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Drawing Plane Triangulations with Few Segments

Stephane Durocher∗ Debajyoti Mondal†

Abstract

Dujmović, Eppstein, Suderman, and Wood showed that
every 3-connected plane graph G with n vertices ad-
mits a straight-line drawing with at most 2.5n− 3 seg-
ments, which is also the best known upper bound when
restricted to plane triangulations. On the other hand,
they showed that there exist triangulations requiring
2n − 6 segments. In this paper we show that every
plane triangulation admits a straight-line drawing with
at most (7n − 2∆0 − 10)/3 ≤ 2.33n segments, where
∆0 is the number of cyclic faces in the minimum re-
alizer of G. If the input triangulation is 4-connected,
then our algorithm computes a drawing with at most
(9n− 9)/4 ≤ 2.25n segments. For general plane graphs
with n vertices and m edges, our algorithm requires at
most (16n − 3m − 28)/3 ≤ 5.33n −m segments, which
is smaller than 2.5n− 3 for all m ≥ 2.84n.

1 Introduction

A plane graph is a fixed combinatorial embedding of a
planar graph. Given a plane graph G, a straight-line
drawing of G in R2 maps each vertex of G to a point,
and each edge of G to a straight line segment such that
no two edges intersect except possibly at their common
endpoints. A segment in a straight-line drawing Γ is
a maximal path such that all the vertices on the path
are collinear in Γ. A k-segment drawing is a straight-line
drawing with at most k segments. A k-segment drawing
of a plane graph G is called a minimum-segment drawing
if G does not admit any straight-line drawing with fewer
than k segments. Figure 1(a) illustrates a plane graph
G. Figures 1(b) and (c) are two straight-line drawings
of G with 10 and 8 segments, respectively. The drawing
of Figure 1(c) is a minimum segment drawing of G.

Straight-line drawings are preferable since the use
of bends makes it difficult to follow the edges in the
drawing. Drawings with few segments further enhance
this straightness aesthetic. Besides, a k-segment draw-
ing corresponds to an edge decomposition of the un-
derlying graph into k induced paths. Although the
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problem of computing a drawing with minimum num-
ber of segments is NP-hard for arrangement graphs [4],
drawings with minimum number of segments have been
achieved for trees [3], plane 2-trees with maximum de-
gree three [6], and cubic plane graphs [5]. Dujmović
et al. [3] proved tight upper and lower bounds on the
number of segments for several classes of plane graphs
such as outerplane graphs (n segments), plane k-trees
(2n segments) with k ∈ {2, 3}, and a nearly tight upper
bound of 5n/2 segments for 3-connected plane graphs.
As a natural open problem they asked to determine the
minimum constant c such that every plane graph with
n vertices admits a straight-line drawing with at most
cn+O(1) segments. They also examined planar graphs,
i.e., when the embedding of the input graph is not given.
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Figure 1: (a) A plane graph G. (b–c) Two straight-line
drawings of G.

In this paper we only examine plane graphs, i.e., the
combinatorial embedding of the input graph is given
as an input, and the output drawing must respect the
given embedding. Table 1 summarizes the best known
upper and lower bounds on the number of segments for
different classes of plane graphs.

Graph Class L.B. U.B. Ref.
Trees λ/2 λ/2 [4]

Maximal outerplane graphs n n [4]
Plane 2-tree (max-degree 3) 2n 2n [6]

Plane 2- and 3-trees 2n 2n [3]
3-connected cubic plane graphs n/2 n/2 [5]

3-connected plane graphs 2n 5n/2 [3]

This Paper
3-connected triangulations 2n 7n/3 Th. 4
4-connected triangulations 2n 9n/4 Th. 5

Table 1: Upper and lower bounds on the number of
segments, ignoring additive constants. Here λ is the
number of vertices of odd degree.
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Figure 2: (a) A plane triangulation G with a canonical
ordering of its vertices. The associated realizer is a min-
imum realizer, where the l-, r- and m- edges are shown
in dashed, bold-solid, and thin-solid edges respectively.
The only cyclic face is v4, v6, v5, v4, which is oriented
clockwise. (b) Tl. (c) Illustration for canonical order-
ing, when k + 1 = 6.

2 Preliminaries

In this section we introduce some preliminary definitions
and results.

