for BSTP in undi-
rected graphs. The second result is the upper

bound of O
(

min
{

max
{
α log k

logα , α
log k

log log k

}
, k, α ·m

})
and the lower bound of
Ω
(

min
{

max
{
α log k

logα , α
log k

log log k

}
, k1−ε,max

{
α, α m

logα

}})
on the competitive ratio of any deterministic algo-
rithm for BSTP in directed graphs of bounded edge
asymmetry α, where 0 < ε < 1 is a small constant.
For α ∈ O(k1−ε) or α ∈ Ω(k), this result is tight
when m ≥ log k, and tight within a logα factor when
m < log k. The third result is the lower bound of
min{ρ/2,m/4} and the upper bound of min{4ρ, 3λm}
on the competitive ratio of any deterministic algorithm
for BTSTP in undirected complete graphs, where
λ is the approximation of TSTP and ρ = 1

2 log k.
All of these results are surprising because they show
that algorithms whose competitive ratios depend on
logarithmic of m (the number of bursts) do not exist for
these bursty problems; however, for their purely online
versions with one terminal at a time the competitive
ratio of algorithms depend on the logarithm of k.

The main idea behind lower bound proofs is to con-
struct online an adversarial set of m bursts of k ter-
minals such that Steiner tree generated by any algo-
rithm has length at least Ω(min{log k,m} times the op-
timal tree length. The main idea behind upper bound
proofs is to show that there are algorithms which pro-
duce Steiner trees of length at most O(min{log k,m}
times the optimal tree length in any scenario. Although
we build on existing techniques, e.g. [7, 9], our results
settle the performance efficiency of BSTP and BTSTP.

Paper organization: We give tight bounds for BSTP
in undirected graphs in Section 2. In Section 3, we give
almost-tight upper and lower bounds for BSTP in di-
rected graphs of bounded edge asymmetry α. We then
give tight bounds (within a constant factor) for BT-
STP in undirected complete graphs in Section 4. Many
proofs and details are deferred to a full version.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

2 BSTP in Undirected Graphs

We first show that Ω(min{log k,m}) is the lower bound
and then give a deterministic approximation algorithm
that matches the lower bound.

Lower bound: We create a sequence of instances I` for
the terminal bursts that need to be connected online
based on a sequence of graphs G`, ` ≥ 0, borrowing the
construction of Imase and Waxman [9]. We then apply
an adversary argument to show that instances I` can
be created such that the length for any algorithm A for
BSTP matches our claimed result.

Figure 1: Illustration of se-
quences of graphs G`, ` ≥ 0

We construct
graphs G` =
(V`, E`), ` ∈ Z+

0 ,
with a constant
length function
w` on the edges
of G`. As an
example, the
construction of
G0, G1, and G2

is given in Fig. 1. The initial graph G0 is the complete
graph with only two nodes, say v0 and v1, and a single
edge (v0, v1) with length 1, i.e., w0(v0, v1) = 1. The
only two nodes v0 and v1 in G0 are called level 0 nodes.
We now use a recursive definition to define graph G`,
` > 0, based on graph G`−1. We obtain G` from
G`−1 as follows. We introduce two distinct pair of
nodes a and b for each edge (u, v) ∈ G`−1 and replace
the edge (u, v) with two paths (u, a, v) and (u, b, v).
Here a path (x, y, z) is simply the concatenation of
the edges connecting subsequent node pairs (x, y) and
(y, z). There are two edges (u, a) and (a, v) connecting
u, v ∈ G0 following node a and, two edges (u, b) and
(b, v) connecting u, v ∈ G0 following node b. This
path definition extends similarly for a path with more
than two subsequent node pairs. We call these new
nodes a, b introduced to get G` from G`−1 the level `
nodes (see G1 that is obtained from G0 and G2 that is
obtained from G1 in Fig. 1). Therefore, in Gi≥0, there
are level 0 up to level i nodes. We denote by level of a
node the level in Gi where that node belongs, e.g. the
level of node a is 1 in Fig. 1. We assign the length of
1/2` to each edge of G`, that is, w`(u, v) = 1/2` for
each edge (u, v) of G` (the length of each edge of G1 is
1/2 and the length of each edge of G2 is 1/4 in Fig. 1).
Two level ` nodes that are added between any two level
` − 1 nodes to obtain G` from G`−1 are called sister
nodes, e.g. a and b of G1 in Fig. 1. Moreover, two
nodes u, v ∈ G` are said to be i-adjacent, 0 ≤ i ≤ `, if
the level of both u and v is no more than i and there
is a path from u to v which has no intermediate node
from level j, j ≤ i [9].

