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Computing the Geodesic Centers of a Polygonal Domain∗

Sang Won Bae† Matias Korman‡,§ Yoshio Okamoto¶

Abstract

We present an algorithm that exactly computes the
geodesic center of a given polygonal domain. The run-
ning time of our algorithm is O(n12+ε) for any ε > 0,
where n is the number of corners of the input polygonal
domain. Prior to our work, only the very special case
where a simple polygon is given as input has been in-
tensively studied in the 1980s, and an O(n log n)-time
algorithm is known by Pollack et al. Our algorithm is
the first one that handles general polygonal domains
that may have one or more polygonal holes.

1 Introduction

A polygonal domain P with h holes and n corners is a
connected and closed subset of R2 having h holes whose
boundary consists of h+1 simple closed polygonal chains
of n total line segments. The diameter and radius of P,
as a compact subset of R2, with respect to a certain
metric d are the most natural and important measures
of P. The diameter with respect to d is defined to be
the maximum distance over all pairs of points in P, that
is, maxp,q∈P d(p, q), while the radius is defined to be the
min-max value minp∈P maxq∈P d(p, q). A pair of points
in P realizing the diameter is called a diametral pair,
and a center is defined to be a point c ∈ P such that
maxq∈P d(c, q) is equal to the radius. In this paper we
study one of the most natural metrics within a polygonal
domain: the geodesic distance function d(p, q) for p, q ∈
P that measures the Euclidean length of a shortest path
that connects p and q and stays within P.

The problem of computing the diameter and center
of a simple polygon (i.e., a polygonal domain with no
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holes) with respect to the geodesic distance d has been
intensively studied in computational geometry since the
early 1980s. Chazelle [3] gave the first algorithm for
finding the geodesic diameter with running time O(n2),
followed by an O(n log n)-time algorithm by Suri [12].
Finally, Hershberger and Suri [6] presented a linear-
time algorithm based on a fast matrix search technique.
Asano and Toussaint [1] first addressed the problem of
computing the Euclidean geodesic center of a simple
polygon with an O(n4 log n)-time algorithm, and later
Pollack, Sharir, and Rote [10] improved it to O(n log n)
time. Since then, it has been a longstanding open prob-
lem whether the geodesic center can be computed in
linear time, as also mentioned later by Mitchell [9].

On the other hand, the geodesic diameter of a domain
having one or more holes is much less understood. What
is known for general domains about this subject is a
first algorithm by the authors that exactly computes the
geodesic diameter of a polygonal domain in O(n7.73) or
O(n7(log n + h)) time [2]. In the preceding paper [2],
we have shown that the diameter of a polygonal domain
P may be determined by two points in the interior of
P, and this was one reason why the algorithm could
not avoid such a high running time. Compare this with
the fact that the geodesic diameter of a simple polygon
is always determined by two corners, leading to much
more efficient algorithms [6, 12].

One of the main differences between simple polygons
and general domains lies on the difficulty to determine
and discretize the search space. It is clear that in a sim-
ple polygon P, each point that is farthest away from any
fixed point p ∈ P must be a corner of P [1]. Thus, the
diameter of any simple polygon should be realized by
two corners of P. This immediately gives O(n2) candi-
dates that would determine the geodesic diameter. For
computing the geodesic center, this helps a lot: even
though the center may be an interior point of P, it must
be determined by two or three corners because only cor-
ners can achieve the maximum geodesic distance. The
previous algorithms for simple polygons of course enjoy
this nice behavior of the geodesic diameter and center.
Unfortunately, this is not the case for general polygonal
domains with one or more holes. This difference mainly
causes the huge gap in the geodesic diameter algorithm
between simple polygons [6] and general domains [2].

In this paper, we focus on computing the geodesic
radius and center of a polygonal domain with holes,
and present an algorithm that exactly computes it in
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Figure 1: (a) Given a polygonal domain P with two holes and a source point s ∈ P. (b) The shortest path tree
SPT(s) on V ∪ {s} with root s whose edge are directed towards descendants. (c) The shortest path map SPM(s),
whose edges are depicted by solid segments. Its edges, including the boundary of P, are either straight or hyperbolic.
Corners v ∈ V with non-empty region σs(v) are marked by black dots.