2.1 Canonical Ordering and Schnyder Realizer

Let G be a connected plane graph. G is called k-
connected, where k > 1, if removal of fewer than k
vertices does not disconnect the graph. G is called tri-
angulated if and only if each of its faces (including the
outer face) is a cycle of length three. G is internally
triangulated if each of its inner faces is a cycle of length
three. Let G be an n-vertex triangulated plane graph,
and let v1, v2 and vn be the outer vertices of G in clock-
wise order. Let σ = (v1, v2, ..., vn) be an ordering of
all vertices of G. By Gk, 3 ≤ k ≤ n, we denote the
subgraph of G induced by v1 ∪ v2 ∪ ... ∪ vk. By Pk we
denote the path (while walking clockwise) on the outer
face of Gk that starts at v1 and ends at v2. We call σ a
canonical ordering of G with respect to the outer edge
(v1, v2) if for each k, 3 ≤ k ≤ n, the following conditions
are satisfied [2].

(a) Gk is 2-connected and internally triangulated.

(b) If k + 1 ≤ n, then vk+1 is an outer vertex of Gk+1

and the neighbors of vk+1 in Gk appears consecu-
tively on Pk.

For some k, where 3 ≤ k ≤ n, let Pk be the path
w1(= v1), . . . , wl, vk(= wl+1), wr, . . . , wt(= v2). We call
the edges (wl, vk) and (vk, wr) the l-edge and the r-edge
of vk, respectively. The other edges incident to vk in
Gk are called the m-edges of vk. For example, in Fig-
ure 2(c), the edges (v1, v6), (v6, v5), and (v4, v6) are the
l-, r- and m-edges of v6, respectively. Let Em be the set
of all m-edges in G. Then the graph Tm induced by the
edges in Em is a tree with root vn. Similarly, the graph
Tl induced by all l-edges except (v1, vn) is a tree rooted
at v1 (Figure 2(b)), and the graph Tr induced by all r-
edges except (v2, vn) is a tree rooted at v2. These three

trees form the Schnyder realizer [7] of G. A minimum
realizer is a Schnyder realizer with all the cyclic inner
faces oriented clockwise. The number of cyclic inner
faces in a minimum realizer is denoted by ∆0 [9]. Each
of Tl, Tr and Tm corresponds to a canonical ordering of
G, and hence is called a canonical ordering tree of G.

2.2 Monotone Chains, Rays and Visibility

Let p be a point in R2. We denote the x and y-
coordinates of p by px and py, respectively. Let
b1, b2, . . . , bk be a strictly x-monotone polygonal chain
C. For each i, where 0 < i < k, an edge (bi, bi+1) is
called a left (respectively, right) edge if biy < bi+1y (re-
spectively, biy > bi+1y). Let Γ be a straight-line drawing
of a plane graph G. A segment in Γ is a maximal path
of G whose vertices are collinear in Γ. A segment is a
left or right segment if it contains a left or right edge,
respectively. The tip of a left or right segment s is the
vertex on s with the highest y-coordinate. The tip of
an edge e is the tip of the segment that contains e. Two
points p and q are visible to each other with respect to
Γ if they do not intersect Γ at any point except possibly
at p and q. By lpq we denote the line through p and q.
We denote the slope of lpq by slope(p, q). A set of rays
is divergent if no two rays in the set are parallel, and
no two rays intersect (except possibly at their common
origin).

Lemma 1 Let a, b1, b2, . . . , bk, c(= bk+1) be a strictly
x-monotone polygonal chain C. Let p be a point above
C such that the segments ap and cp does not intersect
C except at a and c. If the slopes of the left edges of C
are smaller than slope(a, p), and the slope of the right
edges of C are greater than slope(p, c), then every bi is
visible from p (e.g., Figure 3(a)).

Proof. Suppose for a contradiction that some vertex
bi, where 1 ≤ i ≤ k, is not visible to p. Without loss of
generality assume that bi is in the left half-plane of the
vertical line through p. Since C is strictly x-monotone,
no left edge of C can block the visibility between p and
bi. Hence let (bj , bj+1) be the right edge that blocks the
visibility, where i < j ≤ k, as shown in Figure 3(b).

