
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Space-efficient algorithm for computing a centerpoint of a point Set in IR2

Binay K. Bhattacharya∗ Subhas C. Nandy† Sasanka Roy‡

Abstract: We study space-efficient algorithm for com-
puting a centerpoint for a set P of n points in R2, where
the points in P are given in a read-only array. We
propose an algorithm that finds a centerpoint of P in
O(T (n2) log2 n) time using O(S(n2)) extra space, where
T (n) and S(n) are the time and extra space complexi-
ties of computing the median among a set of n elements
stored in a read-only array.

Keywords: centerpoint, space-efficient algorithm,
prune-and-search, duality, arrangement.

1 Introduction

The k-center of a set P of n points in Rd is the set C
of points in Rd such that for any half-plane that passes
through a point c ∈ C contains at least k points. The set
C is said to be k-hull of the points in P , and any point
c ∈ C is called a k-centerpoint of P . In Rd, if k = d n

d+1e,
then a point in C is referred to as centerpoint of P . It
can be shown that a centerpoint of a point set always
exists [8].

In R2, Cole et al. [6] proposed an algorithm that runs
in O(n log5 n) time. The algorithm exploits its connec-
tion with the k-hull of the point set P . Matousek [14]
improved the time complexity to O(n log4 n). Cole [5]
further improved the time complexity to O(n log3 n) us-
ing the parametric searching technique [15]. Naor and
Sharir [19] extended this to R3 by proposing an algo-
rithm that runs in O(n2 log6 n) time. Finally, Jadhav
et al. [11] proposed an optimal linear time algorithm for
the problem in R2 using prune-and-search technique.

A relevant variation, where an approximate center-
point is desired, has also been studied in the literature.
Megiddo [16] showed that given the point set P in R2,
one can compute a point in O(n) time so that both
the halfplanes defined by any line passing through that
point contain at least n

4 points. Matousek [13] showed
that one can compute an approximate center in R2 in
linear time, which is as close to the optimum as desired.

In this paper, we assume that the planar point set P

∗School of Computing Sciences, Simon Fraser University,
Canada, binay@sfu.ca
†Indian Statistical Institute, Kolkata, India,

nandysc@isical.ac.in
‡Chennai Mathematical Institute, Chennai, India,

sasanka@cmi.ac.in

is given in read-only array. Using geometric duality [8],
we propose an O(T (n2) log2 n) time algorithm for com-
puting a k-centerpoint (if exists) in this environment,
which uses O(S(n2)) extra space, where T (n) and S(n)
are the time and extra space complexities for computing
the median among a set of n elements stored in a read-
only array. Since the centerpoint (i.e., k-centerpoint for
k = dn3 e) always exists [8], the asymptotic complexity

results for computing centerpoint are O(T (n2) log2 n)
time and O(S(n2)) extra space.

2 Preliminaries

We will use P ′ and A(P ′) to denote the dual lines cor-
responding to the members in P and the arrangement
of the lines in P ′, respectively. Let Lk denote the k-th
level of the arrangement, and λk denote the convex hull
of Lk. Note that, Lk is a x-monotone polychain for any
k = 1, 2, . . . , n. We exhaustively enumerate the points
of intersection of all pairs of members in P ′ to find the
leftmost and rightmost vertices vL and vR of A(P ′). Let
VL and VR be the vertical lines through vL and vR re-
spectively. An easy way to compute the k-centerpoint
in R2 is as follows.

Find a line ` (if exists) in the dual plane that does
neither intersects Lk nor L(n−k). The dual point π
of the line ` in the primal plane is a k-centerpoint
of P .

Since the combinatorial complexity of the arrangement
of P ′ is O(n2) [8] and that of the k-th level of the ar-
rangement of P ′ is O(nk1/3) [7], the line ` can easily
be computed in O(n2) time using O(nk1/3) extra space.
Our objective is to devise an algorithm for finding such
a dual line ` that uses very small amount of extra space.

During the discussion of this algorithm, we will exhaus-
tively use the algorithm for computing the k-th order
statistic of a set of n numbers given in a read-only ar-
ray. Table 1 gives an exhaustive set of results available
in the literature [4]. We will use T (n) and S(n) to de-
note the time and extra space complexities of computing
k-th order statistics for a set of n real numbers stored
in a read-only array.

