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Abstract

In this paper, we introduce a variation of the well-
studied Yao graphs. Given a set of points S ⊂ R2 and
an angle 0 < θ ≤ 2π, we define the continuous Yao
graph cY (θ) with vertex set S and angle θ as follows.
For each p, q ∈ S, we add an edge from p to q in cY (θ)
if there exists a cone with apex p and aperture θ such
that q is the closest point to p inside this cone.

We study the spanning ratio of cY (θ) for different
values of θ. Using a new algebraic technique, we show
that cY (θ) is a spanner when θ ≤ 2π/3. We believe that
this technique may be of independent interest. We also
show that cY (π) is not a spanner, and that cY (θ) may
be disconnected for θ > π.

1 Introduction

Let S be a set of points in the plane. The complete
geometric graph with vertex set S has a straight-line
edge connecting each pair of points in S. Because the
complete graph has quadratic size in terms of number of
edges, several methods for “approximating” this graph
with a graph of linear size have been proposed.

A geometric t-spanner H of S is a spanning subgraph
of the complete geometric graph of S with the property
that for all pairs of points p and q of S, the length of the
shortest path between p and q in H is at most t times
the Euclidean distance between p and q.

The spanning ratio of a spanning subgraph is the
smallest t for which this subgraph is a t-spanner. For
a comprehensive overview of geometric spanners and
their applications, we refer the reader to the book by
Narasimhan and Smid [1].
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A simple way to construct a t-spanner is to first par-
tition the plane around each point p ∈ S into a fixed
number of cones1 and then add an edge connecting p
to a closest vertex in each of its cones. These graphs
have been independently introduced by Flinchbaugh
and Jones [2] and Yao [3], and are referred to as Yao
graphs in the literature. It has been shown that Yao
graphs are good approximations of the complete geo-
metric graph [4, 5, 6, 7, 8, 9, 10, 11].

We denote the Yao graph defined on S by Yk, where k
is the number of cones, each having aperture θ = 2π/k.
Clarkson [4] was the first to remark that Y12 is a 1+

√
3-

spanner in 1987. Althöfer et al. [5] showed that for ev-
ery t > 1, there is a k such that Yk is a t-spanner. For
k > 8, Bose et al. [6] showed that Yk is a geometric
spanner with spanning ratio at most 1/(cos θ − sin θ).
This was later strengthened to show that for k > 6, Yk
is a 1/(1− 2 sin(θ/2))-spanner [7]. Damian and Raudo-
nis [8] proved a spanning ratio of 17.64 for Y6, which
was later improved by Barba et al. to 5.8 [11]. In [11]
the authors also improve the spanning ratio of Yk for all
odd values of k ≥ 5 to 1/(1−2 sin(3θ/8)). In particular,
they show an upper bound on the spanning ratio for Y5
of 2 +

√
3 ≈ 3.74. Bose et al. [9] showed that Y4 is a

663-spanner. For k < 4, El Molla [10] showed that there
is no constant t such that Yk is a t-spanner.

Yao graphs are based on the implicit assumption that
all points use identical cone orientations with respect
to an extrinsic fixed direction. From a practical point
of view, if these points represent wireless devices and
edges represent communication links for instance, the
points would need to share a global coordinate system
to be able to orient their cones identically. Potential
absence of global coordinate information adds a new
level of difficulty by allowing each point to spin its cone
wheel independently of the others. In this paper we take
a first step towards reexamining Yao graphs in light of
intrinsic cone orientations, by introducing a new class
of graphs called continuous Yao graphs.

Given an angle 0 < θ ≤ 2π, the continuous Yao graph
with angle θ, denoted by cY (θ), is the graph with vertex
set S, and an edge connecting two points p and q of
S if there exists a cone with angle θ and apex p such
that q is the closest point to p inside this cone. In
contrast with the classical construction of Yao graphs,

1The orientation of the cones is the same for all vertices.
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for the continuous version the orientation of the cone is
arbitrary. We can imagine rotating a cone with angle θ
around each point p ∈ S and connecting it to each point
that becomes the closest to p inside the cone during this
rotation. To avoid degenerate cases, we assume general
position, i.e., we assume that for each p ∈ S, there are
no two points at the same distance from p.

