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Abstract

We study geometric data structures for sets of point-based
temporal events, answering time-windowed queries, i.e.,
given a contiguous time interval we answer common geo-
metric queries about the point events with time stamps in this
interval. The geometric queries we consider include queries
based on the skyline, convex hull, and proximity relations
of the point set. We provide space efficient data structures
which answer queries in polylogarithmic time.

1 Introduction

Spatio-temporal data sets deal with geometric objects associ-
ated with events occurring at specific times and places (e.g.,
see [18, 31]). Thus, we consider an event in this context to
be a triple, (t, p,v), where t is a time stamp of occurrence for
this event, p is a point in Rd describing the location of this
event, and v is a set of additional data values that may also be
associated with this event. Exploring such spatio-temporal
data sets is facilitated by data structures that support queries
involving these spatial and temporal attributes.

In a time-windowed query [5], we are given an interval
of time, [t1, t2], and a predicate, P , and we are interested in
the events matching P which have time stamps in the range
[t1, t2]. Formally, we preprocess a sequence of points pk in
Rd for 0≤ k ≤ n−1 in order to answer queries on windows
into this sequence of points, where a window is of the form
[pi, p j] = {pk | i ≤ k ≤ j}. We require that the runtime of
our queries depends only on the width of the window w =
j− i+ 1, and not on n the total number of temporal points.
We assume there is a polynomial-sized set, U , of identifiable
moments in time, based on a reasonable way of measuring
time. E.g., each nanosecond from the birth of the sun until
its projected death can be indexed using a 64-bit integer.

Previous data structure frameworks involving point data
have taken various approaches with respect to time and lo-
cation. Traditionally, this has been broken down into two
approaches—a static approach, where one assumes that all
the input points are given simultaneously at “time zero” and
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then queries are performed on this set, and a dynamic ap-
proach, where points are inserted and deleted over time and
queries are performed with respect to the current set. Moti-
vated by geo-tagging applications, we take an event-based
approach, where point-based events appear at specific in-
stances in time, so that, at any point in time, there is at most
a single point that exists in our data set. Thus, it is only by
considering time intervals that we get sets of points over
which we can ask geometric queries.

Of course, if the queries are themselves axis-aligned range
queries, then time-windowed queries can be answered sim-
ply by considering time as yet another dimension and stor-
ing the events in a (d+1)-dimensional range-searching data
structure. This approach does not carry over, however, to
convex hull queries, proximity queries, or skyline queries.
There are previous data structure approaches that have nev-
ertheless considered other variations with respect to time,
updates, and queries. In batched dynamic querying, for in-
stance, a set of queries is given in advance for a static set
of points [14], and in off-line geometric querying, queries
are performed in “the past” with respect to a pre-specified
sequence of updates [2, 22]. In time-windowed querying,
on the other hand, we don’t know the time windows or the
queries being requested in those windows in advance, and we
do not restrict ourselves to windows starting at “time zero.”

Likewise, time-windowed querying is not the same as the
persistent data structure framework (e.g., see [13]), where
a sequence of insertions and deletions is performed on a
data structure in an online fashion, with that data structure
adapted to allow for queries coming later that are done “in
the past.” Time-windowed data structures allow for different
“starting times” for such sequences of operations, whereas
these previous persistent approaches start at “time zero.”

Our model is also different from previous work on geo-
metric querying on concatenable structures for ordered de-
composable problems (e.g., see [21, 33]). In this frame-
work, a set of objects is given in some order, such as x-
coordinates, and geometric queries are performed on this
set, subject to splits and merges along one of these dimen-
sions. However, it’s not clear how to apply these previous
approaches to time-windowed queries, since their results de-
pend on decomposing the data set based on the geometry of
the points, whereas the time-windowed framework instead
supports queries based on the time-stamps of the points,
which are unrelated to their geometry.
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Our approach is also related to but distinct from previ-
ous work on kinetic data structures (e.g., see [6]). In this
framework, each point has a given trajectory that describes
its movement over time, subject to trajectory updates and
queries involving point configurations that would exist at
given times based on the current set of trajectories. In the
time-windowed framework, on the other hand, points exist
only as events that occur at specific times; hence, they are
not given with trajectories.