We now describe a method of generating the polychain
Lk in space-efficient manner, which will be used in our
proposed algorithm.

26th Canadian Conference on Computational Geometry, 2014

Table 1: Complexity results for median finding algo-
rithms when input is in a read-only array

Time (T (n)) Space (S(n)) Reference
O(n1+ε) O(1

ε), where [18]

2
√

log logn
logn

≤ ε < 1

O(n log2 n) O(log n) [20]

O(n logs n+ n log s) s, where s ≥ log2 n [10, 17]
O(n) s, where s ≥ n/ log n [9]
O(sn1+1/s log n) s, where s ≤ log n [20]
O(n log logs n) s (any value) [2, 18]
(randomized)
O(n logs U) s (any value) [3]
O(n log ndlogs logUe) s (any value) [3]

2.1 Generation of Lk

Let vk0 be the k-th point of intersection of the members
of P ′ on the line VL from below. This is the leftmost
vertex of Lk and hence of λk. Also, we know the line
` ∈ P ′ that contains the edge e ∈ Lk incident on vk0 .
Again, we spend O(n) time to compute the intersections
of the lines in P ′ \ {`} with the line ` to identify the
intersection point (say vk1) closest to vk0 . Thus, we can
identify the vertices and edges of Lk in linear order from
left to right. The point vk0 can be identified in O(nk)
time using O(1) extra space1 by inspecting the points
of intersection of the members of P ′ with the line VL
where the lines in P ′ are available in their corresponding
dual form (as the points in the primal plane) in the
read-only array P . Since identifying each vertex of Lk
needs O(n) time, and the number of vertices in Lk can
be O(nk1/3) in the worst case [7], the generation of Lk
needs O(n2k1/3) time in the worst case using O(1) extra
work-space.

2.2 Useful results

In order to describe our algorithm, the following results
are important.

Lemma 1 Given a collection P ′ of n lines in R2 in a
read-only array, and a query line `, one can find all the
vertices of Lk lying on ` in O(n2) time using O(1) extra
work-space.

1Note: The point vk0 can also be identified in O(T (n)) time
using O(S(n)) extra space by invoking any median finding algo-
rithm with input in readonly array. It does not change the time
complexity of generating Lk; rather increases the extra space com-
plexity. However, in the entire algorithm, the time and extra space
complexity remains same for using any one of these algorithms.

Proof. We can process the intersection points of the
lines of P ′ with ` in increasing order. Each intersection
point π can be found O(n) time, and the level of the
point π in the arrangement A(P ′) can be computed in
another O(n) time. Since there are n number of inter-
section points of the members of P ′ with `, the result
follows. �

Lemma 2 Given a collection P ′ of n lines in R2 in
a read-only array, and a query line `, it is possible to
determine in O(n2) time using O(1) work-space whether

(i) ` touches λk, or

(ii) ` intersects the interior of λk, or

(iii) ` does not intersect λk at all.

Proof. Using Lemma 1, one can compute the level of
each intersection point of ` with the members in P ′.

• If the level of all the intersection points is strictly
greater than k, then ` does not intersect λk at all.

• If there exists at least one intersection point whose
level is less than k, then ` intersects the interior of
λk.

• Now, we need to consider the case where the level of
all the intersection points is greater than or equal to
k. Since Lk is a x-monotone polychain, the number
of intersection points of ` and Lk is even, and these
intersection points appear in (disjoint) pair while
observing the intersection points of the members
of P ′ and ` in order. If every (disjoint) pair2 of
intersection points are coincident (i.e., a vertex of
Lk) then ` touches λk, otherwise ` intersects λk.

�

3 Algorithm

Lemma 3 Given a slope m, one can compute a vertex
z of λk, such that the line `(z,m) of slope m and passing
through z that touches λk, in O(n2k1/3) time using O(1)
work-space.