In contrast with the Yao graph, the continuous Yao
graph has the property that cY (θ) ⊆ cY (γ) for any
θ ≥ γ. This property provides consistency as the angle
of the cone changes and could be useful in potential
applications requiring scalability. Another advantage of
continuous Yao graphs over regular Yao graphs is that
they are invariant under rotations of the input point
set. However, unlike Yao graphs that guarantee a linear
number of edges, continuous Yao graphs may have a
quadratic number of edges in the worst case. (Imagine,
for instance, the input points evenly distributed on two
line segments that meet at an angle α < π. For any θ <
α, cY (θ) includes edges connecting each point on one
line segment to each point on the other line segment.)

In this paper, we focus on the spanning ratio of the
continuos Yao graph. In Section 2, we show that cY (θ)
has spanning ratio at most 1/(1 − 2 sin(θ/4)) when
θ < 2π/3. However, the argument used in this sec-
tion breaks when θ = 2π/3. To deal with this case,
we introduce a new algebraic technique based on the
description of the regions where induction can be ap-
plied. To the best of our knowledge, this is the first
time that algebraic techniques are used to bound the
spanning ratio of a graph. As such, our technique may
be of independent interest. In Section 3, we use this
technique to show that cY (2π/3) is a 6.0411-spanner.
In Section 4, we study the case when θ > 2π/3. Using
elliptical constructions, we are able to show that cY (π)
is not a constant spanner. While the algebraic tech-
niques presented in Section 3 appear to extend beyond
2π/3, it remains open whether or not cY (θ) with angle
2π/3 < θ < π is a constant spanner. Finally, we study
the connectivity of cY (θ) and show that cY (θ) is con-
nected provided that θ ≤ π. Moreover, for θ > π, there
exist point sets for which cY (θ) is not connected.

2 Continuous Yao for narrow cones

In this section, we study the spanning ratio of cY (θ) for
θ < 2π/3. In this case, we make use of an inductive
proof similar to those used to bound the spanning ratio
of Yao graphs [11].

Lemma 1 [Lemma 1 of [11]] Let a, b and c be three
points such that |ac| ≤ |ab| and ∠bac ≤ α < π. Then

|bc| ≤ |ab| − (1− 2 sin(α/2)) |ac| .

Given two points a and b of cY (θ), let Cab be the cone
with apex a and b on its angle bisector. The cone Cba
is defined analogously.

Theorem 2 The graph cY (θ) has spanning ratio at
most 1/(1− 2 sin(θ/4)) for 0 < θ < 2π/3.

Proof. We need to show that there exists a path of
length at most 1/(1 − 2 sin(θ/4))|ab| between any two
vertices a and b. We prove this by induction on the
distance |ab|. In the base case a and b form the closest
pair. Hence, the edge ab is added by any cone of a that
contains b, as no other vertex can be closer to a.

For the inductive step, we assume that the theorem
holds for any two vertices whose distance is less than
|ab|. If the edge ab is in the graph, the proof is fin-
ished, so assume that this is not the case. That means
that there is a vertex closer to a in every cone with
apex a that contains b. In particular, this also holds
for the cone Cab. Let na be the vertex that is clos-
est to a in Cab. Since Cab has aperture θ, the an-
gle ∠naab is at most θ/2, and Lemma 1 gives us that
|bna| ≤ |ab| − (1 − 2 sin(θ/4))|ana|. Note that since
θ < 2π/3, we have that θ/4 < π/6, which means that
1−2 sin(θ/4) > 0 and hence |bna| < |ab|. Therefore our
inductive hypothesis applies to na and b, which tells us
that there exists a path between them of length at most
1/(1 − 2 sin(θ/4))|bna|. Adding the edge ana to this
path yields a path between a and b of length at most

|ana|+
1

1− 2 sin(θ/4)
|bna| ≤

|ana|+
1

1− 2 sin(θ/4)
(|ab| − (1− 2 sin(θ/4))|ana|) =

|ana|+
1

1− 2 sin(θ/4)
|ab| − |ana| =

1

1− 2 sin(θ/4)
|ab|.