O(n12+ε) time. This is a first step from the result of
Pollack et al. [10] towards general polygonal domains.
The time complexity O(n12+ε) seems very high, but re-
call that the currently best algorithm that computes
the geodesic diameter takes O(n7.73) time [2]. Also,
note that there was no known exact algorithm for gen-
eral polygonal domains prior to our work, although the
problem has been regarded to be natural and impor-
tant [9, Open Problem 6].

The rest of the paper is organized as follows. After
introducing preliminary definitions and concepts in Sec-
tion 2, we list geometric observations that will be the
base of our algorithms in Section 3. Section 4 is devoted
to describe our algorithm. Finally, Section 5 concludes
the paper with possible lines of research.

2 Preliminaries

Throughout the paper, we frequently use several topo-
logical concepts such as open and closed subsets, neigh-
borhoods, and the boundary ∂A of a set A; unless stated
otherwise, all of them are derived with respect to the
standard topology on Rd with the Euclidean norm ‖ · ‖
for fixed d ≥ 1. We also denote the straight line segment
joining two points a, b by ab.

A polygonal domain P with h holes and n corners1 is
a connected and closed subset of R2 with h holes whose
boundary ∂P consists of h + 1 simple closed polygonal
chains of n total line segments. The boundary ∂P of a
polygonal domain P is regarded as a series of obstacles
so that any feasible path in P is not allowed to cross ∂P.
The geodesic distance d(p, q) between any two points p, q
in a polygonal domain P is defined to be the Euclidean
length of a shortest feasible path between p and q, where
the length of a path is the sum of the Euclidean lengths
of its segments. It is well known from earlier work [8]
that there always exists a shortest feasible path between

1We reserve the term “vertex” for a 0-dimensional face of sub-
divisions of a certain space.

any two points p, q ∈ P, and thus the geodesic distance
function d(·, ·) is well defined.

The geodesic radius rad(P) of P is defined to be the
min-max quantity:

rad(P) = min
p∈P

max
q∈P

d(p, q).

A geodesic center of P is a point c ∈ P such that

max
q∈P

d(c, q) = rad(P).

The purpose of this paper is to describe the first al-
gorithm that computes the geodesic radius rad(P) to-
gether with the set of geodesic centers of a given polyg-
onal domain P.

2.1 Shortest path trees and shortest path maps

Let V be the set of all corners of P and π be a shortest
path between any two points s, t ∈ P. Then, it is easy
to see that π is a polygonal chain that makes turns
only at corners V of P [8]. That is, π is represented
as a sequence of corners π = (s, v1, . . . , vk, t) for some
v1, . . . , vk ∈ V . Note that k may be zero; in this case,
the shortest path π is the segment st connecting the two
endpoints (and thus d(s, t) = ‖s−t‖). If two paths (with
possibly different endpoints) induce the same sequence
of corners (v1, . . . , vk), then they are said to have the
same combinatorial structure.

Given a source point s ∈ P, the shortest path tree
SPT(s) of s is a tree spanning V ∪{s} embedded inside
P such that the unique path in SPT(s) from s to each
corner of P is a shortest path in P. See for example
Figure 1(b), in which the edges of SPT(s) are directed
towards descendants.