If the slope of the line lbi,bj is smaller than
slope(a, p), then it is also smaller than slope(p, bi),
and hence bi must be visible to p. We may thus as-
sume that slope(bi, bj) is as large as slope(a, p), which
implies that (bi, bj) cannot be an edge in C. Con-
sider now the path P = (bi, bi+1, . . . , bj). Observe that
the edge (bi, bi+1) must lie to the right half plane of
lbi,bj . On the other hand, the edge (bj−1, bj) must
lie to the left half plane of lbi,bj . Since P is strictly
x-monotone, there exists some left edge e in P that
crosses lbi,bj . Furthermore, since e crosses lbi,bj , we have
slope(e) > slope(bi, bj) ≥ slope(a, p), which is a con-
tradiction. �
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Figure 3: (a–b) Illustration for the proof of Lemma 1.
(c) Illustration for the proof of Lemma 2, where the
sets R1 and R2 are shown in dotted and dashed lines,
respectively.

Lemma 2 Let C be a strictly x-monotone polygonal
chain, and let R1 be the set of rays obtained by the ex-
tending each left segment of C above C. Let R2 be an-
other set of rays each with origin on C, directed above
C and with slope less than 90◦. Assume that the rays
in R1 ∪ R2 are divergent, and none of the rays inter-
sect C except at their origin. Given a point p on C,
one can find a ray r with origin p such that the rays in
R1 ∪R2 ∪ {r} are divergent, and r does not intersect C
except at p.

Proof. We prove the lemma by constructing the ray r.
Let ra be the last ray that we encounter while walking
on C from left to right before we visit p, as shown in
Figure 3(c). If there are several candidates for ra, i.e.,
all with the same origin on C, then we choose the last
ray above C in the clockwise order around the origin. If
we do not encounter any ray before visiting p, then there
is no left edge before p, and we choose ra as a vertical
ray directed upward starting at the leftmost point on
C. We now draw a line l parallel to ra at p.

Similarly, find the last ray rb that we encounter while
walking on C from right to left until we visit p (here
p itself could be the origin of rb). If there are several
candidates for rb, i.e., all with the same origin on C,
then we choose the first ray above C in the clockwise
order around the origin. If we do not encounter any ray
before visiting p, then there is no left edge before p, and
we choose rb as a horizontal ray directed to the right
starting at the rightmost point on C. We now draw a
line l′ parallel to rb at p.

We now construct the ray r with origin p and slope
(slope(l′) + slope(l))/2. Since l′ and l are divergent,
the set R1 ∪ R2 ∪ {r} is divergent. Since C is strictly
x-monotone and no ray in R1 ∪ R2 intersects C except
at its origin, all the points in the region bounded by l
and l′ above C is visible to p. Hence r cannot intersect
C except at p. �

3 Drawing Plane Triangulations

In this section we prove that every n-vertex plane trian-
gulation G admits a straight-line drawing with at most
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Figure 4: (a) Illustrating the invariants for some Γi.
The path Pi is the upper envelope of the shaded region.
The edges of Tl and Tr are shown in thin and bold solid
lines, respectively. The set Ql and Qr are shown in
dashed and dotted lines, respectively. (b) Illustration
for Case 1. (c) Drawing of G3.

(7n− 2∆0 − 10)/3 segments.
Let σ = (v1, v2, . . . , vn) be a canonical ordering of

the vertices of G, which corresponds to the minimum
realizer Tl, Tr and Tm of G. We first construct a drawing
of G using σ, and then bound the number of segments
in the constructed drawing.

3.1 Algorithm FewSegDraw

We first draw the edge (v1, v2) using a horizontal
straight line segment. We now complete the drawing
of G by adding the vertices v3, v4, . . . , vn incrementally.
Let Γi be the drawing of Gi. At each addition, Γi

will maintain the following invariants, as shown in Fig-
ure 4(a).

1. The drawing of Pi in Γi is strictly x-monotone.

2. Let (u, v) be an edge in Gi, where u is a parent
(respectively, child) of v in Tl (respectively, Tr). If
(u, v) is an l-edge, then ux < vx and uy < vy, i.e.,
(u, v) is a left edge, in Γi. If (u, v) is an r-edge, then
ux < vx and uy > vy, i.e., (u, v) is a right edge, in
Γi.

3. Let Ql be the set of rays obtained by shooting for
every left segment s that has an end point on the
outer face of Γi, an upward ray with origin tip(s)
and slope slope(s). Then any two rays of Ql are
divergent. Analogously, we define a set of rays Qr

for the right segments, which must be divergent.

4. No ray in Ql ∪Qr intersects Γi except at its origin.
Any two rays r ∈ Ql and r′ ∈ Qr intersect if and
only if the origin of r precedes the origin of r′ on
Pi.

