
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Minimum Dilation Triangulation: Reaching Optimality Efficiently

Aléx F. Brandt∗ Miguel M. Gaiowski∗ Cid C. de Souza∗ Pedro J. de Rezende∗

Abstract

Let G(P) = (P,E) be the geometric graph associated
to a given set P of points in the plane, i.e., the com-
plete graph whose vertex set is P and whose edges have
weights defined by the Euclidean distance between their
endpoints. On a planar triangulation of P , T ⊆ G(P),
the dilation of a pair of points i, j ∈ P is the ratio be-
tween the length of the shortest path between i and j
in T and their Euclidean distance. The dilation of T is
the maximum dilation between the pairs of points in P .
The Minimum Dilation Triangulation Problem (mdtp)
asks for a triangulation of P with smallest dilation. We
developed an exact algorithm that combines an efficient
heuristic, a set of preprocessing routines that exploit
geometric properties of the problem (using the primal
bound given by the heuristic) and an integer program-
ming model for the mdtp. We report on computational
experiments in which, for the first time, instances of
up to 70 points have been solved to proven optimality.
The impact of the heuristic and the preprocessing on
the algorithm’s performance are demonstrated through
a careful analysis of the results.

1 Introduction

Given a set P of points in the plane, consider the com-
plete graph G(P) = (P,E) whose vertex set is P and
whose edges have weights defined by the Euclidean dis-
tance between their endpoints.
Dilation. On any spanning subgraph G′ of G(P), the
dilation ρG′(i, j) of a given pair of distinct vertices i, j ∈
P is the ratio between the length of a shortest path
connecting them in G′, πG′(i, j), and their Euclidean

distance, dij :
|πG′ (i,j)|

dij
. Non connected pairs of vertices

are said to have infinite dilation. The dilation1 of G′ is
the maximum dilation between pairs of points in P :

ρ(G′) = max
i,j∈P
i 6=j

(
|πG′(i, j)|

dij

)
(1)

The Minimum Dilation Triangulation Problem
(mdtp) asks for a triangulation of P with minimum
dilation. While the complexity of this problem remains
open, it is believed to be NP-hard. This intuition derives

∗Institute of Computing, University of Campinas,
Campinas, Brazil, {lexbrandt|miggaiowski}@gmail.com,
{rezende|cid}@ic.unicamp.br

1Stretch factor, spanning ratio and distortion are alternative
nomenclature for dilation (see [12] for a historical context).

from studying the following closely related problems.
Let t > 1 be a real number. A t-spanner is a spanning
subgraph of G(P) with dilation at most t. Klein and
Kutz, in [8], show that computing a t-spanner with the
minimum number of edges is NP-hard. On the other
hand, computing the spanning tree with minimum di-
lation, even when edge crosses are not allowed, is also
NP-hard, as established by Cheong et al., in [3]. Further
complexity results are given in [6].
Related work. As far as settling tight bounds for
the dilation of triangulations, an interesting result was
shown by Xia, in [15], who proved that the Delaunay
triangulation has a stretch factor of at most 1.998 for
any point set in the plane. While no one has been able
to guarantee a better upper bound for the minimum
dilation of triangulations, a lower bound on the worst
case might provide some useful information. According
to [11], every triangulation of the vertices of a regu-

lar 21-gon has spanning ratio at least
√

2.005367532 ≈
1.41611. It is also of interest to investigate lower bounds
for the Delaunay triangulation given its significance.
Bose and Devroye, in [1], construct a point set in convex
position, for which the Delaunay triangulation has di-
lation at least 1.581. For points not in convex position,
the corresponding lower bound is 1.5932 [16].

In regard to efforts to solve the mdtp, Mulzer
presents, in [11], a 1 + O(1/

√
log n) approximation al-

gorithm for the mdtp for the vertices of an n-gon. An
interesting exclusion region rule, i.e., a local property
that guarantees that an edge cannot be part of a mini-
mum dilation triangulation is presented in [9].