Chan [9] applies a query oriented approach to maintaining
a dynamic convex hull. However, his structure is only suited
to answering queries on the current set of data points, not on
windows in time.

Perhaps the most closely related prior work for geomet-
ric data is that of Shi and JaJa [32], which also considers
geometric queries on time-windows of temporal data. How-
ever, they only consider “conjunctive temporal range search”
queries, which are fundamentally different than the types of
queries we consider.

Time-windowed querying was also considered by Bannis-
ter et al. [5], for relational network data and queries based
on graph-theoretic primitives. They give a number of ef-
ficient data structures for answering such queries, and we
adapt some of their methods to the problem of computing
skylines. However, their methods do not translate into effi-
cient data structures for convex hulls or proximity queries.

Our Results. In this paper, we study data structures for
geometric queries based on the skyline, proximity, and con-
vex hull of points in the time-windowed query model. If the
width of the query window is fixed, data structures support-
ing windowed queries can be built using existing persistent
data structures. The difficulty here, however, is that the win-
dow must be fixed in advance, which is not typically useful
for data exploration purposes. For this reason we place no a
priori restrictions on the query windows.

We consider the problem of performing convex hull
queries on points in R2 within a time window. Previously, the
problem of reporting the convex hull of points within a two-
dimensional query rectangle has been considered [21, 33],
but such results do not extend to our time-windowed queries,
of course. The method used here is based instead on hierar-
chical decomposition in time. We build a data structure of
size O(n logn) in time O(n logn) from which we can answer
time-windowed queries based on the convex hull of points in
the window, in polylogarithmic time.

We also modify the decomposition tree used for convex
hull queries to answer windowed proximity based queries.
We develop data structures answering approximate nearest
neighbor queries, using near-linear space and polylogarith-
mic query time. In addition, we develop data structures
to construct proximity based graphs for a given window,
e.g., Delaunay triangulation, minimum spanning tree, near-
est neighbor graph and Gabriel graph, in near-linear space
and linear time.

Finally, we consider the problem of reporting the skyline,
and for colored points the problem of reporting the set of
unique colors on the skyline. Computing the skyline of a
data set is classically known as the maxima set problem [25]
and is important in multi-criteria decision making [8,15].We
achieve these results by adapting the methods used by Ban-
nister et al. [5]. Due to space constraints, details of this and
other theorems and lemmas are given in the appendix.

Theorem 1 A sequence of temporal points, pi for 0≤ i < n,
in Rd can be preprocessed into a data structure of size
O(n1+ε) in O(n1+ε) time such that a query for the skyline of
[pi, p j] can be reported in O(k). Furthermore, if the points
are colored then the distinct colors on the skyline can be re-
ported in time O(k).

2 Convex hull in R2

Like many computational geometry data structures, ours are
based on a decomposition scheme. We preprocess a family of
canonical subsets of events to achieve a balanced space/time
tradeoff of log-linear space and polylogarithmic query time.
Although our choice of canonical subsets is independent of
the geometry of the points, this approach yields surprisingly
natural query algorithms. We begin by presenting algo-
rithms for convex hull queries that are still decomposable,
even though the decomposition is over time, including gift-
wrapping and linear programming queries. Then, through a
novel combination of sophisticated techniques, we adapt our
approach to support line stabbing queries.

In R2 computing the convex hull can be done by comput-
ing the upper hull and the symmetric problem of computing
lower hull. So, when convenient we will only consider the
computation of the upper hull.

Hierarchical Decomposition. We build a balanced binary
search tree T over time with a unique leaf for each temporal
point (see Fig. 9). To each node v ∈ T we associate a canon-
ical subset Cv. If v is a leaf, then Cv = {et} where et is the
temporal point corresponding to v, otherwise Cv is the union
of its children’s canonical subsets. We say that a node v ∈ T
covers the temporal-point e if e ∈Cv.

We will assume that T has been augmented with level-
links, pointers between consecutive nodes at the same depth,
and an array A of the leaves providing a mapping between
temporal points and leaves. So, given any time window
[pi, p j], we can find a set of O(logw) canonical sets which
cover [pi, p j] in O(logw) time by working up in T from the
leaves at A[i] and A[ j]. Furthermore, at each node v, we store
the convex hull of Cv in clockwise order beginning with the
maximum point lexicographically, and we store the index
of the point with the minimal coordinates lexicographically,
providing access to the entire, upper, and lower hulls.