We now add v3 such that Γi is an isosceles triangle
with ∠v3v1v2 = ∠v3v2v1, as shown in Figure 4(c). Since
(v1, v3) and (v3, v2) are the only l- and r- edges in Γ3,
Invariants 1–4 are straightforward to verify. Assume
that the invariants hold for the additions of vi, where
i < n, and let Γi be the drawing of Gi that respects
Invariants 1–4. We now show how to add vi+1 to Γi
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such that the constructed drawing Γi+1 respects all the
invariants.

We call a vertex w ∈ Pi a peak vertex if all of its
neighbors have smaller y-coordinates than wy in Γi. The
distinction between ‘tip’ and ‘peak’ is important, i.e., a
vertex w may be a tip of some left (respectively, right)
segment, but w is not a peak unless it is also a tip of
some right (respectively, left) segment.

Let wl, wl+1, . . . , wr be the neighbors of vi+1 in Gi.
Note that (wl, vi+1) and (vi+1, wr) are the l- and r-edges
of vi+1, respectively. We now consider the following
three cases. For convenience we assume that v1 and v2
are the tips of some left and right segments, respectively,
such that the cases when v1(= wl) or v2(= wr) are
handled by Case 2.

Case 1 (wl is a tip of some left segment and
wr is a tip of some right segment): We claim that
the segment containing wl is different than the segment
containing wr. Otherwise, without loss of generality
assume that both lie on some right segment s. By def-
inition, wly > wry. Hence wr cannot be a tip of s. If
wr is a tip of some right segment s′ other than s, as
shown in Figure 4(b), then Invariant 2 will imply that
wr is a child of two different vertices in Tr, which is a
contradiction that Tr is a tree. Note that we can use the
above argument to claim that wr cannot be an internal
vertex of a right segment, and similarly, wl cannot be an
internal vertex of a left segment. Figure 5(a–d) depict
the remaining four scenarios.
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wl
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wr
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vi+1

vi+1 vi+1

wr
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Figure 5: (a–d) Illustration for different drawings in
Case 1.

Observe now that by Invariants 3–4, the ray in Ql

emanating from wl intersects the ray in Qr emanat-
ing from wr, and none of these rays intersect Γi. Let
c be the intersection point of these two rays. We
place vi+1 at c and draw the edges (vi+1, w), where
w ∈ {wl, wl+1, . . . , wr}. We claim that the drawing of
the m-edges does not create any edge crossing, as fol-
lows. By Invariant 3, all the right edges in the path
wl, wl+1, . . . , wr have slope larger than slope(vi+1, wr).
Similarly, all the left edges have slope smaller than
slope(vi+1, wl). Hence by Lemma 1, the drawing of
the m-edges does not create any edge crossings.
Case 2 (wl is a tip of some right segment and

wr is a tip of some left segment): If Case 1 is also
satisfied, i.e., if wl and wr both are peaks in Γi, then
we add vi+1 as in Case 1. Otherwise, at most one of wl

and wr are peaks.

Case 2A. If none of wl and wr are peaks, then
we construct two rays r1 and r2 starting from
wl and wr, respectively, such the slope of r1
is slope(wl, wl+1) + ε1, and the slope of r2 is
slope(wr−1, wr)− ε2. Here ε1 and ε2 are two con-
stants such that the sets Ql and Qr respect Invari-
ant 3. Lemma 2 guarantees the existence of such
constants. Figure 6(a) illustrates such a scenario.
We then place the vertex vi+1 at the intersection
point of r1 and r2, and draw its l-, r- and m-edges.
By Lemma 1, the drawing of these edges does not
create any edge crossing.
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Figure 6: (a–b) Illustration for Case 2. (c) Illustration
for Case 3.

Case 2B. If exactly one of wl and wr is a peak, then
without loss of generality assume that wr is a peak
vertex. We then construct a ray r starting from
wl with slope(wl, wl+1) + ε such that the rays of
Ql ∪ {r} are divergent and maintain Invariant 3.
Lemma 2 guarantees the existence of such a con-
stant ε. Figure 6(b) illustrates this scenario. We
then place the vertex vi+1 at the intersection point
of r and the ray in Qr emanating from wr. Finally,
we draw the l-, r- and m-edges of vi+1. Lemma 1
ensures that the drawing of these edges does not
create any edge crossing.

Case 3 (wl and wr both are tips of the same
types of segments): Consider first the case when at
least one of wl and wr is a peak. If both are peaks,
then we follow Case 1. Otherwise, exactly one of them
is a peak. If wl is a peak, then we insert vi+1 following
either Case 1 or Case 2B depending on whether wr is
a tip of some right or left segment. Similarly, if wr is
a peak, then we insert vi+1 following either Case 1 or
Case 2B depending on whether wl is a tip of some left
or right segment. Finally, if none of wl and wr is a peak,
without loss of generality assume that both wl and wr

are tips of some left segments.
In such a scenario we construct a ray r starting

from wr with slope(wr, wr−1) − ε such that the rays
of Qr ∪ {r} are divergent and maintain Invariant 3.
Lemma 2 guarantees the existence of such a constant
ε. Figure 6(c) illustrates this scenario. We then place
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Figure 7: A plane graph and the incremental construc-
tion of its drawing.

the vertex vi+1 at the intersection point of r and the ray
in Ql emanating from wl. Finally, we draw the l-, r- and
m-edges of vi+1. Lemma 1 ensures that the drawing of
these edges does not create any edge crossing.

This completes the description of our drawing algo-
rithm. Figure 7 illustrates a drawing computed by our
algorithm.

Γi+1 respects Invariants 1–4: According to our
construction, vi+1 is a peak in Γi+1 such that wlx <
vi+1x < wrx. Hence Invariants 1–2 hold for Γi+1 in
all the three cases. We now consider Invariants 3–4.
Since Case 1 does not increase the number of rays, it
is straightforward to check that Γi+1 respects these in-
variants. On the other hand, Cases 2–3 create new rays.
Note that these new rays have been constructed accord-
ing to Lemma 2, which ensures that for any new ray
r ∈ Ql (respectively, r′ ∈ Qr), the set r ∪ Ql (respec-
tively, r′∪Qr) is divergent. Since all the rays have origin
on Pi+1, it is straightforward to observe that the ray r
intersects all the other rays that belong to Qr and ap-
pear after r while visiting Pi+1 from left to right. The
rays emanating from wl+1, . . . , wr−1 in Γi disappears in
Γi+1. Hence no ray in Ql and Qr in Γi+1 intersects Γi+1

except at its origin.

3.2 Computing the Upper Bound

Let Γ = Γn be the drawing of G computed using the
above drawing algorithm. Let Tl, Tr, Tm be the Schny-
der realizer that corresponds to σ. We now claim that
the drawing has leaf(Tl) + leaf(Tr) + n segments.

Lemma 3 Let G be plane triangulation. Then Algo-
rithm FewSegDraw computes a drawing Γ of G with
leaf(Tl) + leaf(Tr) + n segments, where Tl and Tr are
a pair of trees in a Schnyder realizer of G.

Proof. The idea is to show that the drawings of Tl and
Tr has leaf(Tl) and leaf(Tr) segments in Γ, respec-
tively. Since G\ (Tl∪Tr) has n edges, the claim follows.

Let Γ′i, where 3 ≤ i ≤ n, be the drawing obtained
from Γi by deleting the edges of Tm. While adding vi,
the algorithm adds one edge of Tl (i.e., the l-edge of
vi+1), and one edge of Tr (i.e., the r-edge of vi+1) to
Γ′i−1. Case 1 does not create any new segment. A new
segment in the drawing of Tl and Tr can appear only
in Cases 2–3. Whenever the algorithm creates a new
segment above Pi−1, it ensures that the corresponding
vertex w on Pi−1 is an internal vertex of some left or
right segment in Γ′i−1. For example, see Figure 6.

We claim that any segment that starts at some non-
leaf vertex of Tl, ends at some leaf of Tl, which will
imply that the drawing of Tl has at most leaf(Tl) seg-
ments. Suppose for a contradiction that there exists a
left segment s that starts at some nonleaf vertex w of
Tl and ends at some nonleaf vertex w′ of Tl. If w′ is
not internal to any other segment in Γ′n, then it is a
leaf, which is a contradiction. Otherwise, let w′ be an
internal vertex of some segment s′. If the segment s′

is a right segment, then the property that w′ is an end
point of s will imply that w′ is a leaf of Tl, which is
a contradiction. The remaining scenario, where s′ is a
left segment, implies that w′ is a child of two different
parents, which contradicts that Tl is a tree. Similarly,
the drawing of Tr has at most leaf(Tr) segments. �

In a minimum Schnyder realizer Tl, Tr, Tm of G, we
have leaf(Tl)+leaf(Tr)+leaf(Tm) = 2n−5−∆0 [1],
where 0 ≤ ∆0 ≤ b(n − 1)/2c. Note that the tree with
the largest number of leaves must have at least (2n −
5 − ∆0)/3 leaves. Hence the remaining two trees have
at most 2(2n − 5 −∆0)/3 ≤ (4n − 2∆0 − 10)/3 leaves.
Using Lemma 3 we obtain the following theorem.