Klein, in [7], developed an applet that implements
two algorithms to enumerate all possible triangulations
in order to find one of minimum dilation. Some strate-
gies are available to be applied as tools to reduce the
set of candidate triangulations and speed up the search.
One of the available reductions is based on the exclu-
sion region mentioned above. Although this applet is
a nice visualization tool, the fact that it produces an
(almost) complete enumeration limits its applicability
to no more than a very small number of points. Re-
cently, some metaheuristics and a simulated annealing
algorithm were presented in [4] for solving the mdtp.
Motivation and Our Contributions. Extensive
studies on general triangulations have been prompted
by applications to areas as diverse as wireless networks,
robotics and computer graphics (cf. [12]). Although sig-
nificant effort has been made to establish theoretical
results on geometric structures akin to triangulations,
very little is known in regard to (sub) optimal solutions

26th Canadian Conference on Computational Geometry, 2014

of the mdtp. Our study is, therefore, motivated by
the unknown complexity of mdtp and the belief that
the search for optimal solutions and their properties is
likely to lead to a better understanding of the problem
and to provide insight for better algorithms.

This work presets an exact algorithm for the mdtp
that is shown to be very efficient in practice. It relies
on a powerful metaheuristic, geometric properties of the
problem and a new mixed integer linear program (milp)
model. To the best of our knowledge, this is the first
formulation for the mdtp in the literature. We show,
through experimental tests, that the high quality solu-
tions produced by the metaheuristic are essential to the
efficiency of the method. The heuristic solution allows
state-of-the-art milp solvers to prune the enumeration
tree of the branch-and-bound algorithm early and pro-
vides an incumbent solution to the solver.

However, the most expressive accomplishment comes
from exploring the primal bound to exploit the geome-
try of the problem in order to critically reduce the model
size using preprocessing routines. The results and anal-
ysis of several tests over a benchmark featuring 210 in-
stances of up to 70 points are presented to assess the
performance of our algorithm. Also, to allow for fu-
ture comparisons with other works, our benchmark is
made publicly available at [2]. Finally, we should notice
that most milp solvers do not support radical arith-
metic. Thus, we consider the distances between points,
rounded to a fixed precision, as part of the input and
optimality is proven relative to them.
Text Organization. The next three sections are ded-
icated to describing each of the fundamental blocks of
our exact algorithm: the problem reduction by prepro-
cessing routines, the grasp metaheuristic and the milp
formulation for the mdtp. In Section 5, the details
of the benchmark, the computational environment and
the tests performed are described, followed by their re-
sults and a detailed analysis. Section 6 summarizes our
progress and points to future directions of our work.

2 Metaheuristic GRASP

Greedy Randomized Adaptive Search Procedure (grasp)
is a metaheuristic widely applied to combinatorial opti-
mization problems. Since it is reported to produce high
quality solutions within a short computing time [13] we
employ it to find good primal bounds for the mdtp. We
assume that the reader is familiar with the workings of
a basic grasp algorithm, which consists of a construc-
tion phase and a local search phase, repeated for an a
priori fixed number of iterations, before the best solu-
tion found is returned. To explain its use for the mdtp,
we limit ourselves to describing these two phases.

Despite its name, our construction phase resembles
a “destruction & repair” procedure applied to the De-
launay triangulation (dt). Recall that, generically, for
a minimization problem, the goal of the construction
phase is to compute along all the iterations a set of

(preferably) distinct solutions, all of which having small
costs. In the context of grasp, the diversity of the re-
sulting set is obtained through some randomization of
a greedy routine. In the mdtp case, our experiments
showed that the dt often has a dilation that is very
close to the optimum. So, at each iteration of grasp,
we generate new triangulations starting from the dt.
The process consists of removing from it k edges at ran-
dom, one at a time, followed by a randomized greedy
strategy that iteratively inserts another k edges to the
structure creating a new triangulation. Let us look into
this process in more detail.