The shortest path map SPM(s) for a fixed s ∈ P is a
decomposition of P into cells such that every point in
a common cell can be reached from s by shortest paths
of the same combinatorial structure. See Figure 1(c).
Each cell σs(v) of SPM(s) is associated with a corner
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v ∈ V ∪{s} which is the last corner of π(s, t) for any t in
the cell σs(v). We also define the cell σs(s) as the set of
points t ∈ P such that π(s, t) passes through no corner
of P, so π(s, t) = st. Each edge of SPM(s) either belongs
to ∂P or is an arc on the boundary of two incident cells
σs(v1) and σs(v2) determined by two corners v1, v2 ∈
V ∪ {s}. Edges of the latter kind is a hyperbolic arc (if
v1 and v2 are not adjacent in SPT(s)). Moreover, there
are two different shortest paths from s to any point on
such edge (one via v1 and the other via v2). Finally, each
vertex of SPM(s) is either a corner of P, an endpoint
of an edge of the second kind above, or a point p ∈ P
incident to at least three faces σs(v1), σs(v2), σs(v3) for
some corners v1, v2, v3 ∈ V ∪{s}, yielding three different
shortest paths from s.

The shortest path map SPM(s) has O(n) cells, edges,
and vertices in total, and can be computed in O(n log n)
time using O(n log n) working space [7]. For more de-
tails on shortest path maps, see [7–9].

2.2 Path-length functions

For any point p ∈ P, we define its visibility region as
the set VR(p) of all points q ∈ P such that pq ⊂ P, that
is, p and q see each other.

If π(s, t) 6= st, then there are two corners u, v ∈ V
such that u and v are the first and last corners along
π(s, t) from s to t, respectively. Here, the path π(s, t) is
formed as the union of su, vt and a shortest path π(u, v)
from u to v. Note that u and v are not necessarily
distinct. In order to realize such a path, s must be
visible from u and t visible from v. That is, s ∈ VR(u)
and t ∈ VR(v),

We now define the path-length function
lenu,v : VR(u) × VR(v) → R for any fixed pair of
corners u, v ∈ V to be

lenu,v(s, t) := ‖s− u‖+ d(u, v) + ‖v − t‖.

That is, lenu,v(s, t) represents the length of paths from s
to t that have a common combinatorial structure; going
straight from s to u, following a shortest path from u to
v, and going straight to t. Also, unless d(s, t) = ‖s− t‖
(equivalently, s ∈ VR(t)), the geodesic distance d(s, t)
can be expressed as the pointwise minimum of some
path-length functions:

d(s, t) = min
u∈VR(s)∩V, v∈VR(t)∩V

lenu,v(s, t).

By definition of shortest path map SPM(s) and its
cells σs(v), if t ∈ σs(v) for some v ∈ V , then we have
d(s, t) = lenu,v(s, t), where u ∈ V denotes the first cor-
ner along the shortest path from s to v, or equivalently,
along the path from s to v in SPT(s).

3 Farthest Neighbors and Geodesic Centers

In this section we introduce several tools that will be
useful for discretizing the search space for the centers of
a polygonal domain.

For any point p ∈ P, we let Φ(p) be the maximum
geodesic distance we can obtain when we fix one point
as p, that is,

Φ(p) := max
q∈P

d(p, q).

We call a point q ∈ P a farthest neighbor of p ∈ P if
d(p, q) = Φ(p).

Observe that the geodesic radius of P is the minimum
possible value of Φ(p) over all p ∈ P, that is,

rad(P) = min
p∈P

Φ(p),

and a point that minimizes Φ(p) is a geodesic center of
P. Note that each geodesic center is determined by its
farthest neighbors.

The following lemma suggests a principal rule to seek
for farthest neighbors. Recall the definition of vertices
of a shortest path map SPM(p).

Lemma 1 For any point p ∈ P, any farthest neighbor
of p in P is a vertex of SPM(p).

Proof. Suppose for contradiction that q ∈ P is a far-
thest neighbor of p, but q is not a vertex of SPM(p).
Then, there exists a sufficiently short line segment L
such that L is contained in the closure of some cell
σp(v) of SPM(p) for some v ∈ V ∪ {p} and contains
q in its relative interior. This is always true even if q
lies on an edge of SPM(p) since every edge of the short-
est path map is either straight or hyperbolic. Then,
the function f(x) = d(p, x) for x ∈ L is represented as
f(x) = lenu,v(p, x) = ‖p − u‖ + d(u, v) + ‖v − x‖ for
some u ∈ V ∪ {p}. Observe that the function f is con-
vex on L and has no plateau along its graph. Since q
lies in the relative interior of L, there always exists a
point y ∈ L such that f(y) > f(q), which contradicts
the assumption that q is a farthest neighbor of p.