Consider a sequence of m terminal bursts B =
{B0, B1, . . . , Bm} for graphs Gi, i ≥ 0, respectively.
Each Bi contains some specific number of level i nodes
from Gi, 0 ≤ i ≤ m (we give exact numbers soon). We
create this sequence B in such a way that there exists
a path p between v0 and v1 for all the nodes in B with
length exactly 1 using an optimal algorithm.

We define a minimal tree sequence T =
{T 0, T 1, . . . , Tm} for graphs Gi, i ≥ 0, with respect to
a sequence of terminal bursts {B0, B1, . . . , Bm}, such
that, for 1 ≤ i ≤ m, each tree T i must contain tree
T i−1 as a subgraph and connects all of the terminals in
Bi. As we consider minimal tree sequence, no subgraph
of T i can satisfy this requirement. T is constructed by
an algorithm A based on the knowledge of only T i−1
and Bi in each step i to obtain T i. We choose the
nodes to include in T i based on the knowledge of T i−1
to maximize the length of A.

Theorem 1 The competitive ratio of every determin-
istic algorithm for BSTP is Ω(min{log k,m}) in undi-
rected graphs.

Proof. When there is only one terminal in each burst
Bi, BSTP becomes OSTP. Therefore, Ω(log k) lower
bound of Imase and Waxman [9] applies to BSTP.
We now consider the case where the number of bursts
m < dlog ke for the set B of k terminals and prove
the lower bound of Ω(m). We consider the burst set
B = {Bi, Bi+1, . . . , Bi+m−1}, where i ≥ 2, and Bi con-
tains 2i−1 terminals in addition to v0 and v1, Bi+1

contains 2i terminals, and so on. According to this
setting, there are strictly less than blog kc bursts for
all k terminals in B. Now for Bi we consider graph
Gi, for Bi+1 we consider graph Gi+1, and so on. We
start from the construction of a minimal tree sequence
{T i, T i+1, . . . , T i+m−1} by an algorithm A. For all the
terminals in the first burst Bi, the length of the tree T i
is such that CA(T i) ≥ 1. This is because all the 2i−1

terminals of Bi and two nodes v0 and v1 can contain in
a path from v0 to v1 with length exactly 1 in Gi. As
there are exactly double number of terminals in Bi+1

comparing to the number of terminals in Bi except v0
and v1, CA(T i+1) ≥ 1 + 1

2 . We can achieve this length

choosing level i + 1 nodes that are not in Ti to be in
Bi+1. We can have a path in Gi+1 that contains all
the terminals in Bi and Bi+1, therefore {Bi, Bi+1} is
an initial segment of the sequence of m bursts.

Using inductive argument, assume that
{Bi, Bi+1, . . . , Bi+j−1} is an initial segment for
the sequence of m bursts B. Since T i+j−1 is a
minimal tree, each terminal must be in one of Bl,
i ≤ l ≤ i + j − 1, and there are no cycles in T i+j−1.
Consider a terminal v ∈ Bi+j−1. Node v is adjacent to
exactly 4 nodes at level i + j consisting of two sister
pairs. If T i+j−1 contains both nodes of a level i + j

26th Canadian Conference on Computational Geometry, 2014

Algorithm 1: BSTP approximation algorithm

Input: An undirected (directed) graph G = (V,E)
with weight function w : E → R+ and a set
S ⊆ V of terminals that appear online in a
sequence of m bursts B = {B1, B2, . . . , Bm},
Bi ⊆ S, 1 ≤ i ≤ m, one burst at a time.