Let G′ denote the graph associated to the current
partial solution, initially representing the dt. Moreover,
suppose that, throughout the iterations, for any two
points i and j in P , the algorithm keeps track of the set
of points in P −{i, j} that belong to the ellipse of foci i
and j and major axis equal to dij times the best primal
bound available. We can now establish conditions for an
edge of the dt to be a candidate for removal. Firstly,
the removal must not disconnect G′. Secondly, the edge
cannot be part of the convex hull of P . Lastly, the edge
must not have been fixed by the empty ellipse case of
the edge fixing routine presented later, in Section 4.

After k such edges have been removed from the trian-
gulation, the next step is to insert k new edges into the
current partial solution so as to obtain a new triangu-
lation. The set of candidates for insertion is composed
of the diagonals of all bounded faces of G′. The dila-
tion resulting from the addition of each of the edges in
this set to the current partial solution is computed us-
ing the algorithm discussed in Farshi et al. [5]. Finally,
we introduce further randomization to this process by
selecting, according to a uniform distribution, an edge
that leads to a dilation that is at most α times larger
than the best possible one. In our implementation of
the construction phase, the values of k and α were set
to n/2 and 0.8, respectively.

We now turn our attention to the local search phase.
Consider two triangles abc and dbc in a triangulation T
that share an edge bc. If the union of these triangles
forms a convex polygon, we say that bc is flippable. A
flip operation on T consists of replacing edge bc by ad,
giving rise to a new triangulation. We say that two tri-
angulations are neighbors if one can be obtained from
the other by a single flip. The working of our local
search phase should now be clear. Given the current
triangulation T , the procedure traverses the edges of
T checking whether they are flippable and, when this is
the case, it computes the dilation of the triangulation T ′

obtained by flipping that edge2. In our implementation,
we adopt the first improvement strategy, i.e., whenever
the dilation is reduced, T is updated with T ′, and the
local search is restarted with this new solution. The pro-
cess is halted when T corresponds to a local minimum
with respect to flip neighborhood.

2Note that there is a unique flip associated to a flippable edge.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

3 Mixed integer formulation

Let a, b be any two vertices of P , from G(P) = (P,E).

Define a directed graph ~Gab = (P,Aab), where, for every
edge {i, j} ∈ E, both arcs (i, j) and (j, i) are in Aab.

We now describe how we use these graphs to build a
directed multicommodity flow formulation to model the
mdtp. Given a pair of vertices a, b ∈ P , pick an arbi-
trary order, say, (a, b), and consider that an exclusive
unit of flow (commodity) is sent from a to b. This unit
of flow is allowed to go through any directed arc (i, j)

in ~Gab. The binary (flow) variable xabij for an arc (i, j)

of ~Gab indicates whether the path from a to b uses the
edge {i, j} of G. In this way, we can identify a path
on the triangulation for each pair of vertices, and deter-
mine its length by simply adding the costs of its edges.
Also, notice that the edge {i, j} is in the optimal planar
triangulation computed by the model if and only if the
variable xijij is set to one.

From Euler’s formula, it follows that any triangula-
tion of a set P of n points in the plane has φ(P) =
3n − 3 − h edges, where h is the number of vertices of
the convex hull of P . Conversely, any set of φ(P) edges
from the geometric graph that forms a planar graph
determines a triangulation of P . Clearly, φ(P) can be
efficiently computed a priori. Then, the mixed integer
linear program below is a formulation for the mdtp:

min ρ (2)∑
{i,j}∈E

xijij = φ(P), (3)

xijij + xklkl ≤ 1, ∀{i, j}, {k, l} ∈ E, ij ∩ kl 6= ∅, (4)

xabij + xabji − x
ij
ij ≤ 0, ∀{i, j} ∈ E, ∀a, b ∈ P, (5)∑

i∈P\{j}

xabij −
∑

i∈P\{j}

xabji = dj , ∀j, a, b ∈ P, (6)

∑
(i,j)∈A

dij
dab

xabij − ρ ≤ 0, ∀a, b ∈ P, (7)

where in (6), dj is set to 1, −1 or 0, when j = a, j = b
and a 6= j 6= b, respectively.