This completes the proof. �

3 The graph cY (2π/3) is a Spanner

Let t ≈ 6.0411 be the largest root of the polynomial
p(t) = −25+90t−39t2−246t3 +363t4 +138t5−589t6 +
216t7+291t8−204t9−84t10+6t11+2t12. In this section,
we prove that cY (2π/3) is a t-spanner. That is, we show
that for any two points a and b in cY (2π/3), there exists
a path from a to b of length at most t |ab|. The way we
derive this polynomial will become clear by the end of
this section.

The proof proceeds by induction on the rank of the
distance |ab| among all distances between vertices of
cY (2π/3). In the base case, a and b define the closest
pair among the points of cY (2π/3). Hence, the edge ab
is added by any cone of a that contains b, as no other
vertex can be closer to a.

We spend the remainder of this section proving the
inductive step. Assume that the result holds for any two
points whose distance is smaller than |ab|. Without loss
of generality, assume that a = (0, 0) and b = (1, 0), so
that |ab| = 1. We start with a simple observation that
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Figure 1: The inductive set Iab for different values of t.

follows from the general position assumption. Define
Iab = {p ∈ R2 : |ap|+ t|pb| ≤ t|ab|} be the inductive set
of a with respect to b (see Fig. 1). Symmetrically, let
Iba = {p ∈ R2 : |bp|+ t|pa| ≤ t|ba|} be the inductive set
of b with respect to a.

Lemma 3 The inductive set Iab is contained in the disk
D with center b and radius |ab|. Moreover, any point
p 6= a on the boundary of D lies outside of Iab.

Proof. Let p 6= a be a point in Iab. Because |ap| > 0
and t > 1, we have that t|pb| < |ap| + t|pb| ≤ t|ab|.
Consequently, p lies strictly inside the circle with center
b and radius |ab|. �

Recall that Cab denotes the cone with apex a and b on
its angle bisector. Let na and nb be the neighbors of a
and b in cones Cab and Cba, respectively. The inductive
set Iab satisfies the inductive property : if na ∈ Iab, then
there is a path from a to b with length at most t|ab|.
Indeed, because na ∈ Iab, Lemma 3 implies that |nab| <
|ab|. Therefore, we can apply the induction hypothesis
and obtain a path from na to b of length at most t|nab|.
Because na ∈ Iab, adding the edge ana to this path
yields a path from a to b of length at most |ana| +
t|nab| ≤ t|ab| as desired. The inductive set Iba has an
analogous inductive property.

Note that if na ∈ Iab or nb ∈ Iba, then we are done by
the inductive property. Thus, we assume that na 6∈ Iab
and nb 6∈ Iba. Since a = (0, 0) and b = (1, 0), the set of
points on the boundary of Iab satisfy

((−2 + x)x+ y2)2 t4 + (x2 + y2)2

− 2(2 + (−2 + x)x+ y2)(x2 + y2) t2 = 0, (1)

which defines a quartic curve in x and y. Let c and c∗

be the intersection points of the boundaries of Cab and
Cba and assume that c lies above c∗; see Fig. 2. Because
the triangles 4abc and 4abc∗ are equilateral, we have
c = (1/2,

√
3/2) and c∗ = (1/2,−

√
3/2). Let

u =

(
t(t− 2)

2(t2 − 1)
,

√
3 t(t− 2)

2(t2 − 1)

)
≈ (0.3438, 0.5956) (2)

c∗

Iba Iab
u w

c

ba

Figure 2: The inductive sets Iab and Iba are shown. The
circular sectors where na and nb can lie are depicted in light
blue and light red, respectively.

be the intersection point of the boundary of Iab with
the segment ac. Symmetrically, let

w =

(
1− t(t− 2)

2(t2 − 1)
,

√
3 t(t− 2)

2(t2 − 1)

)
≈ (0.6561, 0.5956)

be the intersection of the boundary of Iba with the seg-
ment bc. There are two cases to deal with. Either (i)
na and nb lie on the same side of the x-axis or (ii) they
lie on opposite sides.

