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Non-Shellable Drawings of Kn with Few Crossings
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Abstract

In the early 60s, Harary and Hill conjectured H(n) :=
1
4bn2 cbn−12 cbn−22 cbn−32 c to be the minimum number of
crossings among all drawings of the complete graph Kn.
It has recently been shown that this conjecture holds for
so-called shellable drawings of Kn.

For n ≥ 11 odd, we construct a non-shellable family
of drawings of Kn with exactly H(n) crossings. In par-
ticular, every edge in our drawings is intersected by at
least one other edge. So far only two other families were
known to achieve the conjectured minimum of crossings,
both of them being shellable.

1 Introduction

The Harary-Hill Conjecture [4] states that the minimum
number of crossings in a drawing of the complete graph
Kn in the plane is
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Essentially, only two families of drawings of Kn (be-
sides sporadic examples or slight modifications) were
known to achieve H(n) crossings: Hill’s construc-
tions [4], which are also called cylindrical drawings
(see Figure 1), and the Blažek-Koman constructions [3],
which are 2-page book drawings (see for example Fig-
ure 2).

Very recently, shellability was defined [1] using the
cells of a drawing of a graph (an embedding). A
drawing D of Kn is s-shellable if there exists a se-
quence v1, v2, . . . , vs of the vertices and a cell F of D
with the following property. For 1 ≤ i < j ≤ s,
let Dij be the drawing obtained from D by removing
v1, v2, . . . vi−1, vj+1, vj+2, . . . , vs; then for all 1 ≤ i <
j ≤ s, the vertices vi and vj are incident to the cell of
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Figure 1: Harary-Hill drawings H10 and H12.

Dij that contains F . The sequence v1, v2, . . . , vs is an
s-shelling of D. In particular, for s ≥ 2, an s-shellable
drawing of Kn must have a cell with at least the two
vertices v1 and vs on its boundary.

Using this concept, in [1] the Harary-Hill Conjecture
has been proven when restricted to s-shellable drawings
of Kn with s ≥ bn2 c. For simplicity, such sets are called
shellable. Moreover, it has been shown that cylindrical
drawings are bn2 c-shellable and 2-page book drawings
are n-shellable. Thus, the Harary-Hill Conjecture holds
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Figure 2: Crossing optimal 2-page book drawings with
n = 5, 6 vertices.

when restricted to cylindrical drawings and to 2-page
book drawings [2].

Shellability can be seen as the first combinatorial clas-
sification to identify drawings for which the Harary-
Hill conjecture provably holds. A natural question is
whether all drawings of Kn with H(n) crossings are s-
shellable for some s ≥ bn2 c, or if this is at least the case
for graphs of sufficient large cardinality.

In this paper, we make the first attempt to go beyond
shellability, and answer both questions in the negative
by presenting a new family of drawings of Kn with ex-
actly H(n) crossings that are non-shellable.

In the next section, we first present the basics of one
existing family of drawings with H(n) crossings, namely
the Harary-Hill cylindrical drawings. Then we give the
details of our new constructions and show that it also
has H(n) crossings. In Section 3, we present a clas-
sification of all essentially different (that is, all weak
isomorphism classes of) crossing optimal drawings for
small sets and relate them to our general constructions.

2 The new family

For each m ≥ 3, we construct a drawing Nm,m,1 of
K2m+1 with exactly H(2m + 1) crossings. These draw-
ings have the an additional property that for m ≥ 5,
every edge of Nm,m,1 participates in at least one cross-
ing. In other words, each cell determined by Nm,m,1

has at most one vertex on its boundary, and thus
Nm,m,1 is non-shellable. Moreover, in Section 2.4 we
give constructions for non-shellable drawings Nm,m,2

and Nm,m,3 for m odd. These drawings have H(2m+2)
and H(2m + 3) crossings, respectively.

We start by describing in detail the Harary-Hill draw-
ing of K2m.

2.1 The Harary-Hill drawing of K2m

In 1958, Anthony Hill constructed a drawing Hn of Kn,
for any positive integer n, with exactly H(n) crossings.
We describe in detail the drawing H2m, for m ≥ 3.
First, H2m is a good drawing, that is, a drawing in which
(i) edges do not self-intersect, (ii) any two incident edges

do not cross, (iii) any two vertex-disjoint edges cross at
most once, and (iv) all crossings of edges are proper.

The vertices of H2m are drawn as the vertices of
two regular convex polygons U = {u1, u2, . . . , um} and
V = {v1, v2, . . . , vm} (labeled clockwise), and both are
concentric with center w. U is larger than V , and they
are positioned in such a way that u1, w, and v1 are
collinear if m is odd, and u1, w, and the midpoint of
v1vm are collinear if m is even (see Figure 1).