Inequalities (3) ensure that the number of edges in-
cluded is necessary and sufficient to form a valid triangu-
lation. Constraints (4) prevent edge crossings. The flow
conservation constraints (6), enforce every commodity
to flow through a path from the source node to the
sink. This allows the calculation of the path length and
a bound on its dilation with inequalities (7). Coupling
the triangulation and the paths sub-models, constraints
(5) force the necessary edges to connect each pair of
vertices in the triangulation.

It is important to note that the the path joining a pair
of vertices in an arbitrary integer solution might not be
the shortest or even simple, since there is no restriction
on the degrees of the vertices. The path connecting a
pair of maximum dilation in an optimal solution must

be simple and the shortest possible one in the triangu-
lation, otherwise, it could be shortened and the dilation
would be reduced.

4 Problem reduction

The major drawback of the milp formulation given in
Section 3 is that its size grows too fast with the number
of points in P . So, it is important to find ways to elim-
inate variables and even constraints from this formula-
tion, in order to facilitate the computation of the model.
The routines described in this section are designed to
achieve this goal. They all assume that a triangulation
is known whose dilation is given by ρH ≥ 1.0.

Recall that the milp model contains two sets of binary
variables. Let a, b, i and j be four distinct vertices in
G(P). The first set describes which edges are present in
an optimal triangulation T ∗ and correspond to variables
of the form xabab. The second set of variables identifies
the arcs that represent a path joining a and b in T ∗

and having dilation not greater than the optimum ρ.
These are the variables of the form xabij , which may be
interpreted in terms of the quantity of commodity ab
that flows in arc ij. Essentially, given that ρ ≤ ρH, the
preprocessing routines fix some of these binary variables
to either 0 or 1 in an optimal solution and propagate
this information to other x variables in an attempt to
fix them, too. Initially, we identify four basic scenarios
where this process occurs.

Firstly, consider what happens when a variable xijij is

set to 0, meaning that the edge {i, j} is discarded from
an optimal triangulation. Due to constraints (5), this
setting also forces all flow variables of the form xabij and

xabji , for any commodity ab, to become null. Before we
discuss the opposite case, where the edge {i, j} is known
to be in the optimal solution, consider what occurs when
the arcs of a path connecting two vertices a and b are
forced to take part of the optimal triangulation. Clearly,
in this case, all flow variables of the form xabij associated
to arcs not belonging to the path must be set to 0.

Now, we analyze the case where the flow xabij in an
arc (i, j) is required to take value 1, i.e., we impose that
the arc be on the path from a to b. By constraints (5),
the commodity must flow in a single direction between
any pair of vertices, therefore, the opposite arc (j, i)
must be discarded from the optimal solution. As also
enforced by these constraints, an arc can be used only
if the respective edge is part of the solution. Thus, the
corresponding edge variable xijij must be set to 1.

Finally, we examine the case where the edge {i, j} is
identified as being part of the solution. This gives rise
to two types of propagation. The first comes from the
observation that the path between i and j is completely
defined and the associated propagation described above
applies. The planarity restrictions (4) provide the sec-
ond model reduction. Once an edge is included in the
solution, no other edge crossing it, except possibly on

26th Canadian Conference on Computational Geometry, 2014

its extremities, can be used. As a consequence, the vari-
ables corresponding to these edges are set to 0 and, as
seen before, this leads to further propagations.