Output: A Steiner tree (an arborescence) T for S in G.
1 When a new burst Bi arrives at step i:
2 For each terminal v ∈ Bi do
3 Find a node x in Ti that is closest to v and join

v to x with the shortest path;
4 T := Ti;

sister pair then T i+j−1 has a cycle or a leaf node at
a level greater than i + j − 1 and hence T i+j−1 can
not be the minimum tree. Therefore, T i+j−1 can only
contain at most one of the nodes from each sister
pair (i + j)-adjacent to v. Therefore, for each node v
in burst Bi+j−1, we select one node from each sister
pair of v that is not in T i+j−1 to place in the burst
Bi+j . Note that, according to the construction, there
is a path of length 1 which contains all the nodes in
every Bl, i ≤ l ≤ i + j. Thus, {Bi, Bi+1, . . . , Bi+j}
is an initial segment of the sequence of m bursts B.
Recall that the length of a shortest path from each
of the nodes in Bi+j to a node in T i+j−1 is 1/2i+j .
Moreover, we have 2i+j−1 level i + j nodes in Bi+j .
Thus, CA(T i+j) ≥ CA(T i+j−1) + 1

2 = 1 + j−2
2 + 1

2 =

1 + j−2+1
2 = 1 + j−1

2 . Therefore, as there are exactly
m bursts in B, the lower bound for any algorithm A is
CA(T i+m−1) ≥ 1 + m−1

2 ≥ Ω(m). Finally, combining
two different lower bounds, we obtain Ω(min{log k,m})
lower bound. �

Upper bound: We outline a simple algorithm for
BSTP which is asymptotically optimal in undirected
graphs. For each burst Bi at step i, first find a node
v ∈ Bi that is closest to the current tree of node bursts
up to Bi−1 and connect that node v to the closest node
of Ti−1 with a shortest path. After that, repeat this
process for rest of the nodes in Bi until all the nodes in
the burst are connected to the current Steiner tree at
step Ti at step i. Note that for every node in v ∈ Bi,
except the first node, the current tree is the tree that is
formed after the connection of nodes in the bursts up to
Bi−1 and the nodes in Bi that are already connected.
The details are in Algorithm 1.

Theorem 2 The competitive ratio of Algorithm 1 for
BSTP is O(min{log k,m}) in undirected graphs.

Combining Theorems 1 and 2, we obtain the tight
bound Θ(min{log k,m}). As m = 1 in STP, we have
from Theorem 1 that the lower bound for STP is
Θ(min{log k, 1}) = Θ(1). Similarly, as m = k in OSTP,

Θ(min{log k, k}) = Θ(log k) which matches the tight
bound given in [9].

3 BSTP in Graphs of Bounded Edge Asymmetry

We first prove a lower bound and then give a determin-
istic approximation algorithm that matches the lower
bound for certain values of m and α.

Lower bound: We prove the lower bound of

Ω
(

min
{

max
{
α log k

logα , α
log k

log log k

}
, k1−ε,max

{
α, α m

logα

}})
,

where 0 < ε < 1 is a small constant. We construct a
sequence of directed graphs G`, ` ≥ 0, similar to [7]. We
use the concept of d-tree defined as follows: A d-tree is
a completely binary tree that has pairs of opposite di-
rected edges (a d-tree with root at the bottom is shown
inside a dotted triangle in Fig. 2). The d-tree guarantees
that an algorithm for BSTP has two identical routing
choices for each destination. The sequence of graphs
G`≥0 are then recursively generated similar to Section 2.