Given three points x, y and y′ such that |xy| = |xy′|,
we denote by C(x, y, y′) the circular sector with apex x
that is contained between xy and xy′, counter-clockwise.

Case (i) Assume first that na and nb both lie above
the x-axis. Because na and nb lie in the circular sec-
tors C(a, b, c) and C(b, c, a), respectively, we have that
|nanb| < |ab|. Therefore, we can apply induction on
nanb to obtain a path ϕnanb

from na to nb of length at
most t|nanb|. Consider the path ϕab = ana∪ϕnanb

∪nbb
from a to b. We show that the length of ϕab is at most
t|ab| = t. To this end, we provide a bound on the length
of the segment nanb.

Lemma 4 In the configuration of Case (i) depicted in
Fig. 2, |nanb| ≤ |uc| = |wc| = |uw|.

Proof. Recall that na must lie in the circular sector
C(a, b, c). Moreover, because we assumed that na lies
outside of Iab, na lies in the region C(a, b, c) \ Iab. Let
Na be the convex hull of C(a, b, c) \ Iab and let v be the
intersection point between Iab and the circular arc of
C(a, b, c); see Fig. 3. Analogously, let v′ be the intersec-
tion between Iba and the circular arc of C(b, c, a). Then,
Na is bounded by the segments uc, uv and the circular
arc joining v and c with center a and radius 1. We define
Nb analogously as the convex hull of C(b, c, a) \ Iba.

Because na ∈ Na and nb ∈ Nb, we get an upper bound
on the distance between na and nb by computing the
maximum distance between a point in Na and a point
in Nb. We refer to two points realizing this distance as
a maximum Na-Nb-pair. Since the Euclidean distance
function is convex and since both Na and Nb are convex
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Figure 3: The neighbor regions of a and b in Case (i).

sets, a maximum Na-Nb-pair must have one point on the
boundary of Na and another on the boundary of Nb.

In fact, we claim that we need only to consider
the boundaries of the triangles 4(u, v, c) ⊂ Na and
4(w, c, v′) ⊂ Nb to find a maximum Na-Nb-pair. To
prove this claim, consider the lune defined by Na \
4(u, v, c). For any point x in this lune, consider its
farthest point f(x) in Nb and notice that the circle with
center on f(x) that passes through x leaves either c or
v outside (or both). This is because the radius of this
circle is smaller than the radius of the circular arc on
the boundary of Na; see Fig. 3. Therefore, either c or
v is farther than x from f(x) and hence, the maximum
Na-Nb-pair cannot have an endpoint in this lune. That
is, the maximum Na-Nb-pair includes a point on the
boundary of the triangle4(u, v, c). The same argument
holds for 4(w, c, v′) and Nb proving our claim.

As we know the coordinates of the boundary vertices
of 4(u, v, c) and 4(w, c, v′), we can verify that (u, c),
(c, w) and (u,w) are all maximum Na-Nb-pairs (notice
that this is true for any t > 1). �

Because the length of nanb is at most |uc|, and since
|ana| and |bnb| are both at most 1, the length of the path
ϕab = ana∪ϕnanb

∪nbb is at most 2+t|uc| by Lemma 4.
We now prove that 2 + t|uc| ≤ t|ab|. Since a = (0, 0),

b = (1, 0), c = (1/2,
√

3/2) and |au| = µ = t(t−2)
t2−1 , the

inequality 2 + t|uc| ≤ t|ab| is equivalent to

2 + t

(
1− t(t− 2)

t2 − 1

)
≤ t

which is true, provided that t3 − 4t2 + 2 ≥ 0 and t > 1.
Since t = 6.0411 is bigger than the largest real root of
x3 − 4x2 + 2, we are done. Therefore, whenever we are
in the configuration of Case (i), we can apply induction
and obtain a path ϕab from a to b of length at most
2 + t|uc| ≤ t|ab|.
Case (ii) The proof of Case (ii) is a bit more involved

but follows the same line of reasoning as the proof of
Case (i). If na and nb lie on different sides of ab, we
can assume without loss of generality that na lies below
the x-axis while nb lies above it. Recall that c∗ is the
intersection of the boundaries of Cab and Cba that lies
below the x-axis.