We now describe the routines we use to identify the
edges and arcs whose variables can be set to 1 or 0,
triggering the propagations discussed above to expand
the model reduction.
The ellipse-based elimination routine. Let T
be a planar triangulation and suppose u is a vertex
on the path πT (a, b), a 6= u 6= b, i.e., πT (a, b) =
πT (a, u) ∪ πT (u, b). The dilation of the pair {a, b} in

T is given by ρT (a, b) = |πT (a,b)|
dab

. From the trian-

gle inequality, πT (a, u) ≥ dau and πT (u, b) ≥ dub and

ρT (a, b) ≥ dau+dub

dab
. Therefore, if T has stretch factor at

most ρH, the following constraint must be satisfied:

dau + dub
dab

≤ ρT (a, b) ≤ ρH , (8)

which means that u must be in the ellipse with foci a
and b having a major axis of length ρH · dab. In other
words, given an upper bound ρH for the stretch factor
and a pair of vertices a and b, only the points in the
ellipse defined by (8) can be on the path joining a and b
in a solution with dilation not exceeding ρH. This idea
has also appeared in [8] and [10].

It is important to note consequences of these facts for
the model reduction. Observe that all O(n) arcs enter-
ing or leaving any discarded vertex are precluded from
being on the path between a and b and may, therefore,
be removed from the model, i.e., the corresponding vari-
ables may be set to 0.
The edge fixing routine. Our program applies two
strategies to identify edges that must be present in an
optimal triangulation. The first takes advantage of the
maximality property of planar triangulations. Basi-
cally, if all the edges crossing the edge {i, j} have been
dropped from being in the optimal triangulation, {i, j}
must be part of it. Naturally, the propagations dis-
cussed earlier may result in further reductions.

The other strategy consists in examining whether the
settings done so far during the process constrain the
connection between two vertices to a unique path. This
can be done by a simple procedure and, in the posi-
tive case, we apply the correspondent propagations de-
scribed previously.

An important remark concerns the fixing of an edge
caused by the arguments used in the ellipse-based elim-
ination routine. To see that, consider the case where no
vertices remain in the ellipse other than its foci, called
the empty ellipse case. Obviously, the only way left to
link the vertices representing the foci is through the di-
rect arc joining them. Hence, this variable is set to 1.

5 Computational Results

This section presents the computation tests we per-
formed to assess the proposed algorithm. The bench-

mark of instances and the computing environment are
described in the next paragraphs. Later, we specify each
of the configurations of the solver we ran, and analyze
the results they yielded.
Instances. Our benchmark contains 210 instances, in
total, divided into 7 groups of 30. Each group is formed
by instances of a fixed size n, for n ∈ {10, 20, . . . , 70},
whose elements are points with coordinates generated
uniformly in a 10 × 10 square and rounded to the 6th
decimal place. Since most state-of-the-art milp solvers
do not support arithmetic with radicals, we calculated, a
priori, the distances between every two points, rounded
to the 6th decimal place, consider these values as part of
the input, and prove optimality relative to them. Hence,
we are actually solving a rounded version of the mdtp.
The entire benchmark is available at [2].
Computing Environment. The results presented in
this section were obtained using three identical ma-
chines featuring Intel R© Xeon R© CPU E3-1230 V2 @
3.30GHz (4 cores and 8 threads) processors and 32GB of
RAM while running Ubuntu 12.04, g++ 4.6.3 (c++0x
standard) and ibm R© ilog R© cplex R© Optimization Stu-
dio 12.5.1. The solver was allowed to use all 8 threads
simultaneously for at most 30 minutes per test. The
cgal [14] and boost libraries provided, respectively,
useful tools for geometric computation and graph rep-
resentation.
Results. We begin by assessing the solutions delivered
by our grasp. The quality of such solutions is crucial
for the performance of the exact algorithm as it affects
the reduction of the milp model and also the primal
information given as input to the solver.

As mentioned in Section 2, grasp uses the Delaunay
triangulation as a starting point to produce random tri-
angulations. The natural question is: on average, how
close is the dilation (ρdt) of the dt to the optimum
(ρ∗)? For an insight on this issue, consider the data in
Table 1. There, we give the minimum, average, stan-
dard deviation and maximum values of the percentage
gap between ρdt and ρ∗ for each group of instances in
our benchmark. The last column exhibits how many of
the dts (out of 30) are optimal, i.e., satisfy ρdt = ρ∗.