The edges joining two vertices of V stay inside (or on
the boundary of) V , the edges joining two vertices of U
are outside (or on the boundary of) U , and the edges
joining vertices of U with vertices of V are outside V
and inside U . Finally, for each 1 ≤ i ≤ n, the triangle
viuiui+1 contains V . Here a triangle is the simple cy-
cle that is formed by the three edges viui, uiui+1, and
ui+1vi (this cycle is not self-intersecting as H2m is a
good drawing). All edges can be drawn so that they do
not pass through w.

To ease the presentation, we require that the edges
uivi and uiui+m/2 are in the right half plane spanned by
the directed line from ui to ui+m/2, for each 1 ≤ i ≤ m.

2.2 The construction of Nm,m,1

To construct the new drawing Nm,m,1 of K2m+1, we
start with the Harary-Hill drawing H2m of K2m and use
the center w of the two concentric m-gons as additional
vertex. We draw the edges from w to the other 2m ver-
tices as straight line segments. Finally, we redraw all
the edges of the form uivi such that they leave ui to the
outside of U , surround U (roughly half), and cross U
at the edge ub(m+1)/2cub(m+3)/2c. (If desired, we locally
modify the drawing slightly so that no three edges cross
at the same point.) Figures 3 and 4 show this con-
struction for m = 3, 4, 5, and 6. Note that while
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Figure 3: New family for n = 7, 9: N3,3,1 and N4,4,1.

for m ≤ 4, the drawing Nm,m,1 contains edges that
do not participate in any crossing, for m ≥ 5, every
edge is crossed by at least one other edge. This im-
plies that each cell of the drawing Nm,m,1,m ≥ 5, has
at most one vertex on its boundary and thus the draw-
ing is not s-shellable for any s ≥ 2. For m = 4, the
drawing N4,4,1 is in fact 9-shellable (with the 9-shelling
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Figure 4: New family for n = 11, 13: N5,5,1 and N6,6,1.

(w, v2, v1, u4, u3, v4, u2, u1, v3)), and thus the members
of our new family constitute non-shellable drawings for
n ≥ 11.

2.3 Counting the number of crossings in Nm,m,1

We start with H(2m) = m(m− 1)2(m− 2)/4 crossings
in H2m. In both drawings, H2m and Nm,m,1, we refer to
the edges in {uivi : 1 ≤ i ≤ m} as green (they are also
colored green in all figures). The crossings contribution
of these re-routed edges is addressed last.

First, consider the responsibility of w in Nm,m,1, that
is, the number of crossings in Nm,m,1 that involve the
vertex w. Note that none of the edges incident to w
crosses an edge ujuk, a green edge uivi, or another edge
incident to w.

We start by counting the number of crossings in which
the path v1wu1 (formed by the edges v1w and wu1) is
involved. The portion of v1wu1 contained between U
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Figure 5: Counting crossings between edges wu1 and
uivj : (top) For 3 ≤ j ≤ bm+1

2 c, vjuk crosses wu1 if
2 ≤ k ≤ j − 1. (bottom) For bm+3

2 c ≤ j ≤ m− 1, vjuk

crosses wu1 if j + 1 ≤ k ≤ m.

and V is crossed exclusively by edges that connect U
and V . More precisely, between U and V , wu1 crosses
exactly all edges {vjuk : 3 ≤ j ≤ bm+1

2 c, 2 ≤ k ≤ j − 1}
and {vjuk : bm+3

2 c ≤ j ≤ m − 1, j + 1 ≤ k ≤ m};
see Figure 5. The total number of these crossings is

bm+1
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The portion of v1wu1 inside (and on the boundary of) V
is crossed exclusively by edges that connect two vertices
of V . More precisely, these are all⌊

m− 1
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edges {vjvk : 2 ≤ j ≤ bm+1
2 c, bm+3

2 c ≤ k ≤ m}, plus, if
m is even, the edge v1v1+m

2
.