Theorem 4 Let G be an n-vertex plane triangulation.
Then G admits a drawing with at most (7n−2∆0−10)/3
segments.

3.3 Constraints and Generalizations

We can improve the upper bound of 7n/3 − O(1) seg-
ments for triangulations to 9n/4−O(1) segments under
4-connectivity constraint, as follows.

Zhang and He [9] showed that for 4-connected trian-
gulations, there exists a canonical ordering tree with at
most (n+ 1)/2 leaves. For the corresponding Schnyder
realizer, we have leaf(Tl)+leaf(Tr)+leaf(Tm) = 2n−
5−∆ [1], where ∆ is the number of cyclic faces. With-
out loss of generality assume that leaf(Tl) ≤ (n+1)/2.
Then leaf(Tr) + leaf(Tm) ≤ 2n− 5− leaf(Tl). Hence
either Tr or Tm has at most (2n−5−leaf(Tl))/2 leaves.
Without loss of generality assume that leaf(Tm) ≤
(2n−5−leaf(Tl))/2. Therefore, leaf(Tm)+leaf(Tl) ≤
(2n − 5)/2 − leaf(Tl)/2 + leaf(Tl) = (2n − 5)/2 +
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leaf(Tl)/2. Since leaf(Tl) ≤ (n + 1)/2, we have
leaf(Tm) + leaf(Tl) ≤ (5n− 9)/4. In summary, there
exists a Schnyder realizer such that two of its trees has
at most (5n − 9)/4 leaves. Using Lemma 3 we obtain
the following theorem.

Theorem 5 Let G be an n-vertex 4-connected plane
triangulation. Then G admits a drawing with at most
(9n− 9)/4 segments.

It is straightforward to use our algorithm to draw
general plane graphs: Given a plane graph G, we first
triangulate the graph, then draw the triangulation with
(7n − 10)/3 segments using Theorem 4, and finally re-
move the added edges. Note that removal of edges
may increase the number of segments in the drawing.
Since removal of one edge from any segment of some
straight-line drawing can increase the number of seg-
ments by at most one, the over all increase in the num-
ber of segments is at most the total number of edges
removed. Since an n-vertex triangulation has exactly
m = 3n − 6 edges, the drawing we obtain can have at
most (7n− 10)/3 + (3n− 6−m) = (16n− 3m− 28)/3
segments.

Theorem 6 Let G be a plane graph with n vertices and
m edges. Then G admits a straight-line drawing with at
most (16n− 3m− 28)/3 segments.

Dujmović et al. [3] gave an algorithm to draw n-vertex
m-edge 3-connected plane graphs with at most min{m−
n/2+α−3,m−α} segments, where the parameter α lies
in the interval [0, 3n− 6−m], giving an upper bound of
2.5n segments. Theorem 6 gives a better upper bound
when the graph is dense, i.e., when m ≥ 2.84n.

4 Conclusion

In this paper we have given an algorithm to draw any n-
vertex plane triangulation with at most 7n/3 segments,
which improves to 9n/4 when the input triangulation is
4-connected. Since the realizers we use can be computed
in linear time [9], our algorithm runs in linear time.

Dujmović et al. [3] showed that the lower bounds on
the number of segments for the general plane triangu-
lations and 4-connected plane triangulations are 2n− 2
and 2n−6 (Figure 8), respectively. A natural open ques-
tion is to reduce the gap between the lower and upper
bounds.

Another limitation of the drawings we compute is the
rational coordinates for vertex positions, which may be
exponential. Thus it would be interesting to examine
the area requirement of these drawings, where the ver-
tices are restricted to integer grid points.

Since a k-segment drawing is an arrangement of a set
of k straight line segments, an interesting generalization
would be to represent planar graphs as arrangement of

(a) (b)

Figure 8: (a) Illustration for lower bounds for general
plane triangulations. (b) A ‘Nested triangle graph’,
which is also a 4-connected triangulation. Such a graph
requires 2n − 6 segments even when the embedding is
not fixed [3].

other objects such as circles, ellipses and lower order
splines. Recently, Schulz [8] has presented such a gen-
eralization considering circular arcs.
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