Since ab is not an edge of cY (2π/3), na must lie inside
C(a, c∗, b). Let v∗ be the intersection of the boundary of
Iab with the circular arc of C(a, c∗, b); see Fig. 4. This
intersection point always exists because b lies inside Iab
and c∗ lies outside of Iab by Lemma 3. The circular arc
of C(a, c∗, b) is part of the circle defined by x2 + y2 = 1.
Therefore, from (1),

v∗ =

(
t2 + 2t− 1

2t2
,− t− 1

2t2

√
(t+ 1)(3t− 1)

)
(3)

≈ (0.6518,−0.7583) .

Let ψ = ∠v∗ac∗; see Fig. 4a. Since ψ = π/3−∠bav∗,
from (3) we have tan(ψ)

= tan(π/3− ∠bav∗) =
tan(π/3)− tan(∠bav∗)

1 + tan(π/3) tan(∠bav∗)

=

√
3
(
t2 + 2t− 1

)
− (t− 1)

√
(t+ 1)(3t− 1)

t2 + 2t− 1 +
√

3(t− 1)
√

(t+ 1)(3t− 1)
(4)

from which tan(ψ) ≈ 0.1885 and hence, ψ ≈
10.6800◦. Consider the cone C ′ab (respectively the
point c′) obtained by rotating Cab (respectively c)
counter-clockwise around a by an angle ψ. Note that
C(a, v∗, b) ⊂ Iab; see Fig. 4b. Let n′a be the neighbor of
a inside C ′ab. If n′a lies inside Iab, we are done by the
inductive property. Therefore, assume that n′a 6∈ Iab.
Because C(a, v∗, b) ⊂ Iab, n′a cannot lie inside C(a, v∗, b)
and hence, n′a must lie above the x-axis. Let N ′a be the
convex hull of C(a, c′, b) \ Iab. Then n′a must lie inside
of N ′a; see Fig. 5 for an illustration. As in Case (i), nb
must lie inside of the region Nb being the convex hull of
C(b, c, a) \ Iba.

Let u′ ∈ ac′ be the intersection of the boundaries of
C ′ab and Iab (see Fig. 5). From (4), the equation of the
line supported by a and c′ is

y = tan(π/3 + ψ)x =
tan(π/3) + tan(ψ)

1− tan(π/3) tan(ψ)
x

=

√
3
(
t2 + 2t− 1

)
+ (t− 1)

√
(t+ 1)(3t− 1)

− (t2 + 2t− 1) +
√

3(t− 1)
√

(t+ 1)(3t− 1)
x .

Thus, the x-coordinate of u′ is given by the expression

1

4t2(t2 − 1)

(
5t4 − 2t3 + 2t2 + 2t− 1

−
√

3(t− 1)(t2 + 4t− 1)
√

(t+ 1)(3t− 1)
)

and the x-coordinate of c′ is given by the expression

−(t2 + 2t− 1) +
√

3(t− 1)
√

(t+ 1)(3t− 1)

4t2
.

Thus, u′ ≈ (0.1124, 0.3207) and c′ ≈ (0.3308, 0.9436).
A proof similar to that of Lemma 4 (moved to the

appendix due to space constraints) yields the following
result.
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Figure 4: a) Point v∗ and angle ψ = ∠v∗ac∗ b) Cone C′ab is obtained by rotating Cab counter-clockwise ψ degrees.

Lemma 5 In the configuration of Case (ii), the dis-
tance between n′a and nb is at most |u′c|.

By Lemma 5, the distance between n′a and nb is at
most |u′c| < 1. Therefore, we can apply the induc-
tion hypothesis to obtain a path ϕn′

anb
from n′a to nb of

length at most t|n′anb|.
Let ϕab = an′a ∪ ϕn′

anb
∪ nbb be a path from a to b.

Similarly to what we observed in Case (i), the length of
ϕab is at most 2 + ϕn′

anb
≤ 2 + t|u′c| by Lemma 5.