Proof. The vertex z can be identified by (i) generating
the polychain Lk, (ii) observing the y-intercept3 of the
line `(v,m) for each vertex v ∈ Lk, and (iii) reporting
the vertex z such that the y-intercept of the line `(z,m)
is maximum. In Subsection 2.1, we have shown that Lk
can be generated in O(n2k1/3) time using O(1) space.
Thus, the result follows. �

2consecutive odd and even numbered intersection points
3By y-intercept of a line `, we mean the distance of the point

of intersection of the line ` and the y-axis from the origin.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Lemma 4 Given a slope m, one can compute a vertex
z of λk, such that the line `(z,m) of slope m and passing
through z that touches λk, in O(T (n2) log n) time using
S(n2) work-space.

Proof. Consider the lines with slope m at each ver-
tex of the arrangement A(P ′). Let B be the set of y-
intercepts of these lines arranged in order. We perform
binary search among the elements of B to identify a line
that is a tangent of λk.

In order to justify the time complexity, observe that,
here the elements of B can be generated online; each
element corresponds to a vertex of A(P ′), or in other
words, it corresponds to a tuple (i, j) where the lines
P [i] and P [j] generate that vertex. Thus, these elements
can be assumed to be available in a hypothetical read-
only array B of size O(n2).

Also observe that, the elements of B are not ordered
with respect to the desired search key. Thus, at each
step, (i) we identify the r-th smallest element α in the
array B for some desired integer r by executing an ap-
propriate algorithm for computing the order statistics
(see Table 1) on the points of intersection of the lines
in P ′ with the y-axis, and then (ii) testing whether the
line y = mx+ α properly intersects or touches or above
λk using Lemma 2. Since |B| = O(n2) in the worst case,
each step of binary search takes O(T (n2)+n2) time. As
T (n) is slightly super linear, the result follows. �

A simple method of computing the k-centerpoint is as
follows:

Step 1: Traverse Lk in order to count its number of
vertices Nk, and set a = 0, b = Nk.

Step 2: Again traverse Lk in order to choose the da+b2 e-
th vertex of Lk.

Step 3: Identify the edge e = (α, β) of λk that inter-
sects the vertical line Vd a+b

2 e
using the stack-based

algorithm of Barba et al. [1] for computing con-
vex hull of an x-monotone polychain in read-only
environment. This is a tangent of λk.

Step 4: Let the line ` contain e. Now,

Step 4.1: if the line ` does not properly intersect
λ(n−k), then the line ` corresponds to a k-
centerpoint of the point set P in the primal
plane. Exit with the k-centerpoint.

Step 4.2: if the edge e intersects λ(n−k), then k-
centerpoint does not exist for the point set P .
Exit with failure.

Step 4.3: If ` intersects λ(n−k) to the left of α
and also to the right of β, then also the k-
centerpoint does not exist. Exit with failure.

Step 4.4: if λ(n−k) intersects the line ` only to the
left of α (resp. to the right of β), then any
straight line touching λk and having slope less
(resp. greater) than that of ` can not be a
tangent of λ(n−k). We set b = a+b

2 (resp. a =
a+b
2) to increase (resp. decrease) the slope of

the line for a tangent (if possible).

Step 5: If a < b, then repeat Steps 2, 3 and 4.

Step 6: If a = b, then it implies that it is possible to
draw tangent of λ(n−k) from the only vertex a of
λk.

• We draw the vertical line Va (from the vertex
a ∈ λk). We compute the edge e′ = (α′, β′) ∈
λ(n−k) that is intersected by Va (see Step 3).

• Let `′ be the line containing edge e′. We first
test whether the line `′ intersects λk or not. If
not, then the dual of `′ is a k-centerpoint.
Otherwise, set either (a′ = −∞, b′ = α′) or
(a′ = β′, b′ = ∞) depending on whether `′

intersect λk to the right or left extension of e′.

• Execute the same procedure on λ(n−k) to iden-
tify an edge of λ(n−k) (between the vertices a′

and b′) that corresponds to the k-centerpoint.

Step 7: If the line containing an edge of λ(n−k) is a
tangent of λk, then we report it as k-centerpoint.

Step 8: Otherwise, if a′ = b′ is attained, then a tangent
of λk and λ(n−k) can only be drawn from the vertex
a′ = b′ ∈ λ(n−k), and we test whether the line `∗,
containing a and a′, is a tangent of both λk and
λ(n−k). If so, then we report the dual of `∗ as the
k-centerpoint; otherwise, we report the failure.

The time complexity of a single iteration is dominated
by Step 3, which takes O(nNk log n) time using O(log n)
space [1], where Nk is the number of vertices in Lk.
Since Nk can be O(nk1/3) in the worst case [7], we have
the following result:

Lemma 5 Given a set P of n points in a read-only ar-
ray, the k-centerpoint of the points in P can be computed
in O(n2k1/3 log2 n) time using O(log n) extra space.

We now describe a faster prune and search based
method for computing a tangent line ` of λk that does
not intersect λ(n−k).

3.1 Faster method

We can invoke an appropriate median finding algorithm
(see Table 1) to compute a vertex u ∈ A(P ′) such that
ux (x-coordinate of the vertex u) is the median among

26th Canadian Conference on Computational Geometry, 2014

z

a

b

(a)

L

PRUNED

z

a b

(b)

L

PRUNED

za

b

(c)

L

PRUNED

z

a

b

(d)

L

PRUNED

z

a

b

(e)

L

Figure 1: Pruning procedure for computing the ham-sandwich cut of two sets of linearly separable points

the x-coordinates of all the vertices in A(P ′). Now, we
execute Algo-BRIDGE (described in Subsection 3.2) to
identify the edge e = (a, b) ∈ λk that intersects the
vertical line Vu drawn at the point u. Let ` be the line
containing the edge e. The different situations that can
arise here are similar to those described in Steps 1-4
of the earlier algorithm. If the situation as in Step-4
arises, where λ(n−k) intersects ` to the right of b (resp.
to the left of a), we repeat the same procedure with the
vertices of A(P ′) to the right of b (resp. to the left of
a). Since, in each level of recursion, we can discard a
constant fraction of vertices in A(P ′), it takes at most
O(log n) recursive calls to get the desired slope m.

Finally, we may arrive at a situation where the lines
corresponding to both the edges incident at a vertex
u ∈ λk intersect λ(n−k), but these edges do not inter-
sect λ(n−k) (see Step 6 of the earlier algorithm). As in
the earlier procedure, here the tangent of λ(n−k) may
be drawn only from the vertex u. We execute the same
procedure on λ(n−k) to get the k-centerpoint. As men-
tioned in Step 8 of the earlier algorithm, here also we
may arrive at a vertex u′ ∈ λ(n−k) such that the tangent
of λk may only exist from the vertex u′. Here, if the line
`∗ containing u, u′ is tangent of both λk and λ(n−k), we
report `∗ as the k-centerpoint.

3.2 Algo-BRIDGE

In this section, we describe a procedure for computing
an edge (called bridge) of λk that is intersected by a
vertical line drawn at a vertex of A(P ′).

Lemma 6 Given a point z on a vertical line V , one
can compute the tangent of λk from the point z in one
side of the vertical line V in O(T (n2) log n) time using
S(n2) work-space.

Proof. Let us consider the left side of the line V . Let
U be the set of vertices of A(P ′) to the left side of V .
Let Π be the set of slopes of the lines `(z,v) (the line
passing through the points z and v), for all v ∈ U . We
perform binary search among the members of Π to find
a tangent of λk from the point z.

The time complexity of this procedure consists of two

parts: (i) choosing a member π = slope(`(z,v)) of Π, and
(ii) checking whether the corresponding line is a tangent
of λk.

In each step of the binary search, choosing π ∈ Π takes
O(T (n2)) time with O(S(n2)) space (see Table 1). The
checking of whether the line drawn from z with angle π
is a tangent of λk or above (resp. below) λk takes O(n2)
time (see Lemma 1). After the checking in Step (ii), if it
results a tangent, then the procedure stops. Otherwise,
if it is above λk, then we consider π′ ∈ Π, where π′ < π;
if it is below λk, then we consider π′ ∈ Π, where π′ > π.