Table 1: Statistics for Delaunay triangulation.

Size
Delaunay Triang. Gap (%) # Opt

SolsMin Avg Std Dev Max

10 0.00 1.66 3.08 11.88 17
20 0.00 1.50 1.99 5.79 12
30 0.00 1.63 2.09 6.61 13
40 0.00 1.12 1.53 6.28 12
50 0.00 1.65 2.12 7.96 12
60 0.00 2.12 1.90 5.98 7
70 0.00 1.76 2.02 6.95 8

As it can be seen, ρdt is usually very close to ρ∗

and, therefore, a good upper bound for preprocessing.
As a consequence, dt becomes a natural candidate for
an incumbent solution for the milp solver. From these
results, one may wonder whether a more complicated
and time consuming heuristic such as grasp is needed.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

To shed some light on this issue, we note that, with
grasp, all optima have been found whereas, for the
dt, the fraction of optima found always stayed below
57% and, even worse, it decreases with the size of the
instances. Hence, the advantage of using grasp instead
of the dt to produce primal information for the milp
solver is evident. Besides, grasp clearly emerges as an
excellent way to compute high quality mdtp solutions.

One of the main purposes of generating primal infor-
mation is to obtain reductions on the milp model to
sizes that are manageable by the solver. Due to space
limitations, we constrain our discussion about this as-
pect to the following observations. The percentage of
variables removed from instances with 70 points reached
95.7% on average. Although at first glance this statistics
looks impressive, the 4.3% remaining variables amounts
to 505,096 of them, which still constitutes a huge model.
It is also noticeable that, while the average number of
removed variables increases with the number of points,
the percentage of mandatory edges over the final num-
ber in the solution decreases from 90%, for instances
with 10 points, to 60% for the ones with 70 vertices.

Next, we evaluate how much each piece of primal in-
formation contributes to improve the efficiency of our
exact algorithm. To this end, six different variants of
the milp solver were tested. These variants are char-
acterized by three aspects: (i) the method employed to
produce a valid primal solution, if any; (ii) the applica-
tion or not of the geometric preprocessing routines de-
scribed in Section 4 and (iii) the usage or not of the pri-
mal information by the solver. Accordingly, the solver
variants are identified by triples of characters, one for
each of the aforementioned aspects. The first charac-
ter identifies the primal method, where G stands for the
grasp solution, D for the dt and specifies that no pri-
mal solution is computed. When the preprocessing rou-
tines are applied, the second character is P, otherwise it
is . Finally, the third character is S whenever the milp
solver is fed with the primal solution described in the
first element of the triple. Analogously, the character
means that no solution is given to the solver.

It is well known that primal solutions and bounds
may be used to speed up the running time of enumera-
tion algorithms. In the case of milp, the availability of
such data allows state-of-the-art solvers, such as cplex,
not only to prune the search tree but also to apply alge-
braic preprocessing routines to reduce the formulation.
Two variants used in our experiments directly benefit
from these ideas, namely, G S and D S. In contrast, we
also tested the stand alone variant in which cplex
receives nothing but the complete model of Section 3.
By comparing , G S and D S, we can measure to
what extent the solver takes advantage of the knowl-
edge brought by the grasp solution and the dt. No-
tice that in G S and D S, only algebraic preprocessing
is performed by cplex. For a better appreciation of
our contribution, these variants must be compared to
others where our geometric preprocessing is executed.

Table 2: Statistics for six variations of the milp solver.

