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Representing a Planar Straight-Line Graph Using Few Obstacles∗
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Abstract

An obstacle representation of a planar straight-line
graph (PSLG) G consists of the choice and placement
of a set of opaque polygonal obstacles in such a way
that the visibility graph on V (G) induced by the obsta-
cles equals G (i.e., u and v are visible to one another
iff (u, v) ∈ E(G)). We investigate the problem of com-
puting an obstacle representation of a PSLG, using a
minimum number of obstacles. We call this minimum
size the obstacle number of the drawing, and the prob-
lem of computing it ORPG.

First, we show that ORPG is NP-hard by reduction
from planar vertex cover, resolving a question posed
by Sarıöz (CCCG 2011 [7]). Second, we give a reduc-
tion from ORPG to maximum degree 3 planar vertex
cover. Since this reduction preserves solution values, it
follows that ORPG admits a polynomial-time approxi-
mation scheme (PTAS) and is fixed-parameter tractable
(FPT).

1 Introduction

Let G be a planar straight-line graph (PSLG) with ver-
tices in general position; that is, a straight-line drawing
of a planar graph with no edge crossings and no three
vertices on a line in which the vertices are identified
with their positions. We refer to the open line segment
between a pair of non-adjacent graph vertices as a non-
edge of G. An obstacle representation of G is a pair
(V (G),O) where O is a set of polygons (not necessarily
convex) called obstacles, such that:

1. G does not meet any obstacle, and

2. every non-edge of G meets at least one obstacle.

Equivalently, G is the visibility graph on V (G) in-
duced by the obstacles in O. The size of an obstacle
representation is the cardinality of O. Denote by ORPG
the problem of computing a minimum-size obstacle rep-
resentation of the PSLG G (the optimum of which is
called the obstacle number of G). Alpert, Koch, and
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Laison introduced the notions obstacle representation
and obstacle number for abstract graphs [3] and noted
that in any minimal (not necessarily mininuum) obsta-
cle representation, each obstacle can be identified with
the face it lies in. Hence, we will use the terms face and
obstacle interchangeably. If the faces have weights then
we can seek a minimum-weight obstacle representation.

Finding a minimum-size obstacle representation of a
straight-line graph drawing was treated as a computa-
tional problem in the more general setting in which
the drawing of G, and G itself, need not be pla-
nar [7]. This problem was reduced to hypergraph
transversal (hitting set), with O(n4) faces available to
pierce O(n2) non-edges (O(n) faces and Θ(n2) non-
edges in the PSLG special case). A randomized
O(logOPT )-approximation algorithm based on bound-
ing the Vapnik-Chervonenkis dimension of the corre-
sponding hypergraph family was given in [7]. Left open
was the question of whether better approximations or
perhaps optimal algorithms were feasible.

In this paper we give partial answers to that ques-
tion. We show that computing the obstacle number
is NP-hard already in the special case of straight-line
drawings (without edge crossings); nonetheless, we show
that problem admits a polynomial-time approximation
scheme (PTAS) and is fixed-parameter tractable (FPT).
We show hardness by a reduction from planar vertex
cover; the positive results are consequences of a solu-
tion value-preserving reduction to maximum degree 3
planar vertex cover.

2 Reduction from planar vertex cover

Theorem 1 ORPG is NP-hard.

Proof. We reduce from planar vertex cover. Recall
that in the decision version of planar vertex cover, we
are given an abstract planar graph G having (without
loss of generality) no isolated vertex, and a number k.
Let n = |V (G)|, m = |E(G)|, and f = n −m + 2 (the
number of faces in any crossing-free planar drawing of
G). We will transform G in polynomial time into a
PSLG G̃ in such a way that G has a vertex cover of size
k if and only if G̃ has an obstacle representation of size
k′ (for k′ defined below).

First, we construct from the planar vertex cover in-
stance G a planar vertex cover problem instance G3

with maximum degree 3, adapting and extending the
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construction of [6]. The graph G3 admits a vertex cover
of size k′ if and only if G admits a vertex cover of size
k. Second, we construct an ORPG instance G̃ in such
a way that an obstacle representation of G̃ will corre-
spond to a vertex cover of G3 of the same size, and vice
versa. Our complete reduction involves first performing
the steps involved in the reduction of [6] because it is
the particular class of degree-3 instances constructed by
[6] that we then convert into ORPG instances, not the
entire class of degree-3 vertex cover instances.

Constructing the maximum degree 3 planar ver-
tex cover instance G3. The planar graph G3 is con-
structed as follows. We transform each vertex vi of G
into a cycle Ci of length 2bi, with bi ∈ deg(vi)+{0, 1, 2}
(with the exact value decided below). We color the ver-
tices of Ci alternating between blue and red. We then
create a single leaf vertex zi adjacent to some arbitrary
red vertex of Ci. We transform each edge (vi, vj) of G
into a path Pij with three edges whose endpoints are
distinct blue vertices of Ci and Cj . Finally, we create f
copies of the 3-vertex path graph P3, each constituting
a component of G3.

We claim that G has a vertex cover of size at most k
if and only if G3 has one of size at most k′ = k + f +
m+

∑
i bi. (See appendix.)

Constructing the ORPG instance G̃. In the re-
mainder of the proof, we show how to “implement”
the graph G3 as an equivalent ORPG problem instance.
The basic building blocks of the construction are empty
triangles and diamonds. An empty triangle is a face
of a PSLG that is surrounded by three edges and has
no vertex inside. A diamond consists of two empty tri-
angles sharing an edge and having their four vertices
in convex position. Observe that a diamond contains
a non-edge between two of its vertices. Hence at least
one empty triangle of every diamond must be chosen
in an obstacle representation. The f copies of P3 in
G3 will match the faces of G̃ besides empty triangles,
all of which must be chosen. The remaining vertices of
G3 will match the empty triangles of G̃, such that the
edges among them match the diamonds of G̃. Hence
there is a natural bijection between vertex covers of G3

and obstacle representations of G̃.

To begin the construction, we use the linear-time al-
gorithm of de Fraysseix, Pach, and Pollack [5] to obtain
a planar drawing of G on a O(n)×O(n) portion of the
integer lattice and then perturb the coordinates to ob-
tain general position. (We do not distinguish between
G and this imbedding.) We first visualize G̃ as a bold
drawing [8] of G, whose vertices are represented by small
disks and edges by solid rectangles: we draw each vertex
ui of G as a disk Di about ui (with boundary C̃i), and
every edge uiuj as a solid rectangle Rij . See Fig. 1(a).

Each Rij has two vertices tij ,vij on C̃i and two vertices

tji, vji on C̃j such that the line uiuj is a midline of Rij ,
and tijuivijtjiujvji is a counterclockwise ordering of the
vertices of a convex hexagon.

We draw the disks small enough to ensure that they
are well-separated from one another. We set the radius
r of every disk to the smaller of 1/4 and half of the
minimum distance between a vertex ui and an edge ujuk
(j 6= i 6= k) of G. To fix a single width for all rectangles
(i.e., ||tij−vij ||), we set a global angle measure α to the
smaller of 45◦ and half of the smallest angle between
two edges of E(G) incident on the same vertex of V (G).

G̃ is modeled on the bold drawing, by implementing
each edge of G (path Pij of G3) with an edge gadget
and each vertex of G (cycle Ci of G3) with a vertex
gadget. The edge gadget, consisting of four triangles
forming three diamonds, is shown in Fig. 1(b). (Note
that each pair vijvji defines a non-edge.)

The vertex gadget is a modified wheel graph whose
triangles correspond to the vertices of cycles Ci in G3

(see Fig. 2). On every circle C̃i, for every edge uiuj in
G, we color blue the arc of measure α centered about
the intersection of circle C̃i with uiuj (a non-edge in

G̃). We place tij and vij at the endpoints of this arc so
that tijuivij is a counterclockwise triple. By the choice
of α, all blue arcs are well-separated, and hence the
rectangles are well-separated from one another and from
other disks, by the choice of r. We color the remaining
arcs red to obtain a red-blue striped pattern on each
circle C̃i, corresponding in color to the vertices of the
corresponding Ci in G3.

On every circle C̃i, we will add the remaining edges
between consecutive vertices of C̃i to complete the union
of the triangles tijuivij , forming a wheel graph on hub
ui, such that every pair of triangles sharing a spoke form
a diamond. If a red arc has measure at least 180◦ − α,
however, we must add additional spokes. By the gen-
eral position assumption, at most one red arc per wheel
can have such great measure. If such a red arc has
measure less than 270◦, we divide it evenly into three
parts and color the middle part blue (see Fig. 2); oth-
erwise, we divide it evenly into five parts and color the
second and fourth parts blue (see Fig. 3), maintaining
the striped pattern in both cases. We place dummy ti
and vi vertices1 at the newly created (zero, two or four)
arc endpoints. Finally, we add the requisite edges to
complete the wheel graph.

We place a vertex z̃i on an arbitrary red arc of C̃i

and connect it in G̃ to the end vertices (say tij and vik)
of that arc. Thus an empty triangle tijzivik is formed

in G̃ as part of a diamond with ui, corresponding to zi
and its incident edge in G3.

In the unbounded face of G̃ we place two isolated
vertices inducing a non-edge inside the unbounded face,

1Dummy vertices have no adjacencies with any vertices outside
of Di.



CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

ui uj

tij

vij tji

vji

Di Dj

Rij

(a) Bold drawing of edge uiuj .
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(b) Gadget in G̃ for edge uiuj of G.

Figure 1: Bold drawing and edge gadget for an edge of G.
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(a) Initial circle with blue (solid) arcs of mea-
sure α and red (dashed) arcs has a large red
arc of measure in [180◦ − α, 270◦).
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(b) After subdividing the large red arc
into three, coloring its middle part blue,
and adding dummy vi and ti vertices.
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(c) In the resulting wheel graph, each pair
of triangles sharing an edge induce a dia-
mond. One diamond’s non-edge is shown
dashed.

Figure 2: Constructing the wheel graph drawing in the case of a large red arc.
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(a) An initial circle with blue (solid) and red
(dashed) arcs has a very large red arc, of mea-
sure at least 270◦.
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(b) After subdividing the very large red
arc into five, coloring its second and fourth
parts blue, and adding dummies vi and ti.
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(c) In the resulting wheel graph, each pair
of triangles sharing an edge induce a dia-
mond. One diamond’s non-edge is shown
dashed.

Figure 3: Constructing the wheel graph drawing in the case of a very large red arc.
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thus requiring this face to be chosen in any solution.
Every non-triangular face of G̃ must be selected as an
obstacle, since every simple polygon with at least 4 ver-
tices has an internal diagonal (i.e., a non-edge). The se-
lection of these faces are forced moves and corresponds
to the selection, in a vertex cover for G3, of the central
vertex of each P3.

Since each pair of neighboring triangles in G̃ indeed
form a diamond and every non-triangular face is indeed
a forced move, the result follows. �

Remark 2 To represent coordinates exactly as de-
scribed would require a very permissive unit-cost RAM
model of computation in which it is possible to represent
real numbers and perform arithmetic and trigonomet-
ric functions in unit time. The reduction above can be
modified in such a way that each vertex position of G̃ is
represented using O(log n) bits.

3 Reduction to vertex cover

Theorem 3 Weighted ORPG is reducible to weighted
max deg 3 planar vertex cover by an optimal solution
value-preserving reduction.

Proof. Given a PSLG G on n vertices in general posi-
tion, we construct a graph Ĝ that admits a vertex cover
of cost k if and only if G admits an obstacle represen-
tation of cost k.

Every bounded non-triangular face of G must be se-
lected as an obstacle; moreover, the unbounded face
must be chosen if and only if its convex hull boundary
contains a non-edge. Since these are forced moves, we
henceforth assume without loss of generality that every
non-edge we must block meets at least two faces. Re-
call that an empty triangle is a bounded face on three
vertices not containing any other vertices, and that a
diamond consists of two empty triangles that share an
edge and have their four vertices in convex position.

We claim that every non-edge must meet the two tri-
angles forming some diamond, and hence meets those
triangles’ shared edge. (See appendix.) We now define
Ĝ, which is a subgraph of the dual of G: each edge
of Ĝ corresponds to a diamond of G. The graph Ĝ
is induced by these edges (with vertex weights set to
the corresponding face weights). For each diamond, at
least one its triangles must be chosen in any obstacle
representation. Thus every obstacle representation of
Ĝ corresponds to a vertex cover of G of the same cost,
and vice versa. �

From Theorem 3 we immediately obtain the following.

Corollary 4 Weighted ORPG admits a polynomial-
time approximation scheme (PTAS) [4] and is fixed-
parameter tractable (FPT) [9, 2].

4 Discussion

In this short paper we studied the problem of finding
a small set of obstacles that block all of a straight-line
graph drawing’s non-edges and none of its edges; we
found the problem in this setting to be as easy as pla-
nar vertex cover (and hence, e.g., to admit a PTAS).
For the more general setting of a straight-line draw-
ing in the plane that might include edge crossings, the
best positive result remains the O(logOPT ) approxi-
mation of [7]. A natural generalization of this problem
is to find a minimum obstacle representation of an ab-
stract graph—i.e., an embedding in the plane of nodes
and obstacles—but unfortunately to our knowledge this
problem remains open.

We might also consider related optimization objec-
tives. In a budgeted setting limiting us to the use of only
k obstacles, we might permit obstacle representations of
G that are only approximately accurate. Two natural
relaxations of the original problem suggest themselves.

First, we could seek to maximize the number of non-
edges that are blocked by the k obstacles, subject to
the restriction that no edges of G are blocked. Analo-
gous to the vertex cover reduction above, this problem
reduces to (planar) max-vertex cover, and so admits
a 3/4 approximation [1]. (Absent the restriction that
the graph drawing be planar, this problem forms an
instance of maximum coverage, which is approximable
within 1− 1/e by the greedy algorithm.)

Second, we could seek to minimize the number of G’s
edges that are blocked (“accidentally”) by the k obsta-
cles, subject to the restriction that all G’s non-edges
are blocked. Unfortunately, approximating this prob-
lem within any multiplicative factor is NP-hard, since
for k equal to G’s obstacle number, the optimal num-
ber of non-edges blocked by k obstacles is 0, and so any
such approximation algorithm would solve the original
problem optimally.

References

[1] A. A. Ageev and M. Sviridenko. Approximation al-
gorithms for maximum coverage and max cut with
given sizes of parts. In IPCO, pages 17–30, 1999.

[2] J. Alber, H. Fernau, and R. Niedermeier. Parame-
terized complexity: exponential speed-up for planar
graph problems. J. Algorithms, 52(1):26–56, 2004.

[3] H. Alpert, C. Koch, and J. D. Laison. Obstacle num-
bers of graphs. Discrete & Computational Geometry,
44(1):223–244, 2010.

[4] B. S. Baker. Approximation algorithms for NP-
complete problems on planar graphs. J. ACM,
41:153–180, January 1994.



CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

[5] H. de Fraysseix, J. Pach, and R. Pollack. How to
draw a planar graph on a grid. Combinatorica,
10(1):41–51, 1990.

[6] M. R. Garey and D. S. Johnson. The rectilinear
Steiner tree problem is NP-complete. SIAM Journal
of Applied Mathematics, 32:826–834, 1977.
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Appendix

Claim 5 G has a vertex cover of size at most k if and
only if G3 has one of size at most k′ = k+f+m+

∑
i bi.

Proof. (⇒): For each vertex vi in a given vertex cover
for G of size k, we select zi and all the blue vertices of
Ci, thus including an endpoint of each path Pij ; and for
each vi not in the cover, we select all the red vertices
of Ci (a total so far of k +

∑
i bi vertices). Since for

every path Pij at least one of the cycles Ci and Cj will
have all its blue vertices chosen, thus including at least
one endpoint of Pij , choosing one internal vertex from
each Pij (m more), and the central vertex of each P3 (f
more) suffices to complete a size k′ vertex cover for G3.

(⇐): Given a vertex cover for G3 of size k′, we ob-
tain a canonical vertex cover for G3 of size k′′ ≤ k′

in the following way. Each copy of P3 contributes at
least one vertex to a cover, so have it contribute ex-
actly its central vertex, for a total of f vertices. Each
path Pij contributes at least one of its internal vertices
to cover its central edge. If both internal vertices of a
path Pij are in the given cover, take one internal ver-
tex out and ensure that its blue neighbor is in, which
makes for m internal vertices from these paths. Note
that every cycle Ci contributes at least bi vertices, lest
some edge of the cycle be uncovered. This holds with
equality only if Ci contributes (including “its” zi) ex-
actly its red vertices. Otherwise, ensure that Ci con-
tributes exactly 1 + bi vertices: “its” zi and its blue
vertices. Denote by k′′ the size of this resulting canon-
ical vertex cover. The cycles in G3 contributing blue
vertices therefore correspond to a vertex cover for G of
size k′′ − f −m−

∑
i bi ≤ k′ − f −m−

∑
i bi = k. �

Claim 6 Every non-edge must meet the two triangles
forming some diamond, and hence meets those triangles’
shared edge.

Proof. Assume for contradiction that some remaining
non-edge s never crosses the diagonal edge of a diamond.
Denote by u and v the endpoints of s, and orient the
plane such that u is directly below v. Obtain a sequence
of empty triangles (f0, f1, . . . , fk) by tracing s from u
(a vertex on f0) to v (a vertex on fk). Denote by vi
(for 1 ≤ i ≤ k) the unique vertex in face fi that is
not a vertex of fi−1 (so that vk = v). Without loss of
generality, the reflex angle of f0 and f1 is to the right of
s, which implies that v1 is to the right of s. In order for
f2 to be the next face in this sequence, v2 must be to the
left of s. In general, in order for fi to be the next face
in this sequence, vi must be on the other side of s from
vi−1. This pattern must continue indefinitely, lest two
consecutive triangles form a diamond. The indefinite
continuation of this pattern implies an infinite sequence
of faces defined by s, and hence a contradiction. �
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