It is well known that we can find the convex hull of a set
of sorted points in linear time using the Graham scan algo-
rithm [20]. Therefore, we construct the tree bottom up from
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the leaves. Each leaf contains a single point and no process-
ing is required. For each internal node v, we merge the sorted
lists from the left and right child into a single list for Cv in
O(|Cv|) time. Then we construct the convex hull of Cv also
in linear time using Graham scan. Each point is stored in at
most O(logn) nodes, and therefore the total space required
for T is O(n logn). We construct each internal node in time
linear in the the number of leaves in its subtree, and thus the
total time required to construct T is O(n logn). We summa-
rize this result in the following lemma.

Lemma 2 We can build a decomposition tree T over n
events in O(n logn) time using O(n logn) space such that
given a time window [pi, p j], we can find O(logw) nodes of
T which cover [pi, p j] in O(logw) time.

Given a window [pi, p j] we call the O(logw) sub-hulls
covering [pi, p j] as canonical sub-hulls, and we call the set
of canonical sub-hulls the canonical cover of the window.
For all the queries in this section, we assume the canonical
decomposition has been precomputed.

Gift Wrapping. A classic algorithm for computing the
convex hull is gift wrapping, also known as Jarvis’s
March [23]. This technique starts at a point pi on the con-
vex hull and through a comparison of the polar angles of the
other points with respect to pi as the center, selects the point
pi+1, such that all other points are to the right of pi+1. If
this search is done linearly, the next point on the hull can be
found in O(n) time, and thus the entire hull can be computed
in O(nh) time. Given a point q on the complete convex hull
of a window, clockwise or counterclockwise Gift Wrapping
queries, locating the clockwise or counterclockwise adjacent
point on the hull, can be done more quickly using our hull
decomposition.

Theorem 3 Time-windowed gift wrapping queries on the
convex hull of [pi, p j] can be answered in O(log2 w) time.

Corollary 4 The convex hull of [pi, p j] can be computed in
O(h log2 w).

This technique can be used to answer tangent queries as
well, where a tangent query reports the two tangents of the
hull passing through a query point q or an exception if q is in
the hull.

Corollary 5 Tangent queries on the convex hull of [pi, p j]
can be answered in O(log2 w) time.

We answer a tangent query via an iterative search; we per-
form a binary search for the tangent in each sub-hull. Thus,
at first it seems that our query time can easily be sped up by
a logarithmic factor via standard fractional cascading tech-
niques. However, the answer to a tangent query in one sub-
hull may not give us enough information about the answer to
a tangent query in another sub-hull. Recall that a convex hull

partitions the plane into the region inside the hull, and a set
of wedges outside the hull, where each wedge corresponds to
the set of query points which will all return the same convex
hull point as the answer to a tangent query (see Fig. 2). Note
that by moving the query point, we can maintain the same an-
swer to a tangent query on one sub-hull while dramatically
changing the answer to the query on other sub-hulls. Thus,
there is no clear strategy on how to preprocess the hulls in
order to leverage fractional cascading and speed up iterative
tangent queries for arbitrary query points.

Linear Programming. In a Linear Programming query,
we are given a direction and would like to find a point on
the complete convex hull furthest in the queried direction.

Theorem 6 Time-windowed linear programming queries on
the convex hull of [pi, p j] can be answered in O(logw) time.

Additionally, we can answer the Line Decision problem, de-
termining if a line intersects the hull.

Corollary 7 Line decision queries on the convex hull of
[pi, p j] can be answered in O(logw) time.

Line Stabbing. For the Line Stabbing query, a query line,
Q, is given and we seek the edges of the completed convex
hull, if any, that intersect the line. Without loss of general-
ity we will consider the problem of directed line stabbing,
i.e., we impose a direction on the query line and return the
intersected edge furthest in that direction. We observe that
computing convex hull of all pairs of canonical sub-hulls is
too inefficient; since they are not separated in space, they
may require a linear number of bridge facets.