Size Var # Opt
Sols

Avg Exec
Time (s)

Feas
Sols

% Avg
Gap

Wins

10 GPS 30 0.12 0 – 0
GP 30 0.13 0 – 0
DPS 30 0.03 0 – 30
G S 30 0.39 0 – 0
D S 30 0.29 0 – 0

30 0.36 0 – 0
20 GPS 30 1.18 0 – 4

GP 30 1.25 0 – 0
DPS 30 0.84 0 – 26
G S 30 34.94 0 – 0
D S 30 43.22 0 – 0

30 148.74 0 – 0
30 GPS 30 5.86 0 – 6

GP 30 6.35 0 – 3
DPS 30 6.17 0 – 21
G S 7 276.06 23 7.3 0
D S 2 306.13 28 8.3 0

0 – 3 98.5 0
40 GPS 30 24.26 0 – 10

GP 30 29.36 0 – 8
DPS 30 54.42 0 – 12
G S 0 – 30 24.2 0
D S 0 – 30 25.1 0

50 GPS 30 73.13 0 – 11
GP 30 112.50 0 – 7
DPS 30 207.24 0 – 12

60 GPS 30 244.42 0 – 18
GP 29 584.75 1 75.7 5
DPS 22 682.01 8 4.6 7

70 GPS 30 655.79 0 – 21
GP 15 1278.36 9 59.3 2
DPS 14 879.60 16 3.7 7

Hence, the remaining variants chosen to be part of our
experiments are GPS, DPS and GP .

The results obtained by all milp configurations are
summarized in Table 2. A solver variant (second col-
umn) appears in a row corresponding to an instance
size (first column) until it cannot prove optimality for
any instance of this size (i.e., the value in the third col-
umn is null). The fourth column shows the average run-
ning time taken by the respective variant to achieve the
optimal solutions reported in the previous cell (in this
same row). The fifth column shows the number of in-
stances for which, although optimality was not proved,
the solver found a feasible solution (possibly the incum-
bent one). The average gaps of the latter solutions are
displayed in the sixth column. The seventh column gives
the total number of instances where the variant proved
optimality quicker than its competitors.

Confirming the common knowledge, the configura-
tions G S and D S largely outperform . So, primal
data are crucial to improve the solver’s efficiency. As
we have already seen in the beginning of this section,
the dilation of the grasp solution is typically smaller
than ρdt. The data reported in the fourth column re-
veal how much the algorithm’s running time benefits
from the better information generated by grasp.

26th Canadian Conference on Computational Geometry, 2014

To further emphasize the importance of our geometric
processing we examine the results obtained by GP and
G S. Of course, the variant GP is not really interesting
in practice as it is not reasonable to produce primal in-
formation and not make it available to the solver. The
GPS would be the obvious choice in this case. However,
by comparing GP and G S, one immediately sees that
the preprocessing routines are more relevant to the algo-
rithm’s efficiency than the initial solution itself. In fact,
GP is able to solve instances which are at least twice as
large as those treated by G S. Another evidence of the
strength of the preprocessing appears when we observe
that GP solves almost as many instances as GPS.

The last lines on Table 2 suggest that GPS is the win-
ner among all solver variants we experimented with,
while DPS ranks second (recall that we consider GP as an
anomalous version of GPS). However, the results for the
smaller instances demand a better analysis. Again, let
n denote the instance size. Recall that, for the instance
sizes considered here, the time consumed by cgal to
compute the dt is negligible. In this way, the time taken
by grasp, which also includes the computation of the
dt, does not pay off for instances with 20 points or less.
However, as the instances get larger (n ≥ 30), the aver-
age running times of GPS are always smaller than those
of DPS. The advantage of using grasp becomes even
more evident when we compare the numbers of optima
found and of wins of GPS and DPS.

6 Conclusions and Future Directions

In this paper, we presented an association of three com-
ponents that yields an efficient algorithm to compute
exact solutions for the Minimum Dilation Triangulation
Problem. They are: a grasp metaheuristic, a power-
ful geometric preprocessing and a mixed integer linear
program model. Computational tests showed that our
method is a viable option to solve instances with up
to 70 points to proven optimality in no more than 30
minutes on a standard computer. Essentially, this per-
formance was due both to exploring relevant geometric
information that culminates in a significant downsizing
of the milp model and to the employment of grasp.