Figure 2: Illustration of se-
quences of directed graphsGi, i ≥
0, with γ = 2

We start with
a pair of nodes,
and insert a
d-tree between
the pair of nodes
at each step
`. The depth
of the d-tree
that is inserted
between the pair
of nodes is set to
γ = bαc. We obtain G1 after inserting a d-tree between
the pair of nodes in G0 (Fig. 2). According to this
construction, there are ` · (γ + 1) + 1 number of layers
in G`; initially, G0 has only two layers. The number of
layers gives the depth of the graphs G`≥0. In G0, we
denote v0,0 as the source node and v0,1 as the first node.
We set w(v0,0, v0,1) = ρ0 and w(v0,1, v0,0) = α · ρ0 for
the two directed edges (v0,0, v0,1) and (v0,1, v0,0) in G0.
Moreover, a node of G` is denoted by v`,χ, where χ de-
notes the layer. Note that, irrespective of the notation
v0,0, v1,0 etc., the source and first nodes are same in all
G`. Between every pair of nodes in G`−1, a d-tree is
introduced. Therefore, in G`, w(v`,χ, v`,χ+1) = ρ` and
w(v`,χ+1, v`,χ) = α · ρ` for the edges between adjacent
nodes, where ρ` = ρ0

(γ+1)`
= ρ`−1

γ+1 . This construction

guarantees that the asymmetry of G`≥0 is α. Moreover,
all paths between any pair of nodes are of equal length
in each G`. The number of nodes (or layers) χ in a
path from the source to the first node in any G`≥0 is
given by χ = (γ + 1)` + 1.

Theorem 3 The competitive ratio of any algorithm
for BSTP in any directed graph of edge asymmetry α is

Ω
(

min
{

max
{
α log k

logα , α
log k

log log k

}
, k1−ε,max

{
α, α m

logα

}})
.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

(a) G0 (b) G1

Figure 3: Illustration of sequences of graphs G0 and G1.

Upper bound: We analyze Algorithm 1 for BSTP in
graphs of bounded asymmetry α. Given a directed
graph G = (V,E) with asymmetry α, Algorithm 1 finds
an arborescence T rooted at some node ℘ for S in G.
The only extra information that needs to be provided
to Algorithm 1 is the root node ℘.

Theorem 4 The competitive ratio of Algorithm 1
for BSTP in any graph of edge asymmetry α is

O
(

min
{

max
{
α log k

logα , α
log k

log log k

}
, k, α ·m

})
.

Comparing with Theorem 3, this result is tight when
m ≥ log k and tight within a logα factor when m <
log k for α ∈ O(k1−ε) or α ∈ Ω(k).

4 BTSTP in Complete Undirected Graphs

We first prove the lower bound of min{ρ/2,m/4} and
give a deterministic algorithm which achieves the upper
bound of min{4ρ, 3λm}, where ρ = 1

2 log k.

Lower bound: We create a sequence of instances I`
for the terminals that need to be connected online in a
terminal Steiner tree based on a sequence of complete
graphs G`, ` ≥ 0, similar to the construction given in
Section 2 for BSTP in undirected graphs, that we define
below. We then apply an adversary argument to show
that instances I` can be created such that the cost of
any algorithm A for BTSTP matches our claimed re-
sult. We note here that the lower bound for OSTP due
to Imase and Waxman [9] does not apply to BTSTP.
The reason is that they considered planar graphs for
the lower bound in which TSTP may not have a feasi-
ble solution [6, 10, 11]. Moreover, the approach of [9]
does not produce a terminal Steiner tree.

We begin by constructing a sequence of undirected
complete graphs G` = (V`, E`), l ∈ Z+, with a
length function on the edges of G`. As for ex-
ample, the construction of G0 and G1 is given in
Fig. 3. The initial graph G0 is a undirected com-
plete graph with four nodes. Denote these four nodes
by v0, v1, s0, and s1. In G0, nodes v0 and v1 are
the terminal vertices and s0 and s1 are Steiner ver-
tices. There are six edges between these four nodes
which are (v0, s0), (v1, s1), (s0, s1), (v1, s0), (v0, s1), and
(v0, v1). Each of these edges has length that satisfies

triangle inequality. In particular, we have w(v0, v1) =
1+2ε, w(v0, s0) = w(v1, s1) = ε, w(v1, s0) = w(v0, s1) =
1 + ε, and w(s0, s1) = 1, where 0 < ε < 1 is a small pos-
itive constant which we set later. The only four nodes
in G0 are called level 0 nodes. G0 as described above is
given in Fig. 3a.