We now prove that 2 + t|u′c| ≤ t|ab|. Since a =
(0, 0), b = (1, 0) and c = (1/2,

√
3/2), using the exact

expressions for u′ we find that 2+t|u′c| ≤ t|ab|, provided
that p(t) = −25 + 90t− 39t2 − 246t3 + 363t4 + 138t5 −
589t6 + 216t7 + 291t8 − 204t9 − 84t10 + 6t11 + 2t12 ≥ 0.
Because we chose t ≈ 6.0411 to be equal to the largest
real root of p, we infer that 2+ t|u′c| ≤ t|ab|. Therefore,
whenever we are in the configuration of Case (ii), we
can apply induction and obtain a path ϕab from a to b
of length at most 2 + t|u′c| ≤ t|ab|.

In summary, given any two points a and b of cY (2π/3)
and a constant t ≈ 6.0411, we can construct a path from
a to b which uses edges of cY (2π/3) and has length at
most t|ab|. We obtain the following result.

Theorem 6 The graph cY (θ) has spanning ratio at

most 6.0411 if θ = 2π/3, or min
{

6.0411, 1
1−2 sin(θ/4)

}
if θ < 2π/3.

u

c

w

a

Iab

c′

u′

C ′
ab

N ′
a

Nb

b

v
v′

Iba

Figure 5: N ′a, Nb and maximum N ′a-Nb-pair (u′, c).

4 Larger angles

Theorem 6 provides upper bounds for the spanning ratio
of cY (θ) for values of θ ≤ 2π/3. But what happens when
θ is larger than 2π/3? The next result shows that if θ
is very large, the graph can be disconnected.

vP
P ′

Figure 6: cY (θ) can be disconnected when θ > π.

Theorem 7 For θ > π, there are point sets for which
cY (θ) is disconnected.

Proof. Let θ = π + ε, for any ε > 0. Take a regu-
lar polygon P with interior angles of at least π − ε/2
radians, and let P ′ be a copy of P . Now place P and
P ′ such that the distance between them is larger than
the distance between two consecutive vertices on P (see
Fig. 6). Consider a vertex v on P . The exterior angle
at v is at most 2π − (π − ε/2) = π + ε/2 radians. As
this is less than θ, any cone with apex v will include one
of v’s neighbors on P . And since the distance between
P and P ′ is larger than the distance between v and its
neighbors, v will never connect to a vertex on P ′. As
the choice of v was completely arbitrary, and P ′ is a
duplicate of P , this implies that no edge of cY (θ) will
connect P to P ′. �

Indeed, π is the true breaking point here: the con-
tinuous Yao graph with θ ≤ π is always connected (for
a proof, see Appendix A). Next we show that, despite
being connected, cY (π) is not a constant spanner.

Theorem 8 The continuous Yao graph cY (π) is not a
constant spanner.
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r

p q

a) b) c) d)

Figure 7: Establishing a lower bound for the spanning ratio
of cY (θ) for large values of θ.

Proof. Consider two points p and q at unit distance.
We will add points such that the shortest path between
p and q in cY (π) is arbitrarily long. The construction is
illustrated in Fig. 7. We place these additional points on
an ellipsis that is obtained from the circle with diameter
pq by stretching it vertically by a factor of 2r, for a fixed
real r ≥ 1. (Fig. 7a). We start by placing four points,
each at distance 1/2 from p or q (Fig. 7b). Then we place
points at distance 1/2 from these points, and so on, until
the two chains meet (when the distance between the last
point on the upwards chain from p and the symmetric
point from q is less than 1/2: Fig. 7c).

With these points, any half-plane through a vertex v
that contains vertices on the other side of the ellipsis also
contains a neighbor of v. As these neighbors are always
closer (before the end of the chain), no diagonals are
created. Thus cY (π) forms a convex polygon, following
the contour of the ellipsis (Fig. 7d).