First, we need to define some additional terminology. In
Figure 4, we have a few convex hulls and their facet normal
vectors. The circular list D consists of all of the normals
in the sub-hulls sorted in clockwise order. The vector w is
between u and v because w falls between them in the sorted
order. The point p is between the two vectors u and v on
a convex hull because it is extremal for a vector between u
and v, namely w or v itself (see Fig. 5). Finally, v and w are
adjacent vectors in D if they are consecutive in the angular
order.

Lemma 8 If Q intersects the complete hull, then in
O(log2 w) time we can find adjacent normals n1 and n2 in
D such that the intersected facet is between n1 and n2.

Proof. Let d1 and d2 be the left and right perpendicular di-
rections of Q, respectively. Then set πi to be the extremal
point on the complete hull in the direction di for i = 1,2.
Then we iterate through the canonical cover, considering
each canonical sub-hull. Within each sub-hull we iterate
through its facet normal vectors n. If n is between d1 and
d2, we compute, p, the extremal point in the direction n. If
p is to the left of Q, then we set π1 = p and d1 = n, other-
wise we set π2 = p and d2 = n (see Fig. 6). After processing
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Figure 1: Gift wrapping. Figure 2: Tangent query example.
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Figure 4: The point p is extremal for
w which is between u and v.

Figure 5: The solid region of the com-
plete hull contains the points between
the two vector.
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Figure 6: The facet normal n is
queried and found to improve the right
side bound.

all of the facet normals in all of the canonical sub-hulls d1
and d2 will be adjacent vectors. Since we have maintained
the invariant that the facet crossing Q is between them, d1
and d2 are the desired normals. The running time of this al-
gorithm is dominated by the w extremal point queries, each
taking time O(logw) time. However we can speed up the
number of linear programming queries by using weighted
median selection driven prune and search. To start the search
for each convex hull compute the two normals closest to the
perpendiculars of Q. The number of vectors between these
two normals will be the weight for each list and the two nor-
mals will dictate the left and right ends of the lists. Then by
choosing the weighted median of the medians, a single linear
programming query can eliminate a quarter of the remain-
ing weight. Calculating the weighted median takes O(logw)
time and querying the median takes O(logw) time. Because
the hull starts with less than or equal to w total weight, it
takes O(logw) queries to find the adjacent vectors. This
gives a total runtime of O(log2 w). �

Lemma 9 For two edge normals, u and v, that are adjacent
in D, there are at most 3logw points between u and v on the
sub-hulls.

Theorem 10 Time-windowed line stabbing queries on the
convex hull of [pi, p j] can be answered in O(log2 w) time.

Proof. To first establish if the line hits the convex hull we
will run two extremal point queries in the directions perpen-
dicular to the line, similar to how we solved the line decision
problem. Then we use Lemma 8 to find adjacent vectors in
D surrounding the edge we seek, in O(log2 w) time. Now,
Lemma 9 implies there are O(logw) points between these
adjacent vectors on the canonical sub-hulls. So we have
O(log2 w) pairs to check. Thus the above algorithm answers
line stabbing queries in O(log2 w) time. �

Vertical Line Stabbing queries are the special case of line
stabbing where the query lines are oriented vertically. Mem-

bership queries are to given a point, p, decide if p is on the
edge of the completed convex hull. These can be contrasted
with Containment queries which ask whether a point p is
contained by the completed convex hull.

Corollary 11 Vertical line stabbing, membership, and con-
tainment queries on the convex hull of [pi, p j] can also be
answered in O(log2 w) time.

3 Proximity queries

In this final section we will consider windowed queries based
on their proximity. This includes approximate nearest neigh-
bor queries and the construction of proximity graphs.

Preliminaries. The Z-order (or Morton order) is a lin-
ear ordering of the points in R2 introduced by Morton in
1962 [30]. This ordering can be described in many ways, but
for our purposes it is best understood as the depth-first traver-
sal order of points in a quadtree. We will denote this linear
ordering by the symbol ≤Z . Considering points in their Z-
order is a dimension reduction technique that is often used
for proximity based data structures [7, 19].