We now use a recursive definition to define graph
G`, ` > 0, based on graph G`−1. We obtain G1 from
G0 as follows. We introduce four new nodes in V0 to
obtain V1. We take edge (s0, s1) (the bold edge) and
add two nodes on each side of it; a, b in the left side and
c, d in the right side as shown in Fig. 3b. The two nodes
in each side of (s0, s1) are connected with an edge of
length ε between them, i.e., a and b are connected with
an edge (a, b) such that w(a, b) = ε. Moreover, c and d
are connected and w(c, d) = ε. The nodes a and d are
the terminal nodes and b, c are their Steiner vertexes,
respectively. All 8 nodes of G1 are connected to each
other with appropriate weights so that triangle inequal-
ity is satisfied. The weights of the edges between nodes
are given in Fig. 3b.

Figure 4: Illustra-
tion of graph G2

The graph G2 is obtained
from G1 as follows. We intro-
duce four new nodes in each
edge (s0, b), (b, s1), (s1, c), and
(c, s0) in a way similar as of
constructing G1 from G0. The
high level structure of G2 is
given in Fig. 4. The edges
weights are also assigned pro-
portionally to the level ` ofG`.
We call the new nodes intro-
duced to get G` from G`−1 the level ` nodes. Therefore,
in G`≥0, there are level 0 up to level ` nodes. We de-
note by level of a node the level in G` where that node
belongs. Two level ` Steiner nodes that are added be-
tween any two level `− 1 Steiner nodes in G` are called
sister nodes, e.g. b and c of G1 in Fig. 3. Moreover,
i-adjacency of two Steiner nodes u, v ∈ G` is defined
similarly as of Section 3.

Consider a sequence of m terminal sets N =
{N0, N1, . . . , Nm} for graphs G`, ` ≥ 0, respectively.
Each N` contains some specific number of level ` nodes
from G`, 0 ≤ ` ≤ m (we give exact numbers later).
We create this sequence in such a way that there ex-
ists a comb structure between s0 and s1 with all the
nodes in the terminal set N as its tooth and the length
of the comb structure is exactly 1 + kε using an opti-
mal algorithm (which assumes that all the terminals are
known in advance). To show that the performance of
any BTSTP algorithm A is at least our claimed bound,
we choose the number of nodes in each set N` similar
to bursts Bi of Section 2.

While connecting the terminals in a tree, they will not
be connected by a direct edge between them (although

26th Canadian Conference on Computational Geometry, 2014

such edge exists) to satisfy the terminal Steiner tree
criteria. In our lower bound construction, we connect
terminals through Steiner nodes near to them. For ex-
ample, if terminals v1 and d need to be connected in G1,
then we use the path (v1, s1, c, d); the alternative path
choices (v1, s1, d), (v1, c, d), and (v1, d) are not used.
Our choice matches the length of other path choices and
at the same time avoids the need of possible rearrange-
ment due to future arrivals of terminals. Moreover, our
path choice does not affect the lower bound.

We define a minimal terminal Steiner tree sequence
T = {T 0, T 1, . . . , Tm} for graphs G`, ` ≥ 0, with re-
spect to a sequence of terminal sets {N0, N1, . . . , Nm}.
Therefore, T 0 is any tree that connects all the terminals
in N0 and there does not exist a proper subgraph of T 0

that also connects all the terminals in N0 satisfying the
terminal Steiner tree criteria. For each T `, 1 ≤ ` ≤ m,
T ` must contain tree T `−1 as a subgraph and connect all
of the terminals in N`. As we consider minimal termi-
nal Steiner tree sequence, no subgraph of T ` can satisfy
this requirement. The minimal terminal Steiner tree se-
quence T is constructed by an algorithm A based on the
knowledge of only T `−1 and N` in each step ` to obtain
T `. We choose the nodes to include in T ` based on the
knowledge of T `−1 to maximize the length using A.

Theorem 5 The competitive ratio of every determinis-
tic algorithm for BTSTP is at least min{ρ2 ,

m
4 } in undi-

rected complete graphs, where ρ = 1
2 log k.