As we increase r, the number of vertices on each chain
grows. When the chains each have k vertices, the short-
est path between p and q has length at least 2k/2 = k.
Since the distance between p and q remains fixed, and
we can make r arbitrarily large, there is no constant t
such that cY (π) is a t-spanner. �

5 Conclusions

We introduced a new class of graphs, called continuous
Yao graphs, and studied their spanning properties. We
showed that, for any angle 0 < θ ≤ 2π/3, the continuous
Yao graph cY (θ) is a spanner, whereas for π ≤ θ ≤
2π, it is not. Furthermore, we showed that cY (θ) is
connected for 0 < θ ≤ π, and possibly disconnected for
θ > π. The question whether cY (θ) is a spanner for
2π/3 < θ < π remains open. While the construction
in the proof of Theorem 8 does give a lower bound on
the spanning ratio of the continuous Yao graphs in this
range, this bound seems hard to express in terms of θ.
For the upper bound, the proof from Section 3 appears
to extend beyond 2π/3, but we have not yet determined
where the breaking point lies.

An alternative problem variant that maintains a lin-
ear number of edges in the output graph is one that
permits each point to randomly select an initial orien-

tation of the entire cone wheel (as opposed to sweeping
one cone continuously around the apex point). From
Theorem 8 we obtain as a corollary that there are point
sets for which the Yao graph Y2 is not a spanner, regard-
less of the orientation of the cones. However, Theorem 6
leaves open the possibility that Y3 and above are span-
ners under these conditions.

Acknowledgement

The research for this paper was initiated at the first
Workshop on Geometry and Graphs, organized at the
Bellairs Research Institute, March 10-15, 2013.

References

[1] G. Narasimhan and M. Smid. Geometric Spanner Net-
works. Cambridge University Press, 2007.

[2] B. E. Flinchbaugh and L. K. Jones. Strong connectivity
in directional nearest-neighbor graphs. SIAM Journal
on Algebraic and Discrete Methods, 2(4):461–463, 1981.

[3] Andrew Chi Chih Yao. On constructing minimum span-
ning trees in k-dimensional spaces and related prob-
lems. SIAM Journal on Computing, 11(4):721–736,
1982.

[4] Kenneth L. Clarkson. Approximation algorithms for
shortest path motion planning. In Proceedings of the
19th ACM Symposium on the Theory of Computing
(STOC 1987), pages 56–65, 1987.
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A Omitted proofs

Lemma 5 In the configuration of Case (ii), the distance
between n′a and nb is at most |u′c|.

Proof. Because n′a ∈ N ′a and nb ∈ Nb, we obtain an upper
bound on the distance between n′a and nb by computing the
maximum distance between a point in N ′a and a point in
Nb. Using the same arguments as in the proof of Lemma 4,
we can show that the maximum distance is achieved by a
point on the boundary of N ′a and a point on the boundary of
Nb. We refer to a pair of points that realizes this maximum
distance as a maximum N ′a-Nb-pair.

One can verify that every point in Nb is farther from u′

than from any other point in N ′a. Therefore, it suffices to
find the point farthest from u′ in Nb. Note also that the
circle centered at u′ that passes through any point in the
circular arc of Nb does not contain c. Therefore, it suffices
to find the point farther from u′ in the boundary of the
triangle 4(w, c, v′) ⊂ Nb.

As we have exact expressions for u′ and for the vertices on
the boundary of4(w, c, v′), we can verify that the maximum
N ′a-Nb-pair is found when when n′a = u′ and nb = c, proving
our result. �

Theorem 9 For θ ≤ π, the continuous Yao graph cY (θ) is
connected.

Proof. Consider a set Cr of cones whose union is exactly the
right half-plane. Such a set can be constructed by starting
with the cone whose left boundary aligns with the positive
y-axis, and rotating by π−θ degrees until the right boundary
aligns with the negative y-axis. Since θ ≤ π, this set is non-
empty. Now, if a vertex v is not a rightmost vertex, there is
a cone C in Cr that is not empty. Since C is completely con-
tained in the right half-plane, the closest vertex in C must lie
further to the right than v. Thus, there is an edge connecting
v to a vertex to its right. Since we only have finitely many
points, by repeating this, we obtain a path from any vertex
to a rightmost vertex. Finally, by slightly rotating the right
half plane at each rightmost point (so that it includes only
rightmost vertices), we obtain a path connecting all right-
most vertices (if several rightmost vertices exist). Thus, by
concatenating the paths from two arbitrary points a and b
to rightmost vertices to the path connecting these rightmost
vertices, we obtain a path between a and b. �


