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Abstract

For a polygonal region P with n vertices, a guard cover
S is a set of points in P , such that any point in P can be
seen from a point in S. In a colored guard cover, every
element in a guard cover is assigned a color, such that
no two guards with the same color have overlapping
visibility regions. The Chromatic Art Gallery Prob-
lem (CAGP) asks for the minimum number of colors
for which a colored guard cover exists.

We discuss the CAGP for the case of only two colors.
We show that it is already NP -hard to decide whether
two colors suffice for covering a polygon with holes, even
when arbitrary guard positions are allowed. For sim-
ple polygons with a discrete set of possible guard loca-
tions, we give a polynomial-time algorithm for deciding
whether a two-colorable guard set exists. This algo-
rithm can be extended to optimize various additional
objective functions for two-colorable guard sets, in par-
ticular minimizing the guard number, minimizing the
maximum area of a visibility region, and minimizing or
maximizing the overlap between visibility regions. We
also show results for a larger number of colors: comput-
ing the minimum number of colors in simple polygons
with arbitrary guard positions is NP -hard for Θ(n) col-
ors, but allows an O(log(OPT )) approximation for the
number of colors.

1 Introduction

Consider a robot moving in a polygonal environment
P . At any point p in P , the robot can navigate by re-
ferring to a beacon that is directly visible from p. In
order to ensure unique orientation, each beacon has a
“color”; the same color may be used for different bea-
cons, if their visibility regions do not overlap. What is
the minimum number χG(P ) of colors for covering P ,
and where should the beacons be placed?

This is the Chromatic Art Gallery Problem
(CAGP), which was first introduced by Erickson and
LaValle [7]. Clearly, any feasible set of beacons for the
CAGP must also be a feasible solution for the classical
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Figure 1: An example polygon with n = 20 vertices.
A minimum-cardinality guard cover with n/4 guards
(shown in white) requires n/4 colors, while a minimum-
color guard cover (shown in black) has n/2 + 1 guards
and requires only 3 colors.

Art Gallery Problem (AGP). However, the num-
ber of guards and their positions for optimal AGP and
CAGP solutions can be quite different, even in cases as
simple as the one shown in Figure 1.

Related Work. The closely related AGP is NP -
hard [13], even for simple polygons. See [15, 16, 18]
for three surveys with a wide variety of results. More
recently, there has been work on developing practical
optimization methods for computing optimal AGP so-
lutions [12, 17, 10, 5].

The CAGP was first proposed by Erickson and
LaValle, who presented a number of results, most no-
tably upper and lower bounds on the number of col-
ors for different classes of polygons [7, 8, 9]. In par-
ticular, they noted that the construction of Lee and
Lin [13], which establishes NP -hardness of determining
a minimum-cardinality guard cover for a simple poly-
gon P , can be used to prove NP -hardness of comput-
ing χG(P ), as long as all guards have to be picked
from a specified candidate set [6, 9]. However, there is
no straightforward way to extend this construction for
showing NP -hardness of the CAGP with arbitrary guard
positions. An upcoming paper by Zambon et al. [19] dis-
cusses worst-case bounds, as well as exact methods for
computing optimal solutions.

Bärtschi and Suri introduced the Conflict-Free
CAGP, in which they relax the chromatic require-
ments [2, 3]: Visibility regions of guards with the
same color may overlap, as long as there is always one
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uniquely colored guard visible. They showed an upper
bound of O(log2 n) on the worst-case number of guards,
which was lowered to O(log n) for simple polygons by
Bärtschi et al. [1]. This is significantly smaller than the
lower bound of Θ(n) for χG(P ) established by Erickson
and LaValle [8].

Another loosely related line of research is by Biro et
al. [4], who consider beacons of a different kind: in order
to get to a new location, a robot aims for a sequence
of destinations for shortest geodesic paths, each from
a finite set of beacons. Their results include a tight
worst-case bound of

⌊
n
2

⌋
− 1 for the number of beacons

and a proof of NP -hardness for finding a smallest set of
beacons in a simple polygon.

Our Results. We provide a number of positive and
negative results on the CAGP. In particular, we show
the following:

• For a polygon P with holes, it is NP -hard to decide
whether there is a k-colorable guard cover of P ,
even if k = 2 and arbitrary guard positions in P
may be used. We also provide a proof for k ≥ 3
for lack of space. Because k = 1 requires a single
guard, i.e., P must be a star-shaped polygon, we
get a complete complexity analysis.

• For a simple polygon P and a given discrete set L
of c “candidate” guard locations, it can be decided
in polynomial time whether there is a 2-colorable
guard set S ⊂ L.

• For a simple polygon P that has a 2-colorable guard
set S ⊂ C chosen from a given discrete set L of `
guard positions, we can find a smallest 2-colorable
guard set in polynomial time. We can also com-
pute 2-colorable subsets that optimize any from a
variety of other objective functions, including min-
imizing or maximizing the largest visibility region,
or minimizing or maximizing the overlap between
regions.

• For a simple polygon P , it is NP -hard to compute
a guard cover with the smallest number of colors,
even when arbitrary guard positions may be used.
The proof establishes this for χG(P ) ∈ Θ(n).

• For a simple polygon with a given discrete set L of
` possible guard locations, there is a polynomial-
time O(log(χG(P ))-approximation for the number
χG(P ) of colors.

2 Preliminaries

Let P be a polygon. P is simple if its boundary is
connected (and not self-intersecting). For p ∈ P , V(p) ⊆
P denotes the visibility polygon of p, i.e., all points p′

that can be connected to p using the line segment pp′ ⊂

w1

V

w2 wk+1· · ·

g

Figure 2: Forcing one guard into the region V (gray).

P . For any S ⊆ P , we denote by V(S) =
⋃

g∈S V(g). A
finite S ⊂ P with V(S) = P is called a guard cover of
P ; g ∈ S is a guard. We say that g covers all points in
V(g).

Let S be a guard cover of P . We call G(S) the inter-
section graph of visbility polygons of guards g ∈ S. For
a coloring c : S → {1, . . . , k} of the guards, (S, c) is a
k-coloring of P , if it induces a k-coloring of G(S), i.e.,
no point in P sees two guards of the same color. χG(P )
is the chromatic (guard) number of P , i.e., the minimal
k, such that there is a k-coloring of P . (The index G in
χG(P ) as introduced in [8, 9] does not refer to a specific
guard set, nor to a graph G.)

Definition 2.1 (Chromatic Art Gallery Problem)
For k ∈ N, the k-Chromatic Art Gallery Problem (k-
CAGP) is the following decision problem: Given a
polygon P , decide whether χG(P ) ≤ k.

3 Polygons with Holes

In this section, we show that the k-CAGP is NP-hard
for any fixed k ≥ 3, even when guards may be chosen
arbitrarily in P .

3.1 2-Colorability

Lemma 3.1 (Needle lemma) Consider k + 1 “nee-
dles” with end points W = {w1, . . . , wk+1} (tips of
the “needle” spikes), such that there is some g ∈⋂k+1

i=1 V(wi) with V(W ) ⊆ V(g), as in Figure 2. Then
a k-coloring must place a guard in V = {p ∈ P |
|V(p) ∩W | ≥ 2}, e.g. at g.

Proof. Suppose there is no guard in V . Then there
must be a guard in each V(wi), requiring a total of at
least k + 1 guards; two of them share the same color.
Because V(W ) ⊆ V(g), g sees two guards with the same
color, which is impossible in a k-coloring. �

We use a reduction from 3SAT for showing NP -
hardness of deciding whether χG(P ) = 2. Throughout
this section, we associate colors with Boolean values;
w. l. o. g., blue corresponds to true and red to false. The
output of every gadget is (according to Lemma 3.1) a
guard at a specific position, colored in red or blue which
entirely covers all output tunnels serving as input for the
next gadgets.
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Figure 3: 3SAT to 2-CAGP reduction gadgets.

Variable Gadget. This gadget uses the construc-
tion in Figure 3(a) to encode one decision variable xi.
The needles enforce locating two guards at the indicated
positions. The color used for the left guard is inter-
preted as the value of xi: Blue means true, red means
false.

Inverter Gadget. The gadget in Figure 3(b) inverts
colors. Its input area is illuminated by one color; the
guard forced to position g must have the other, or a
point in the lower right corner can observe two guards
of the same color.

Crossing Gadget. Crossings of channels propagat-
ing colors is achieved by the gadget in Figure 3(c). For
any guard g that sees w1, V(w1) ⊆ V(g). As V(w1) in-
tersects both the input area and V(g1), g1 must have
the same color as the corresponding input; the same
holds for w2. If both input areas are covered by guards
of the same color, then one guard of the opposite color
is placed in V(w1) ∩ V(w2). Otherwise, we place two
guards of different color outside of V(w1) ∩ V(w2), e.g.,
at w1 and w2.

Multiplexer Gadget. Multiplexing is achieved with
the gadget in Figure 3(d). It uses an inverter gadget,
and forces a guard to position g2 which covers all output
tunnels. The gadget is easily generalized to an arbitrary
number of output tunnels.

Or Gadget. The gadget in Figures 3(e)–3(f) is a
binary or, allowing construction of a ternary one. We
argue that there is a guard cover that colors the output
area blue, if and only if at least one input area is blue.

If two different input colors are applied, a guard cover
with blue output exists: g1 blue, g2 red, and g3 blue in
Figure 3(e). The same is true for blue/blue input: g1

red and g3 blue in Figure 3(f).

If the input is red/red, the output cannot be blue:
By Lemma 3.1, the gray area must contain a guard g,
which can only be blue. V(g) ∩ V(g3) 6= ∅, so g3 is red.

And Gadget. This gadget is similar to the mul-
tiplexer gadget, see Figure 3(g). The guard forced to
position g can be colored if and only if all input regions
have the same color. Note that this gadget forces all
inputs to be identical, either true or false.

The 3SAT Reduction. Any 3SAT instance S =
C1 ∧ · · · ∧Cm with variables x1, . . . , xn can be encoded
as a 2-CAGP instance using the gadgets and the overall
layout depicted in Figures 3 and 4. If S is satisfiable,
setting every true variable output to blue results in a
valid 2-coloring. If there is a 2-coloring of the polygon,
the final and gadget’s input must be uniformly colored,
w. l. o. g. blue. Then the blue guards in the variable
gadgets encode which variable is true and which is false
in a valid truth assignment for S.
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Figure 4: 3SAT reduction gadget usage.
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Figure 5: 3- and (3 + k)-colorability. 3-colorability is
shown in continuous lines, (3+k)-colorability is achieved
by adding the structures drawn in dashed lines. The
gray areas contain k or 3 forced guards.

Theorem 3.2 2-CAGP, i.e., deciding if a polygon is
2-colorable, is NP-hard.

3.2 3- and (3 + k)-Colorability

The NP -hardness of 3-CAGP follows from the NP -
hardness of deciding whether a planar graph H is 3-
colorable-complete [11]. The idea is shown in continuous
lines in Figure 5: Each node of the graph H is turned
into a convex region of the polygon P , and needles force
exactly one guard into each of them by Lemma 3.1.
Those guards cover P ; it is easy to see that P is 3-
colorable iff H is 3-colorable. For 1 ≤ k ∈ N, the con-
struction can be generalized to (3+k)-CAGP by adding
the structures drawn in dashed lines to Figure 5. Details
are straightforward.

4 Simple Polygons

4.1 Two Colors

In the following, we consider the CAGP for a simple
polygon P and a given discrete set L of ` candidate
locations, from which a 2-colorable guard set S ⊂ L
must be chosen. Overall, we will prove the following
main result.

Theorem 4.1 For a simple polygon P with n vertices
and ` discrete guard locations L, it can be decided in
polynomial time whether there is a 2-colorable guard set.

The proof is based on a number of structural lemmas,
then proceeds by dynamic programming.

Basic Lemmas. We state a number of topological
properties of 2-colorable simple polygons. Note that
these hold even if we do not have a discrete candidate
set for guard locations.

Lemma 4.2 Let P be a simple polygon. A 2-
colorable guard set S for P cannot contain three guards
g1, g2, g3 ∈ S, such that V(g1) ∩ V(g2) ∩ V(g3) 6= ∅.

Proof. Trivial. �

Lemma 4.3 Let P be a simple polygon, and let S be a
2-colorable guard set of P . Let g1, g2 ∈ S be two differ-
ent guards. Then any point p ∈ ∂V(g1) ∩ ∂V(g2) must
be in ∂P , i.e., boundaries of visibility regions intersect
only on the boundary of the polygon.

Proof. Suppose p is in the interior of P and consider
an infinitesimal neighborhood of p. This contains points
that are in neither visibility region, so they must be in
a third visibility region, say, of g3. Because visibility
regions are closed sets, this must also intersect p, so the
claim follows from Lemma 4.2 �

Lemma 4.4 Let P be a simple polygon, and let S be a
2-colorable guard set. Then G(S) must be a tree.

Proof. Consider a cycle in G(S), which corresponds to
a sequence of visibility regions. By Lemma 4.3, all of
their boundary intersections must be on the boundary
of P . Furthermore, these intersections must be pair-
wise disjoint by Lemma 4.2, so the intersection between
overlapping visibility regions is non-degenerate. Thus,
there is a closed path through the interior of all involved
visibility regions (and thus through the interior of P )
that separates two of these boundary points. There-
fore, the boundary of P cannot be connected, a contra-
diction. �

Lemma 4.5 Let P be a simple polygon and let S be a
2-colorable guard set. Consider a triangulation T of the
overlay of visibility regions V(g), g ∈ S. Then the dual
graph of T is a tree.

Proof. By Lemma 4.3, boundaries of visibility regions
only intersect on the boundary of P , so all vertices of
cells in the overlay lie on the boundary. It follows that
any chord in a cell separates P into two pieces, proving
the claim. �
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Figure 7: Solving a subproblem (e,Γ) by combining so-
lutions for subproblems (e′,Γ′) and (e′′,Γ′′).

Shadow Vertices and Labeled Edges. Next we con-
sider some basic structures for our algorithm. By
Lemma 4.3, we know that the vertices of subregions
in the overlay of visibility regions of active guards must
lie on the boundary. This allows us to compute a 2-
colorable guard set by building a triangulation of the
overlay of the visibility regions of active guards in the
polygon, one triangle at a time, based on considering the
limited set of possible chords between overlay vertices.
Refer to Figure 6 for the following definitions.

Definition 4.6 Let P be a simple polygon, and let L
be a discrete set of ` possible guard locations. Then we
define the following.

(a) For a (not necessarily active) guard position g ∈ L,
a shadow vertex v is a vertex of the boundary of
V(g), or a polygon vertex. Any shadow vertex lies
on the boundary of P . We write V for the set of all
O(n`) shadow vertices. Similarly, a shadow edge
is a line segment between two shadow vertices that
separates V(g) from P \ V(g) for some guard g.

Po(e)

v1

v2
e

(v3)

(v3)

(v3)
(v3)

(v3)

Figure 8: Different possible positions for v3 for combin-
ing a solution for subproblem (e,Γ) from solutions for
subproblems ((v1, v3),Γ′) and ((v3, v2),Γ′′). It suffices if
one of these combinations yields a feasible combination
for (e,Γ).

(b) A shadow chord e = (v1, v2) is a directed segment
between two shadow vertices, v1 and v2. e subdi-
vides P into two subpolygons, the inner polygon
Pi(e) ⊂ P that lies right of e, and the outer polygon
Po(e) ⊂ P that lies left of e.

(c) A subproblem (e,Γ) is defined by a shadow chord
together with a subset Γ ⊂ L of one or two guards,
g1 and possibly g2. It asks for a subset of guards
S ⊂ L and a triangulation of Pi(e), such that S is
a 2-colorable guard cover of Pi(e), in which the set
of guards covering the triangle to the right of e is
precisely Γ. If such a set exists, we say that (e,Γ)
is solvable.

Dynamic Programming. Now the idea for our
dynamic-programming algorithm is to consider build-
ing a valid triangulation of a 2-colorable visibility over-
lay (whose dual must be a tree by Lemma 4.5), based
on shadow chords and their active guards. As each
new edge in such a triangulation must be a shadow
chord that forms a triangle with a pair of existing edges,
we can choose such a pair that is feasible, and re-
curse. More formally, we consider the Boolean func-
tion B(e,Γ) := 1, if the subproblem defined by (e,Γ) is
solvable.

We initialize B(e,Γ) := 1 for all combinations of e
and Γ for which e is a counterclockwise polygon edge,
i.e, for which Pi(e) = e. Then the update rule is as
follows. B(e,Γ) := 1, if and only if there is a shadow
vertex v3 in Pi(e) with e′ = (v1, v3) and e′′ = (v3, v2)
with guard sets Γ′ and Γ′′, such that the subproblems
(e′,Γ′) and (e′′,Γ′′) are both solvable in a way that stays
valid when we cover triangle ∆(v1, v3, v2) by guard set Γ.
(It is straightforward to see the necessary relationship
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between Γ, Γ′ and Γ′′: when crossing a shadow edge, the
covering guard set must change by the corresponding
guard; when crossing any other shadow chord, it must
stay the same.)