We may have to repeat the procedure O(log n) times.
Thus, the overall time complexity is O(T (n2) log n) in
the worst case. The space complexity follows from that
of the median finding algorithm. �

Let the edge e of λk intersect the vertical line V at the
point z∗. We apply the prune-and-search technique for
computing z∗. Let Uleft and Uright be the set of vertices
of A(P ′) to the left and right of V ; Uleft

⋃
Uright = U ,

where |U| = O(n2), and |Uleft| = |Uright|. Initially each
vertex of Uleft

⋃
Uright is active.

We draw a line L that splits both Uleft and Uright into
two equal halves. Let it intersect V at a point z. We
identify two vertices a ∈ Uleft and b ∈ Uright such that
the line `(z,a) and `(z,b) are tangents of λk (see the bold
lines in Figure 1). If the three points z, a, b are collinear
(see Figure 1(a)), then z∗ = z, or in other words, the
line containing z, a, b is the desired bridge. Otherwise,
four situations can take place as shown in Figure 1(b-d)
(ignoring the symmetric cases). In Figure 1(b) (resp.
Figure 1(c)), z∗ appears below (resp. above) z. Thus,
the tangent from z∗ can not touch the vertices of λk
(if any) lying in the shaded portion. Thus, in the next
iteration for finding z∗, we can prune the vertices of both
Uleft and Uright lying in the shaded portion. However,
such a favorable event may not happen in the other two
situations. In Figure 1(d) (resp. Figure 1(e)) z∗ appears
above (resp. below) z, and the tangent of λk from z∗ to
the left (resp. right) may be incident to a vertex in the
2nd (resp. 4th) quadrant defined by the lines L and V .
Thus, only half of the vertices from Uleft or Uright can
be pruned.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

In our prune and search algorithm, in each step we com-
pute the line L using the algorithm of Megiddo [16] for
computing the ham-sandwich cut of two point sets sep-
arated by a vertical line. This partitions the existing
(not-pruned) points in both Uleft and Uright in two equal
parts. After computing the tangent, half of the points
in at least one part must be pruned. The algorithm
terminates either (i) the tangent line of λk from z in
both the sides of V are same, or (ii) one of the parts
(Uleft or Uright) contains a single point. In situation
(ii), we compute the desired tangent from that single
not-pruned point lying in one side of V to λk to the
portion of λk in the other side of V .

Since in each iteration half of the existing vertices in
Uleft or Uright is surely pruned, in O(log n) iterations
all but one vertices are pruned from A(P ′) those lie
in one side of V . The number of intermediate itera-
tions that has pruned vertices of the other half is also
at most O(log n). Thus, the total number of iterations
is O(log n) in the worst case.

3.2.1 Computing the ham-sandwich cut

Let R be a set of n red points and B be a set of n blue
points lying in the two sides of a vertical line V . R and
B are given in two read-only arrays. Our objective is
to find a line L that splits the points in both R and
B in two equal halves. We use the prune and search
based algorithm of Megiddo [13] by tuning it to work in
read-only environment.

We assume that the number of points in both R and
B are odd. If not, we include one point in each of the
sets. This ensures that L must pass through a point in
both R and B respectively. Let R′ (resp. B’) be the
dual lines of R (resp. B), and will be referred to as the
red-lines (resp. blue-lines).

Assuming V as the y-axis, R and B have negative and
positive x-coordinates respectively. Thus, the red lines
have negative slopes and blue lines have positive slopes.
Let LB and LR be the two monotone polychains, which
represent the median level of the arrangement of A(R′)
and A(B′) respectively. LR is a monotone decreasing
function, and LB is a monotone increasing function.
The ham-sandwich cut line L of the points in R and B
correspond to the point of intersection of LB and LR.

Lemma 7 Given the points R and B in two read-only
arrays and a vertical line V , the side of V containing the
point of intersection of LB and LR can be determined
in O(T (n)) time using O(S(n)) space.