Lemma 12 Let P be set of points stored in a quadtree, and
C a specific quadtree cell storing the points z0, . . . ,zk in Z-
order. If p is a point in P with z0 ≤Z p ≤Z zk, then p is in
C

Hierarchical decomposition. To support proximity
queries, we will build a decomposition tree over time, as
we did for convex hulls. As before, each node v in the tree
corresponds to a canonical subset Cv, consisting of the points
associated with the leaves in its subtree. However, for prox-
imity queries we will be storing the Z-order for each of the
canonical subsets. This is equivalent to using 2-dimensional
range tree where the first coordinate is a point’s time and
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the second coordinate is its position in Z-order. We will use
the standard fractional cascading techniques to speed up
queries [12]. In addition to the Z-order, we augment each
internal node v with a skip-quadtree Qu built over the points
in Cv. For each cell of the quadtree we store the first and last
points in the cell according to their Z-order. The proof of the
following lemma is given in the appendix.

Lemma 13 Any query window of width w can be covered by
two canonical subsets C1 and C2 each of width less than 2w.
Moreover, we can find C1 and C2 in O(logw) time.

Approximate spherical range searching queries. In an
approximate spherical range searching query a query point
q and radius r are given, and all points whose distance to
q is less than or equal to r must be returned and no points
whose distance to q is greater than (1+ε)r may be returned,
where ε is a fixed constant. The points whose distance to q
is between r and (1+ ε)r may or may not be reported. Due
to space constraints, the proof of the following theorem is
given in the appendix.

Theorem 14 Approximate time-windowed d-dimensional
spherical range reporting queries can be performed in
O(logw+ k) time, for any fixed dimension d ≥ 2.

In our definition of an approximate range query we are as-
suming regions are perfectly spherical. However, our results
can be extended to more general regions using known tech-
niques [16]. Note that in the special case where the query
range is an axis aligned rectangle, we can answer an exact
orthogonal range query in optimal time using known tech-
niques. In the orthogonal range searching problem we are
given a collection points in the plane and an axis aligned
query rectangle from which we must report the set of points
contained within the rectangle. Alstrup et al. [3] give a solu-
tion for orthogonal range searching in R3 using O(n log1+ε n)
space and O(logn+ k) query time. Simply by treating time
as a spatial dimension, this allows us to answer windowed
2-dimensional orthogonal range searching queries.

Approximate nearest neighbor queries. Given a set of
points P and query point q an ε-approximate nearest neigh-
bor query asks for a point p in P whose distance to q is at
most (1+ ε)r where r is the distance to q’s nearest neighbor
in P. The following lemma establishes a relationship be-
tween approximate nearest neighbor queries on multidimen-
sional points and successor queries in the Z-order of those
points. Recall that in the successor query problem we are
given a set of points A on the real line and a query point q on
the line, and we must report the smallest element in A greater
than q.

Lemma 15 (Liao, Lopez and Leutenegger [26]) Let P be
a set of points in Rd . Define a constant c =

√
d(4d +4)+1.

Suppose that we have d+1 shifted lists P+v j for j = 0, . . . ,d
(the specific values of v j are given in [26]) , each one sorted

according to its Z-order. We can find a query point q’s c-
approximate nearest neighbor in P by examining the 2(d+1)
predecessors and successors of q in the lists.

In the windowed model, a successor query corresponds
to a two-dimensional geometric query, where the time of a
point maps to its x coordinate, and the value of the point
maps to its y coordinate. To find the successor of value
q in window [t1, t2], we slide a horizontal line segment
[(t1,q),(t2,q)] upward, and the first point we hit is the an-
swer (see Fig. 8).

We can answer windowed successor queries in O(n logn)
space and O(logw) time per query using a structure similar
to a 2-d range tree. We build a decomposition tree over the
time of the points, where each internal node stores the points
in its canonical set sorted by value. We answer a query by
performing a successor query at each of the O(logw) nodes
which together cover the window, and we speed up the itera-
tive queries at the internal nodes using fractional cascading.

Now, we can leverage our windowed successor data struc-
ture to answer windowed approximate nearest neighbor
queries. In each node of our decomposition tree we store
d+1 copies of its canonical set, sorted according to the d+1
shifted versions of the Z-order from Lemma 15. Given a
query point q and window W = [pi, p j], we find the win-
dowed successor and predecessor in each of the shifted Z-
orders. By Lemma 15, one of the 2(d + 1) points which is
closest points is guaranteed to be a c-approximate nearest
neighbor of q.