This observation compares to the fact for simple poly-
gons that any farthest neighbor of each point in a sim-
ple polygon P is a corner of P [10]. Vertices of shortest
path maps SPM(p) may lie in the interior of P. This
means that a geodesic center may be determined by
some interior points, whereas this never happens for
simple polygons since farthest neighbors in any simple
polygon must be its corners.

One can easily construct an instance of polygonal do-
main P such that the farthest neighbors of its geodesic
center c indeed lie in the interior of P. See Figure 2 for
such an example.

The example presented in Figure 2 consists of three
identical parts arranged in a symmetric way: each part
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Figure 2: A polygonal domain instance with a unique
geodesic center c. The three farthest neighbors q1, q2,
and q3 of the center c lie in the interior of the domain.
Observe that there are three distinct shortest paths be-
tween the center c and each of its farthest neighbors,
and thus 9 shortest paths of equal length in total.

contains two holes that almost fit together forming a
very narrow corridor between them. We claim that c is
the unique geodesic center determined by three interior
points q1, q2, and q3. Note that q1, q2, and q3 are the
three farthest neighbors of c. Moreover, each qi is a
vertex of the shortest path map SPM(c) for c. That is,
there exist three combinatorially distinct shortest paths
from c to qi. (The paths from c to q1 are depicted
in Figure 2.) Moreover, no other vertex of SPM(c) is
farther from c than qi. The point c is thus a geodesic
center of this polygonal domain. Also, due to symmetry
in the construction, we observe that no point in P other
than c can be closer to all of q1, q2, and q3 at the same
time. This implies that c is the unique geodesic center.

Note that the example is symmetric and seems degen-
erate in a sense, but such a degeneracy can be removed
easily by means of perturbation. This is possible be-
cause the center c is “stable” in the sense that if we
perform a sufficiently small perturbation on the corners
of the domain, its geodesic center and the corresponding
farthest neighbors will not change too much.

4 Algorithm

In this section, we describe our algorithm for computing
the geodesic radius rad(P) and the geodesic centers of a
given polygonal domain P. Recall that the problem of
computing the geodesic radius and center can be seen as
a minimization problem with objective function Φ over
P. Thus, our approach is to decompose P into cells,
and find one (or more) candidate centers in each cell.

For any subset σ ⊆ P of the domain P, we call the
minimum value of Φ(p) over p ∈ σ the σ-constrained
geodesic radius, and each point in σ that attains the
minimum is a σ-constrained geodesic center. Clearly, in
any decomposition {σ1, σ2, . . .} of P, the geodesic radius
is the minimum of σi-constrained geodesic radii over all
i, and the points that attain the minimum value are the
geodesic centers of P.

In this paper, we adopt the SPM-equivalence de-
composition. The SPM-equivalence decomposition of
a polygonal domain has been first described by Chiang
and Mitchell [4] to devise efficient data structures that
support two-point queries for Euclidean shortest paths.

The SPM-equivalence decomposition ASPM of a
polygonal domain P subdivides P into cells such that for
all points s in a common cell σ of ASPM, their shortest
path maps SPM(s) are topologically equivalent. More
precisely, two shortest path maps SPM(s1) and SPM(s2)
are said to be topologically equivalent if their underlying
plane graphs are isomorphic. Chiang and Mitchell [4]
show that the decomposition ASPM has O(n10) complex-
ity and can be computed in O(n10 log n) time.

An additional property of this subdivision is that, for
a fixed cell σ of ASPM, every element of SPM(s) (such
as vertices and edges) can be explicitly stored in the
form of algebraic functions of s ∈ σ. In this manner,
the shortest path map SPM(s) for all s ∈ σ is parame-
terized, as Chiang and Mitchel [4] also discussed.