The recursion terminates with a feasible result, if and
only if there is a clockwise polygon edge e withB(e,Γ) =
1, i.e, a subproblem (e,Γ) for which Pi(e) = P , i.e.,
B(eΓ) := 1. Conversely, it is straightforward to see that
any feasible result implies that a feasible solution will
be found.

Additional Objective Functions. It is not hard to see
that the dynamic-programming approach can be ex-
tended to computing not just any 2-colorable guard set,
but also one that is optimal with respect to an objective
functions. In the following, we state this for some of the
more interesting ones; of course others exist.

Corollary 4.7 For a simple polygon P with n vertices
and a set L of ` candidate locations for guards, we can
compute in polyomial time a 2-colorable guard set that
is optimal with respect to one of the following objectives.

• Minimize/maximize the number of guards.

• Minimize/maximize the largest/smallest visibility
region.

• Minimize/maximize the average area of visibility
regions.

• Minimize/maximize the largest/smallest overlap
between visibility regions.

• Minimize/maximize the total overlap between visi-
bility regions.

This can be done by replacing the Boolean function
B and its update rule by an appropriate objective func-
tion; for average values, subproblems can be extended
appropriately.

4.2 Many Colors

NP-hardness. Our proof of NP -hardness of the gen-
eral CAGP for simple polygons is based on a reduction
from computing a minimum-cardinality set of points for
covering a given set of lines; this auxiliary problem is
easily seen to be NP -hard by geometric duality applied
to a result of Megiddo and Tamir [14], who showed that
it is NP -hard to determine the minimum number of lines
to cover a set of points in the plane.

Theorem 4.8 It is NP-hard to determine the chro-
matic number of a simple polygon, even for arbitrary
guard positions.

Figure 9: NP -hardness of the general CAGP for simple
polygons: A minimum-color guard cover of the spike
box (red) corresponds to a minimum-cardinality point
cover of a set of lines (blue).

Proof. Refer to Figure 9. For a given set of lines, con-
struct a “spike box”, which is formed by a square that
contains all intersection points of the lines, and has two
narrow niche extensions for each line, one at either inter-
section with the square. Note that the visibility regions
of any two points in the spike box overlap; thus, mini-
mizing the number of colors is equivalent to minimizing
the number of guards. Now any guard cover corresponds
to a point cover of the lines; conversely, any line cover
can be converted to a guard cover of the spike box: if
there is a guard placed in a niche, replace it by one
inside the square. �

Approximation. On the positive side, we can estab-
lish an O(log(χG(P )))-approximation algorithm for the
CAGP in simple polygons with a discrete set of candi-
date locations.

Theorem 4.9 For a simple polygon P with a set
L of ` candidate guard locations, we can find an
O(χG(P ) log(χG(P )))-colorable guard set in polynomial
time.

The algorithm uses greedy set cover. In each iter-
ation, we use dynamic programming to find an inde-
pendet set of guard positions that covers a maximum
number of uncovered cells in the overlay of all visibility
polygons V(g) for g ∈ L.
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5 Conclusion

A number of open problems remain. These include
the complexity of the CAGP for simple polygons with
χG(P ) = 2 without fixed a discrete set of guard loca-
tions as well as the complexity for χG(P ) = 3 with a dis-
crete candidate set. Note that the latter remains open
for any fixed χG(P ) = k, as the NP -hardness proof by
Erickson and LaValle [9] requires large χG(P ). Among
the other open questions for fixed guard locations is the
complexity of determining the chromatic number of a
given guard set in a simple polygon; the claim by Er-
ickson and LaValle stated in [9] that this problem has a
polynomial solution is still unproven, as the correspond-
ing conflict graph does not have to be chordal: this can
be seen from the n/2 black locations at the spikes in
Figure 1.
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Facets for art gallery problems. In Proceedings of the
19th International Conference on Computing and Com-
binatorics (COCOON), volume 7936 of LNCS, pages
208–220. Springer, 2013.

[11] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.
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