Upper bound: We now outline a simple approxima-
tion algorithm for BTSTP which is asymptotically op-
timal within a constant factor. Before providing the
details, we outline some assumptions. Let D(vi) be the
set of neighbors of vi ∈ Si−1 (i.e., D(vi) = {r|(vi, r) ∈
Ti, r /∈ S} and its members are all Steiner vertices)
and D1(vi) be the nearest neighbor of vi in Ti (i.e.,
w(vi, D1(vi)) = min{w(vi, r)|r ∈ D(vi)}). We assume
without generality that D1(vi) will not be the terminal
of S in any step l > i.

As there are nodes arriving in a burst in BTSTP (i.e.,
a subset of |Bi| nodes arriving at step i), our BTSTP al-
gorithm deals with how to connect the burst at each step
i to the existing tree formed due to the bursts from B1

up to Bi−1. For each burst Bi at step i, our algorithm
first removes all the edges from G that connect termi-
nals in Bi to the previous arrived terminals in Bi−1 and
also the terminals in Bi. Then, it finds a node v ∈ Bi
that is closest to the current tree of node bursts up to
Bi−1 and connects that node v to the closest node of
Ti−1 with a shortest path. After that, it repeats this
process for rest of the nodes in Bi until we connect all
the nodes in the burst Bi to the current Steiner tree
Ti at step i. Note that for every node in v ∈ Bi, ex-
cept the first node, the current tree Ti is the tree that
is formed after the connection of nodes in the bursts up

to Bi−1 and the nodes in Bi that are already connected
to Ti. After all the nodes in Bi are connected, if any
node vj ∈ Bi is not a leaf in Ti, our algorithm performs
star-replacement operations for vj . We pick D1(vj) and
connect vj and D(vj)\D1(vj) to D1(vj) removing the
edge (vj , s), s ∈ D(vj)\D1(vj). Here Bi denotes the ter-
minals in S that arrived up to step i.

Theorem 6 The competitive ratio of the aforemen-
tioned algorithm for BTSTP is min{4ρ, 3λm}, where λ
is the current best approximation of TSTP.

References

[1] S. Angelopoulos. Improved bounds for the online steiner
tree problem in graphs of bounded edge-asymmetry. In
SODA, pages 248–257, 2007.

[2] S. Angelopoulos. A near-tight bound for the online
steiner tree problem in graphs of bounded asymmetry.
In ESA, pages 76–87, 2008.

[3] M. Bern and P. Plassmann. The steiner problem with
edge lengths 1 and 2,. Inf. Process. Lett., 32(4):171–176,
1989.

[4] J. Byrka, F. Grandoni, T. Rothvoss, and L. Sanita.
Steiner tree approximation via iterative randomized
rounding. J. ACM, 60(1):6:1–6:33, 2013.

[5] Y. Chen. An improved approximation algorithm for the
terminal steiner tree problem. In ICCSA, pages 141–
151, 2011.

[6] D. E. Drake and S. Hougardy. On approximation al-
gorithms for the terminal steiner tree problem. Inf.
Process. Lett., 89(1):15 – 18, 2004.

[7] M. Faloutsos, R. Pankaj, and K. C. Sevcik. The effect
of asymmetry on the on-line multicast routing problem.
Int. J. Found. Comput. Sci., 13(6):889–910, 2002.

[8] M. R. Garey and D. S. Johnson. Computers
and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, 1990.

[9] M. Imase and B. M. Waxman. Dynamic steiner tree
problem. SIAM J. Discrete Math., 4(3):369–384, 1991.

[10] G.-H. Lin and G. Xue. On the terminal steiner tree
problem. Inf. Process. Lett., 84(2):103–107, 2002.

[11] C. L. Lu, C. Y. Tang, and R. C.-T. Lee. The full steiner
tree problem. Theoretical Computer Science, 306(1–
3):55 – 67, 2003.

[12] S. Ramanathan. Multicast tree generation in networks
with asymmetric links. IEEE/ACM Trans. Netw.,
4(4):558–568, 1996.

[13] H. Takahashi and A. Matsuyama. An Approximate So-
lution for the Steiner Problem in Graphs. Math. Japon-
ica, 24:573–577, 1980.