Proof. As earlier, we can assume that the points of
intersection of the dual lines R′ with the vertical line
V are available in a read-only array. Now, apply the

median finding algorithm (see Table 1) to compute the
middle-most point zr among the points of intersection
of the members of R′ and V . Similarly, compute the
middle-most point zb among the points of intersection
of the members ofB′ and V . Now, since LR is monotone
decreasing and LB is monotone increasing, if y(zr) >
y(zb) (resp. y(zr) < y(zb)) then the point of intersection
of LR and LB is to the right (resp. left) of the vertical
line V . The time and extra space complexity results
follow from that of the median finding algorithm. �

Lemma 8 Given the points R and B in two read-only
arrays and a line ` with positive slope, the side of `
containing the point of intersection θ of LB and LR can
be determined in O(T (n)) time using O(S(n)) space.

Proof. Consider the lines in R (having negative slope).
The point of intersection α of the monotone decreasing
polychain LR with the line ` corresponds to the n

2 -th
intersection point among the points of intersection of `
and the lines in R. This can be computed in O(T (n))
time using O(S(n)) space. Let us now draw a vertical
line Vα at the point α, and compute the point of inter-
section β of Vα and the monotone increasing polychain
LB in O(T (n)) time using O(S(n)) space (see Lemma
7). The points β and θ will lie in the same side of ` [13].
Thus, the result follows. �

Based on the results in Lemmas 7 and 8, we now de-
scribe the execution steps of an iteration of the prune
and search algorithm for computing the ham-sandwich
cut line L.

Step 1: Find µ the median slope of all remaining lines
in R′ and B′ (independently of their color).

Step 2: Arbitrarily pair-up lines having slope greater
and less than µ. Let I be the set of all these inter-
sections.

Step 3: Compute the median of the x-coordinates of
the points in I; let it correspond to a point of in-
tersection u ∈ I. The vertical line Vu bisects the
points of intersection in I.

Step 4: Using Lemma 7, compute the side of the line
Vu that contains the intersection of the median lev-
els LR and LB. (suppose the intersection is to the
right).

Step 5: Find a horizontal line Hv that bisects the
points of I to the left of Vu.

Step 6: Use Lemma 8 to compute the side of Hv con-
taining the intersection of the median levels LR and
LB. Let it be in the top-right quadrant defined by
Vu and Hv.

26th Canadian Conference on Computational Geometry, 2014

Step 7: For each point of I lying in the bottom-right
quadrant, prune the line having slope less than µ
since it can not enter in the top-right quadrant.
Thus, we can prune at least 1

8 fraction of the re-
maining lines for the next iteration.

The process terminates when either z∗ is the intersec-
tion point of Vu and Hv, or a constant number of lines
remain. In the second case, we enumerate the inter-
section point of LB and LR, computing these chains
explicitly with the not-pruned points.

Lemma 9 Given two sets of vertically separable points
R and B (|R|+|B| = n) in two read-only arrays, one can
compute a straight-line L that equi-partitions both R and
B simultaneously in O(T (n) log n) time using O(S(n))
extra space.

Proof. The time complexity of each iteration of the al-
gorithm is O(T (n)). Since, in each iteration a constant
fraction of the existing lines are pruned, the time com-
plexity result follows.

In order to justify the space complexity result, we have
to show that we can store the summery of pruning in-
formation in O(1) space. Note that, the feasible region
of the solution point in the dual space is an axis-parallel
rectangle (bounded or unbounded), which can be stored
in O(1) space. The other information is the value of µ.
The range of values of µ (µ < 0) for which the dual
(red) lines will be pruned can be kept in 2 extra loca-
tions. The same is true for µ > 0 (blue lines). Thus,
the extra space complexity is dominated by that of the
median finding algorithm. �

3.3 Complexity analysis

Theorem 10 Given a point set P and an integer k,
the proposed algorithm reports the existence of a k-
centerpoint of P in O(T (n2) log2 n) time using S(n2)
extra space.

Proof. Let m be the number of vertices of A(P ′). We
compute the leftmost and rightmost vertices u0, um in
O(n2) time. Let (a, b) denote the range of x-coordinates
in which both the end-points of the desired bridge is
expected to lie. Initially, a = u0 and b = um is set.
In each iteration, different steps are listed below along
with the time complexities:

Step 1: Computation of the vertex u ∈ A(P ′) lying in
[a, b], to define Vu, which takes T (n2) time,

Step 2: Computation of edge e ∈ λk that intersects Vu,
which takes O(T (n2) log n) time (see Lemma 9).