Now, pick any cell σ of ASPM. We are in particular
interested in the vertices v1, v2, . . . , vm of SPM(s), as
functions of s from σ to a point vi(s) ∈ R2, where m
is the number of vertices of SPM(s). Recall that the
vertices vi of SPM(s) include the corners V of P; If for
some i ≤ m we have vi ∈ V , then vi(s) will be a constant
function that always maps to a unique corner of P.

For any i ∈ {1, 2, . . . ,m}, we define the function
fi : σ → R to be fi(s) = d(s, vi(s)) for s ∈ σ. This
function maps s to the geodesic distance from s to vi(s).
We then consider the upper envelope maxi fi(s) of the
m functions, which maps s to its maximum geodesic
distance over all the vertices vi(s) of SPM(s). Lemma 1
guarantees that we can find a farthest neighbor of s
among the vi(s), and thus it holds that

Φ(s) = max
i=1,2,...,m

fi(s).

That is: in order to find the σ-constrained geodesic ra-
dius and center, it suffices to compute the upper enve-
lope of the m functions fi.

For this purpose, we consider the shortest paths from
s ∈ σ to each vi(s) and then obtain the description of the
functions fi. There are two different cases: either vi(s)
is always visible from s or vi(s) is always invisible from s.
Since σ is a cell of the SPM-equivalence decomposition
ASPM, there is no other situation such that vi(s1) is
visible while vi(s2) is invisible for s1, s2 ∈ σ; otherwise,
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1: Algorithm GeodesicCenter(P)
2: Compute the SPM-equivalence decomposition ASPM of P.
3: for each cell σ of ASPM do
4: Specify the combinatorial structure of the shortest path maps SPM(s) for s ∈ σ.
5: Identify the parameterized equations of the vertices of SPM(s).
6: Let v1(s), . . . , vm(s) be the parameterized points identified by the above step.
7: Let fi(s) := d(s, vi(s)) be the m bivariate functions for s ∈ σ.
8: Compute the upper envelope Uσ of the m graphs {z = fi(s)}.
9: Find the points cσ with the lowest z-coordinate in Uσ.

10: Store cσ as the σ-constrained geodesic centers with its z-value.
11: end for
12: return the constrained geodesic centers cσ having smallest z-value.
13: return the z-value as the radius of P
14: end Algorithm

Figure 3: An O(n12+ε)-time algorithm for computing the geodesic center of a polygonal domain

it causes a change in their shortest path trees and thus
a change of their shortest path maps. Thus, we shall
call each vi visible or invisible accordingly. By the same
reason, for any corner v ∈ V of P, v is always visible
or always invisible from s over all s ∈ σ. By an abuse
of notation, we write VR(σ) to denote the set of corners
that are visible from s ∈ σ.

Lemma 2 Let σ and the vi’s be defined as above. The
vertex vi is visible if and only if vi maps s ∈ σ to a
corner v ∈ V of P such that v ∈ VR(σ).

Proof. Assume that vi is visible. That is, vi(s) and s
always see each other for any s ∈ σ, so the shortest path
from s to vi(s) is just the straight line segment svi(s).
We claim that vi(s) = v for some corner v ∈ V of P.
As discussed in Section 2.1, each vertex of the shortest
path map SPM(s) falls into one of three cases. Among
these three cases, vi(s) must fall into the first one: vi(s)
is a corner v ∈ V of P for all s ∈ σ since vi(s) admits
only a unique shortest path from s, svi(s). Therefore,
we have v ∈ VR(σ).

The other direction is easy to see. If vi(s) = v for
some corner v ∈ V with v ∈ VR(σ), then vi(s) is always
visible from any s ∈ σ. Thus, the lemma follows.

Lemma 3 Let σ and the vi’s be declared as above. For
each i = 1, . . . ,m, it holds that

fi(s) =

{
‖s− t‖ if vi is visible,

lenui,wi
(s, vi(s)) otherwise,

where ui, wi ∈ V are corners of P uniquely determined
by vi.