Now consider the path viwui for arbitrary i, 2 ≤
i ≤ m. If m is odd, then by symmetry, the number
of crossings in which viwui is involved is the same as
for v1wu1. If m is even, then the number is the same
for 2 ≤ i ≤ m/2, and one less for m/2 + 1 ≤ i ≤ m
(as then viwui is not crossed by vivi−m/2). Hence the
responsibility of w in Nm,m,1 is
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(if m is even),

which, by standard formula manipulation, can be
rewritten as

m

(
m− 1

2

)
+

m

2
(if m is even). (1)

Next we consider the crossings contribution of the
green edges in H2m and Nm,m,1, respectively. In H2m,
the edge u1v1 crosses exactly all edges {vjuk : 2 ≤ j ≤
m − 1, j + 1 ≤ k ≤ m}; see again Figure 5. As none
of the crossed edges is green and as, by symmetry, all
green edges are crossed by the same number of edges,
this gives a total of

m

m−1∑
j=2

(m− j) = m

(
m− 1

2

)
(2)

crossings with green edges in H2m.
For counting the number of crossings involving green

edges in Nm,m,1, we use the fact that H2m is “inside-out
symmetric”, in the sense that exchanging the roles of V
and U such that the cell containing w becomes the un-
bounded cell and vice versa, again gives the same draw-
ing. This implies that in Nm,m,1, the number of cross-
ings of the green edge u1v1 with non-green edges is the
same as the number of crossings of the path u1wv1 (with
the only exception that for m even, the path u1wv1
crosses v1vm/2 while the edge u1v1 does not cross the
according edge u1um/2). By symmetry of Nm,m,1, all
green edges of Nm,m,1 cross the same number of non-
green edges. Further, when m is odd, any two green
edges cross in Nm,m,1. If m is even, all but m

2 pairs of
green edges cross in Nm,m,1, namely, viui does not cross
vi+m/2ui+m/2. Hence, the total crossings contribution
of the green edges in Nm,m,1 is

m
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2
(if m is even). (3)

Finally, we can combine the number H(2m) of cross-
ings in H2m with the results from Equations (1), (2),

and (3): Altogether, regardless of the parity of m, there
is a total of
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4
m2(m− 1)2 = H(2m + 1)

crossings in Nm,m,1.

2.4 The drawings Nm,m,2 and Nm,m,3

For m odd, we now generate the drawing Nm,m,2 of
K2m+2 with exactly H(2m+2) crossings, and the draw-
ing Nm,m,3 of K2m+3 with exactly H(2m+3) crossings.

We start from Nm,m,1 and duplicate the vertex w to
obtain Nm,m,2; cf. Figure 6. We denote the new vertex
by w1. This can be done in such a way that there are
exactly m(m−1) crossings involving only edges incident
to w or w1 in Nm,m,2, the edge ww1 is not intersected
by any edge, and deleting w from Nm,m,2 gives a copy of
Nm,m,1. Then the responsibility of w1 in Nm,m,2 is the
responsibility of w in Nm,m,1 plus m(m − 1). That is,
Nm,m,2 has exactly H(2m+ 1) +m

(
m−1
2

)
+m(m−1) =

m2(m2 − 1)/4 = H(2m + 2) crossings.
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Figure 6: Drawing of N5,5,2.

Further, we duplicate w in Nm,m,2 to obtain Nm,m,3;
see Figure 7. We call this new vertex w2. This can be
done so that there are exactly m2 crossings involving
only edges incident to w or w2 in Nm,m,3, the edge ww2

is not intersected by any edge, and deleting w or w2 from
Nm,m,3 gives a copy of Nm,m,2. Then the responsibility
of w2 in Nm,m,3 is the responsibility of w in Nm,m,2 plus
m2. That is, Nm,m,3 has exactly H(2m+2)+m

(
m−1
2

)
+

m(m−1)+m2 = m2(m+1)2/4 = H(2m+3) crossings.
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Figure 7: Drawing of N5,5,3.

2.5 Some observations about the new family

The drawings Nm,m,1 have an odd number of vertices.
Note that for m ≥ 5 every edge of Nm,m,1 is intersected
at least once: In the corresponding H2m, all non-green
edges except for the edges of the polygons U and V are
crossed by at least one non-green edge. Hence, they
remain crossed in Nm,m,1. Further, in Nm,m,1, each
edge of V is crossed by an edge wui, and each edge of U
is crossed by a green edge. Because all cells determined
by the drawing Nm,m,1 contain at most one vertex, the
drawing is non-shellable.

The number of vertices in the drawings Nm,m,2, for m
odd, is a multiple of 4. In these drawings, the edge ww1

is not crossed by other edges, but for m ≥ 5 all remain-
ing edges are crossed. We do not have a new drawing of
Kn with n ≡ 2 mod 4. The drawing Nm,m,3, is differ-
ent from Nm+1,m+1,1 since the edge ww2 is not crossed
in Nm,m,3 and all edges are crossed in Nm+1,m+1,1. Fi-
nally, due to the construction and the symmetry of the
drawings, it is not hard to see that for m ≥ 5, none
of Nm,m,2 and Nm,m,3 is shellable. (They are not s-
shellable for s ≥ 3. They are 2-shellable with 2-shelling
w,w1 in Nm,m,2 and w,w2 in Nm,m,3.)