Step 3: Testing of whether e is a tangent of λ(n−k)
takes O(n2) time (see Lemma 2).

Thus, the time complexity of each iteration is
O(T (n2) log n). After an iteration, if the test in Step
3 fails, then we update a or b with u as mentioned in
Subsection 3.1, and execute the same steps with the ver-
tices of A(P ′) that lie in the updated x-interval [a, b].
Since at least half of the vertices lie outside the updated
[a, b], the number of such iterations is O(log n). Now, af-
ter processing λk, if the decision can not be taken, then
the same process is repeated with λ(n−k), and the time
complexity remains unchanged. Finally, one may check
whether a line is a tangent of both λk and λ(n−k), which
takes O(n2) time. Thus, the overall time complexity is
O(T (n2) log2 n). �

References

[1] L. Barba, M. Korman, S. Langerman, K. Sadakane and
R. I. Silveira. Space-Time Trade-offs for Stack-Based
Algorithms. STACS, 2013.

[2] T. M. Chan, Comparison-based time-space lower
bounds for selection. ACM Transactions on Algorithms,
vol. 6(2), 2010.

[3] T. M. Chan, J. I. Munro and V. Raman. Faster, space-
efficient selection algorithms in read-only memory for
integers. ISAAC, pp. 405-412, 2013.

[4] T. M. Chan, J. Ian Munro, V. Raman. Selection and
Sorting in the ”Restore” Model. SODA, pp. 995-1004,
2014.

[5] R. Cole. Slowing down sorting networks to obtain faster
sorting algorithms. J. ACM, 34(1):200–208, Jan. 1987.

[6] R. Cole, M. Sharir, and C. K. Yap. On k-hulls and
related problems. In Proceedings of the sixteenth annual
ACM symposium on Theory of computing, STOC ’84,
pages 154–166, New York, NY, USA, 1984. ACM.

[7] T. K. Dey. Improved bounds for planar k-sets and re-
lated problems. Discrete & Computational Geometry,
19(3):373–382, 1998.

[8] H. Edelsbrunner. Algorithms in Combinatorial Geome-
try. Springer.

[9] A. Elmasry, D. D. Juhl, J. Katajainen and S. Rao
Satti. Selection from read-only memory with limited
work space. in Proc. COCOON, pp. 147157, 2013.

[10] G. Frederickson. Upper bounds for time-space trade-
offs in sorting and selection. Journal of Computer and
System Sciences, vol. 34(1), pp. 1926, 1987.

[11] S. Jadhav and A. Mukhopadhyay. Computing a cen-
terpoint of a finite planar set of points in linear time.
Discrete & Computational Geometry, 12:291–312, 1994.

[12] D. G. Kirkpatrick and R. Seidel, The Ultimate Planar
Convex Hull Algorithm? SIAM J. Comput., 15:287–
299, 1986.

[13] J. Matousek. Approximations and optimal geometric
divide-an-conquer. J. Comput. Syst. Sci., 50(2):203–
208, 1995.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

[14] J. Matousek. Computing the center of planar point sets,
2000.

[15] N. Megiddo. Applying parallel computation algorithms
in the design of serial algorithms. J. ACM, 30(4):852–
865, Oct. 1983.

[16] N. Megiddo. Partitioning with two lines in the plane.
J. Algorithms, 6(3):430–433, 1985.

[17] J. I. Munro and M. Paterson. Selection and sorting with
limited storage. Theoretical Computer Science, vol. 12,
pp. 315-323, 1980.

[18] J. I. Munro and V. Raman. Selection from read-only
memory and sorting with minimum data movement.
Theor. Comput. Sci., 165(2):311–323, 1996.

[19] N. Naor and M. Sharir. Computing a point in the center
of a point set in three dimensions. CCCG, 1990.

[20] V. Raman and S. Ramnath. Improved upper bounds for
time-space tradeoffs for selection with limited storage.
In SWAT, pages 131–142, 1998.