Improvements to the method are expected from fu-
ture investigation of the following issues: (a) the use of
grasp and geometric preprocessing in all nodes of the
enumeration tree and not only in the root node; (b) the
customization of the choice of branch variable based on
geometric properties; and (c) the use of an alternative
milp to model planar triangulations.
Acknowledgments. This research was supported by
grants from cnpq #477692/2012-5, #302804/2010-2,
#139107/2012-6, fapesp #2012/17965-6 and Faepex/
unicamp.

References

[1] P. Bose, L. Devroye, M. Löffler, J. Snoeyink, and
V. Verma. Almost all Delaunay triangulations have

stretch factor greater than π/2. Computational Ge-
ometry, 44(2):121 – 127, 2011.

[2] A. F. Brandt, M. de M. Gaiowski, P. J. de Rezende,
and C. C. de Souza. The Minimum Dilation
Problem project, 2014. www.ic.unicamp.br/∼cid/
Problem-instances/Dilation.

[3] O. Cheong, H. Haverkort, and M. Lee. Comput-
ing a minimum-dilation spanning tree is NP-hard.
Comput. Geom., 41(3):188–205, Nov. 2008.

[4] M. Dorzán, M. Leguizamón, E. Mezura-Montes,
and G. Hernández-Peñalver. Approximated al-
gorithms for the minimum dilation triangulation
problem. J. of Heuristics, 20(2):189–209, 2014.

[5] M. Farshi and J. Gudmundsson. Experimental
study of geometric t-spanners. J. Exp. Algorith-
mics, 14:3:1.3–3:1.39, Jan. 2009.

[6] P. Giannopoulos, R. Klein, C. Knauer, M. Kutz,
and D. Marx. Computing geometric minimum-
dilation graphs is NP-hard. Int. J. Comput. Ge-
ometry Appl., 20(2):147–173, 2010.

[7] A. Klein. Effiziente Berechnung einer dilationsmin-
imalen Triangulierung, 2006. MSc., Univ. Bonn.

[8] R. Klein and M. Kutz. Computing geometric
minimum-dilation graphs is NP-hard. In M. Kauf-
mann and D. Wagner, editors, Graph Drawing, vol-
ume 4372 of LNCS, pages 196–207. Springer, 2007.

[9] C. Knauer and W. Mulzer. An exclusion region for
the minimum dilation triangulation. In Proc. of
the 21st European Workshop on Comput. Geome-
try, pages 33–36, Eindhoven, Holland, 2005.

[10] C. Knauer and W. Mulzer. Minimum dilation tri-
angulations, 2005. Tech. Rep., Freie Univ. Berlin.

[11] W. J. H. Mulzer. Minimum dilation triangulations
for the regular n-gon, 2004. MSc., Fachbereich
Mathematik und Informatik, Freie Univ. Berlin.

[12] G. Narasimhan and M. Smid. Geometric Spanner
Networks. Cambridge Univ. Press, New York, 2007.

[13] M. Resende and C. Ribeiro. Greedy randomized
adaptive search procedures: Advances, hybridiza-
tions, and applications. In Handbook of Meta-
heuristics, Int. Series in Oper. Res. & Man. Science,
pages vol 57, 219–249. Springer, 2009.

[14] The CGAL Project. CGAL User and Reference
Manual. CGAL Editorial Board, 4.4 edition, 2014.

[15] G. Xia. Improved upper bound on the stretch factor
of Delaunay triangulations. In Proc. of the 27th
Annual Symposium on Computational Geometry,
SoCG ‘11, pages 264–273, New York, 2011.

[16] G. Xia and L. Zhang. Toward the Tight Bound of
the Stretch Factor of Delaunay Triangulations. In
Proc. of the 23rd CCCG, Toronto, 2011.

	Introduction
	Metaheuristic GRASP
	Mixed integer formulation
	Problem reduction
	Computational Results
	Conclusions and Future Directions