Now, we refine our answer to an ε-nearest neighbor via a
binary search over potential distances to the ε-nearest neigh-
bor. The refinement process requires O(log 1

ε
) = O(1) ap-

proximate spherical emptiness queries [4]. For this strat-
egy to work in the windowed model, we must support win-
dowed approximate spherical emptiness queries, which can
be done with minor modifications to our windowed approxi-
mate range query structure. Namely, we report only the first
point found, or empty if the range is empty. This means the
entire binary search takes O(logw) time to complete. Thus,
we have proven the following theorem.

Theorem 16 Approximate time-windowed nearest neighbor
queries in Rd can be performed in O(logw) time, for fixed
d ≥ 2.

Proximity graph constructions. Finally, we can use these
methods to construct most interesting proximity graphs in
linear time. As first step we use our Z-order decomposi-
tion tree to find a set of canonical subsets exactly covering
our query window, taking O(logw) time. Then we merge
their Z-orders into a Z-order for the points in the query win-
dow, taking O(w) time. From the Z-order we compute the
compressed quadtree from of the points in O(w) time [10],
and from the compressed quadtree we compute the well-
separated pair decomposition also in linear O(w) time [28].
With the well-separated pair decomposition the following
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can be constructed in O(w) time: Delaunay triangulation,
minimum spanning tree, nearest neighbor graph and Gabriel
graph [28].
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[18] M. Erwig, R. H. Güting, M. Schneider, and M. Vazirgiannis.
Abstract and discrete modeling of spatio-temporal data types.
In 6th ACM GIS, pages 131–136, 1998.

[19] M. T. Goodrich and J. A. Simons. Fully Retroactive
Approximate Range and Nearest Neighbor Searching. In
Algorithms and Computation, volume 7074 of LNCS, pages
292–301. Springer, 2011.

[20] R. L. Graham. An Efficient Algorithm for Determining the
Convex Hull of a Finite Planar Set. Inf. Process. Lett.,
1(4):132–133, 1972.

[21] R. Grossi and G. F. Italiano. Efficient Splitting and Merging
Algorithms for Order Decomposable Problems. Information
and Computation, 154(1):1–33, 1999.

[22] J. Hershberger and S. Suri. Off-Line maintenance of planar
configurations. J. Algorithms, 21:453–475, 1996.

[23] R. A. Jarvis. On the identification of the convex hull of a
finite set of points in the plane. Inf. Process. Lett., 2:18–21,
1973.

[24] D. G. Kirkpatrick and R. Seidel. Output-size sensitive
algorithms for finding maximal vectors. In Symp. on Comp.
Geom., pages 89–96, 1985.

[25] H. T. Kung, F. Luccio, and F. P. Preparata. On Finding the
Maxima of a Set of Vectors. J. ACM, 22(4):469–476,
October 1975.

[26] S. Liao, M. Lopez, and S. Leutenegger. High dimensional
similarity search with space filling curves. In 17th Int. Conf.
on Data Engineering, pages 615–622, 2001.

[27] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the Sky:
Efficient Skyline Computation over Sliding Windows. In
ICDE, pages 502–513, 2005.
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A Skyline

i jkπ(k) φ(k)π(k) i

Figure 7: Stabbing inequality

In this section,
we form a general
method for answer-
ing queries for the set
of maximal elements
under a preordered
relation and then spe-
cialize this method to
the problem of com-
puting the skyline .
Previously the prob-
lem of computing the
skyline for a fixed-width sliding window was considered by
Lin et al. [27]. The fastest algorithms for skyline run in time
O(n logd−3 n) in the worst case for points in Rd for fixed
d ≥ 4 [11], and the fastest output sensitive algorithms run in
time O(n logd−2 k) for fixed d ≥ 3 [24].