3 Crossing optimal drawings for small graphs

Considering sets of small, constant cardinality can help
to see generic patterns behind their structure, which
might generalize to arbitrary n. We will show below
that our new family from Section 2 already shows up
in examples for 7 and 8 vertices and, together with the
known families, covers all essentially different crossing
optimal drawings with cardinality at most 8.

Good drawings of Kn can be classified into isomor-
phism classes with similar combinatorial properties.
More precisely, two good drawings are isomorphic if

Figure 8: Two of the three crossing optimal 2-page book
drawings with n = 7 vertices.

Figure 9: Two different drawings of the same rotation
system for n = 7 vertices (a 2-page book drawing and a
cylindrical drawing).

they are homeomorphic on the sphere, and weakly iso-
morphic if the same set of pairs of edges properly inter-
sect [5]. It is well known that these crossing properties
are covered by the rotation system of Kn (see for exam-
ple [5], Proposition 6): the rotation system of a drawing
of Kn gives for each vertex v of Kn the clockwise circu-
lar ordering around v of all edges incident to v.

Since we are essentially interested in the crossing
properties of good drawings of Kn it is therefore suffi-
cient to consider only the different (weak isomorphism)
classes, that is, rotation systems, instead of all different
possible drawings. As the order in which an edge is in-
tersected by some other edges is not relevant for weakly
isomorphic drawings, one rotation system might be re-
alized by (exponentially) many different drawings. But
all of them have the same (number of) crossings.

It is instructive to have a look at the different possibil-
ities for small graphs. For any n ≤ 6, there is only one
crossing optimal rotation system for Kn, and it can be
drawn as 2-page book drawing; see Figure 2 for n = 5, 6.

For n = 7 there are 5 different crossing optimal rota-
tion systems. Three of them can be drawn as 2-page
book drawings, where one can at the same time be
drawn as a cylindrical drawing; see Figures 8 and 9.
The drawings of the two remaining rotation systems are
related to our new construction. See Figure 3 (left) for
N3,3,1 and Figure 10 for a variation where the edges uivi
of the related Harary-Hill drawing of K6 have not been
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modified. We remark that the latter drawing can be
generalized for any n = 2m + 1 ≥ 7: add the center
w to the Harary-Hill drawing of K2m and connect it to
the 2m other points with straight lines. Following the
arguments of Section 2.3 shows that this gives a family
of drawings with H(2m+ 1) crossings. However, as the
cycle u1, u2, . . . , un consists of non-crossed edges, these
drawings are bn2 c-shellable, and thus we do not go into
further detail.

u1
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v1

v2

u3

wv3

Figure 10: A drawing of one of the two non-cylindrical
non 2-page book rotation systems for n = 7 vertices.
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Figure 11: Crossing optimal drawings with n = 8 ver-
tices: (left) 2-page book drawing, (right) N3,3,2.
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Figure 12: Crossing optimal cylindrical drawing with
n = 8 vertices.

For n = 8, there are three different crossing optimal
rotation systems. One can be drawn as a 2-page book
embedding, one as a cylindrical drawing, and the third
rotation system can be drawn as N3,3,2. See Figures 11
and 12.

As mentioned before, for m = 5, the construction of
our new family results in a crossing optimal drawing
(and thus rotation system) for K11 that does not con-
tain any non-crossed edge (Figure 4 (top)). There are
three other crossing optimal rotation systems for n = 11
with this property – out of a total of 403079 crossing op-
timal rotation systems. For smaller cardinality, no such
example exists.

4 Conclusion

In this paper we presented several new classes of draw-
ings of the complete graph Kn with the conjectured min-
imum number H(n) of crossings. On the one hand, our
drawings constitute a new infinite family of graphs with
this property, thus extending the two existing families of
2-page book drawings and Harary-Hill cylindrical draw-
ings. On the other hand, and maybe most importantly,
our family is the first infinite class of graphs with H(n)
crossings which is not s-shellable for any s ≥ 2. It thus
sheds new light on (possibly crossing optimal) construc-
tions beyond the shellable ones. The hope is that this
start of a systematic characterization helps to extend
the lower bound arguments of [1] to a broader class of
drawings, with the ultimate goal to prove the Harary-
Hill Conjecture in its full generalization.
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