Proof. We consider the two cases separately. Suppose
first that vi is visible. Then, by Lemma 2, vi(s) = v
for some corner v ∈ V of P such that v ∈ VR(σ). This
directly implies the lemma.

Next, assume the latter case where vi is invisible.
Pick any point s0 ∈ σ, and consider a shortest path
π from s0 to vi(s0). Let ui ∈ V and wi ∈ V be the
first and the last corners of P along π. Since vi is
invisible, any shortest path from s0 to vi(s0) cannot
be the straight line segment s0vi(s0) by Lemma 2, so
such corners ui and wi must exist. This implies that
fi(s0) = d(s0, vi(s0)) = lenui,wi(s0, vi(s0)). By defini-
tion of the SPM-equivalence decomposition ASPM, for
any s ∈ σ, there exists a shortest path from s to vi(s)
whose first corner is ui and last corner is wi. Hence, the
lemma follows.

By combining the above observations, we are now
able to describe our algorithm that exactly computes
the geodesic radius and centers of a given polynomial
domain. See Figure 3. We finally conclude with our
main theorem.

Theorem 4 The algorithm described in Figure 3 cor-
rectly computes the geodesic radius and centers of a
polygonal domain with n corners in O(n12+ε) time for
any positive ε.

Proof. The correctness follows from the discussion
above. In order to show the time bound, we need an
efficient tool to compute the upper envelope of func-
tions. Given a collection of N algebraic surface patches
in Rd, we can compute their lower (or upper) envelope
in O(Nd−1+ε) time using the algorithms of Halperin and
Sharir [5] (for d = 3) or Sharir [11] (for d > 3). Note
that the complexity of the resulting envelope is bounded
by O(Nd−1+ε).

Recall that the coordinates of each vertex vi(s) of
SPM(s) is an algebraic function [4]. Lemma 3 implies
the functions fi are algebraic, too. Thus, we can apply
the above algorithms to compute the upper envelope Uσ
of the graphs of fi, which is equivalent to the function
Φ.
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In our case, we have N = O(n), since any shortest
path map SPM(s) has O(n) complexity. Each function
fi has two arguments (i.e., the coordinates of s within
σ), so the graph of fi lies in three-dimensional space.
Thus, the upper envelope Uσ of the functions fi can
be computed in O(n2+ε) for any positive ε. Once the
envelope is computed, we can find the points with the
lowest z-coordinate in Uσ in the same time bound by
traversing all faces of the envelope Uσ. The point that
minimizes Uσ is a candidate for center, and its image
will be its corresponding radius.

Thus, we spend O(n2+ε) time per cell σ of ASPM.
Since ASPM consists of O(n10) cells, we obtain the
claimed time bound O(n12+ε).

5 Concluding Remarks

We have presented the first algorithm that exactly com-
putes the geodesic radius and centers of a general polyg-
onal domain with holes. The time complexity of our
algorithm is quite big, but still remarkable as the first
nontrivial upper bound. Note that this high complexity
O(n12+ε) heavily relies on the complexity of the SPM-
equivalence decomposition ASPM. The currently best
upper bound of the complexity of ASPM is O(n10), and
it is known how to construct a polygonal domain whose
decomposition ASPM has Ω(n4) complexity [4].

Besides that, the algorithm could be improved by
exploiting a coarser subdivision, such as the SPT-
equivalence decomposition [4]. The SPT-equivalence de-
composition ASPT is obtained by overlaying the n short-
est path maps SPM(v) for corners v ∈ V of P. Then,
it is guaranteed that the shortest path trees SPT(s) for
all s in each cell of ASPT are isomorphic. The complex-
ity of ASPT is O(n4), and thus exploiting ASPT instead
of ASPM would be helpful. Ideally, we would want an
algorithm that can compute the σ-constrained geodesic
radius for a cell σ of ASPT in o(n8+ε) (so that the run-
ning time improves Theorem 4). However, all of our
attempts to do so need significantly more than Ω(n8),
which lead to slower algorithms.
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