Given a set, S, a binary relation, <, is said to be an (ir-
reflexive) preorder if (1) for all a ∈ S, a 6< a (irreflexive); (2)
for all a,b,c ∈ S if a < b and b < c, then a < c (transitive).
An element, x, in a subset, E, of S is said to be maximal in
E if there does not exist a y ∈ E with x < y. Finally, given a
sequence, ei for 0≤ i < n, of elements from a preordered set
S we define for each element ek the function φ(k) to be the
largest j′ such that ek 6< e j whenever k≤ j ≤ j′; and, π(k) to
be the smallest i′ such that ek 6< ei whenever i′ ≤ i ≤ k. An
element ek is a maximal element of [ei,e j] precisely when
pi(k) ≤ i and j ≤ φ(k), yielding the following lemma illus-
trated in Fig. 7.

Lemma 17 An element ek is a maximal element of the set
[ei,e j] if and only if π(k)≤ i≤ k≤ j≤ φ(k); equivalently, ek
is a maximal element of the set [ei,e j] if and only if the point
(i, j) stabs the rectangle [π(k),k]× [k,φ(k)].

In general, the method for computing φ is to initialize a
data structure C. Then process the temporal-points in or-
der. For each temporal-point ek we query C to find and set
φ[e] = k for all elements e less than ek. Then these points
are removed from C and ek is added to C. The computation
of π uses the same algorithm, but processes points in reverse
order. With φ and π computed, the problem is now reduced
to the rectangle stabbing problem, for which we use existing
data structures.

Lemma 18 (Eppstein et al. [17] and Agarwal et al. [1])
A set of n rectangles whose endpoints lie on the grid
[0,n]× [0,n] can be preprocessed into a data structure of
size O(n1+ε) in O(n1+ε) time that can report the rectangles
stabbed by a query point in O(k) time and count them in
O(1) time, where k is the number of rectangles reported. If
the rectangles are colored, the set of distinct colors stabbed
can be reported in time O(k), where k is the number of
colors reported.

Lemma 19 A sequence of elements, ei for 0 ≤ i < n, from
a preordered set can be preprocessed into a data structure
of size O(n1+ε) in time O(n1+ε) that can report the maxi-
mal elements in a window [ei,e j] in O(k) time where k is the
number of reported elements, assuming that π and φ can be
computed in O(n1+ε) time.

The skyline of a set of points in Rd is defined to be the
maximal elements in the set under the dominance relation
where a point p is said to be dominated by a point p′ if
p[i]≤ p′[i] for 0≤ i < d and p 6= p′. So our general method
applies, for computing the skyline. Mortensen presents a dy-
namic data structure for dominance queries in Rd that sup-
ports insertion and deletion of points in O(logd n) time and
reporting of all points dominated by a given query point in
O(logd n+ k) time where k is the number of reported points
[29]. We can use this data structure to compute φ and π for
the dominance relation in O(n logd n). So by Lemma 19 we
have following theorem.

Theorem 20 A sequence of temporal points, pi for 0 ≤ i <
n, in Rd can be preprocessed into a data structure of size
O(n1+ε) in O(n1+ε) time such that a query for the skyline
of [pi, p j] can be reported in O(k) time. Furthermore, if the
points are colored then the distinct colors on the skyline can
be reported in O(k) time.

B Omissions from Section 2

Proof. [Theorem 3] We first compute the canonical cover.
Then for each of the canonical sub-hulls we perform a bi-
nary search over its points, locating the point p such that the
vector from q to p forms the maximal angle with the pos-
itive x-axis. Then, from these O(logw) points, we choose
the point with maximal angle, completing our gift wrap-
ping query (see Fig. 1). The total time is dominated by the
O(log2 w) time for the binary searches. A counterclockwise
gift wrapping query is answered in a similar manner. �

Proof. [Corollary 4] To compute the full convex hull of
[pi, p j], we begin by locating a point we know to be on the
hull, e.g., the point with the lowest x-value, which can be
done in O(logw). We then perform gift wrapping queries
in O(log2 w) time per query until the whole hull is returned.
Since we perform one query per point on the hull, we per-
form h before returning to our starting point. Therefore we
can compute the entirety of the hull in O(h log2 w) time. �

Proof. [Corollary 5] We first perform a containment query
(Corollary 11) in O(log2 w) time, returning an exception if
the query point is contained in the hull. Now, given a point q
outside the convex hull we suppose that q is on the hull, and
performing a gift wrapping in clockwise and counterclock-
wise directions in O(log2 w) time. Producing the requested
tangents. �
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Proof. [Theorem 6] For this query it suffices to solve the
problem for each of the canonical sub-hulls, and then return
the solution that is furthest in the query direction. Since this
is an iterative searching problem, we can use fractional cas-
cading [12]. For our decomposition tree our catalog graph is
of O(1) degree, as each decomposition node connects to at
most one ancestor, two children, and a left and right node via
level-links (see Fig. 9). This allows us to construct a recur-
sive relation between augmented catalogs, in which we share
every sixteenth element and create sufficient bridge pointers
to allow constant time subsequent searches, while still main-
taining storage and preprocessing proportional to the size of
the decomposition node. This cascading structure allows us
to solve the query in O(logw) time. This query does not take
O(logn) time because, beginning at the edge of our window,
we can navigate through our fractional cascading structure
without routing outside of the window space (see Fig. 3). �

Proof. [Corollary 7] This query reduces to two extremal
point queries in the directions perpendicular to the line. The
two extremal points are separated by the query line if and
only if the line intersects the convex hull. �

Proof. [Lemma 9] Suppose there are four or more points in
a sub-hull between the two edge normals. Then there are at
least three edges in that sub-hull with normals between u and
v one of which must be strictly between u and v. However
u and v were adjacent in the complete list of edge normals.
This is a contradiction so there must be less than four points
between u and v in each sub-hull. Because there are at most
logw sub-hulls, the total number of points between u and v
is 3 logw. �

Proof. [Corollar 11] Vertical line stabbing queries are
solved by the above algorithm. Membership and contain-
ment queries can both be answered with line stabbing queries
of lines passing through the query points. If the two edges
found surround p then we know it is contained in the convex
hull and if p is on either edge then we know it is a member
of the hull. �

C Omissions from Section 3

Proof. [Lemma 13] Let W = [pi, p j] be a window of width
w. Set C1 to be the largest canonical subset containing pi
of width less than 2w, and set C2 to be the canonical subset
adjacent to C1 in level link list in the direction of increasing
time. These sets can be found by following parent pointers
for at most O(logw) levels. Finally since the widths of C1
and C2 are at least w they cover W . �

Proof. [Theorem 14] Let W = [pi, p j] be a window of width
w. To perform a query with W we first use Lemma 13 to find
two canonical subsets Cu and Cv covering our query win-
dow, corresponding to nodes u and v in the decomposition
tree, in O(logw) time. Then we search the quadtrees Qu and

Qv to find their respective sets of inner cells (cells entirely
contained in the approximate region) Iu and Iv each set of
size O(ε1−d) where d is the dimension. This can be done in
O(logw+ ε1−d) = O(logw) time [16].

Then for each of the inner cells I ∈ Iu ∪ Iv we perform
a 2-dimensional range reporting query with the rectangle
[pi, p j]× [z0,z1], where z0 and z1 are the first and last point
in I in Z-order, and record the union of the points reported in
O(logw+ k) time where k is output size. By a simple pack-
ing argument, the total number of inner cells is bounded by
a function of the constants ε and d [19]. Thus, the total time
for the query is O(logw+ k).

By construction we have that W ⊆Cu ∪Cv, i.e. all points
in the window W are contained in leaves of either Tu or Tv.
Furthermore, the set of inner cells produced contain all geo-
metric points in the approximate query range independent of
their time stamp. The query rectangle at each inner cell guar-
antees that we return precisely the set of points contained in
that cell which also have timestamps in the query window.
Thus, returned points are exactly the set of points which are
both temporally in the window W and geometrically in the
approximate range. �

D Omitted Figures

Some figures which are not legible in the two column format
are included on the following page.

time
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Figure 8: Windowed successor query.
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time

Figure 9: Decomposition tree of temporal points. Each temporal point has a corresponding geometric point with coordinates
in R2. Each node stores the convex hull of the points in its subtree.

time

Figure 10: Decomposition tree over temporal points. Each temporal point has a corresponding geometric point with coordinates
in R2. Each node stores the quadtree and z-order of the points in its subtree.
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