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Faster approximation for Symmetric Min-Power Broadcast

G. Calinescu ∗

Abstract

Given a directed simple graph G = (V,E) and a cost
function c : E → R+, the power of a vertex u in
a directed spanning subgraph H is given by pH(u) =
maxuv∈E(H) c(uv), and corresponds to the energy con-
sumption required for the wireless node u to transmit
to all nodes v with uv ∈ E(H). The power of H is given
by p(H) =

∑
u∈V pH(u).

Power Assignment seeks to minimize p(H) while H
satisfies some connectivity constraint. In this paper,
we assume E is bidirected (for every directed edge e ∈
E, the opposite edge exists and has the same cost), a
“source” y ∈ V is also given as part of the input, and
H is required to contain a directed path from y to every
vertex of V . This is the NP-Hard Symmetric Min-Power
Broadcast problem.

In terms of approximation, it is known that one can-
not obtain a ratio better than ln |V |, and at least five al-
gorithms with approximation ratio O(ln |V |) have been
published from 2002 to 2007. Here we take one of
them, the 2(1+ln |V |)-approximation of Fredrick Mtenzi
and Yingyu Wan, and improve its running time from
O(|V ||E|) to O(|E| log2 |V |), by careful bookkeeping
and by using a previously-known geometry-based data
structure.

1 Introduction

We study the problem of assigning transmission power
to the nodes of ad hoc wireless networks to minimize
power consumption while ensuring that the given source
reaches all the nodes in the network (unidirectional links
allowed for broadcast), in the symmetric cost model.
This problem takes as input a directed simple graph
G = (V,E) and a cost function c : E → R+. The
power of a vertex u in a directed spanning simple sub-
graph H of G is given by pH(u) = maxuv∈E(H) c(uv),
and corresponds to the energy consumption required
for the wireless node u to transmit to all nodes v with
uv ∈ E(H). The power (or total power) of H is given by
p(H) =

∑
u∈V pH(u). A “source” (called “root” some-

times in the literature) y ∈ V is also given as part of
the input, and H is required to contain a directed path
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from y to every vertex of V ; we call the problem of min-
imizing the total power while ensuring this connectivity
Symmetric Min-Power Broadcast. Among early work
on this problem we mention [22, 24, 11, 23].
This problem is motivated by minimizing energy con-

sumption in a static multi-hop wireless network, where
c(u, v) represents the transmission power wireless node
u must spend to ensure a packet is received by node v.
Our model is that wireless nodes have several levels of
transmission power. A packet sent by u with power p is
received by all nodes v with c(u, v) ≤ p. This feature is
useful for energy-efficient multicast and broadcast com-
munications.
In some wireless settings, it is reasonable to assume

that u and v are embedded in the two-dimensional Eu-
clidean plane, and c(u, v) is proportional to the distance
from the position of u to the position of v, raised to a
power κ, where κ is fixed constant between 2 and 5.
This is the Euclidean input model.
We do not work in the Euclidean input model, but

make a (less-restrictive) “symmetric” assumption that
E is bidirected, (that is, uv ∈ E if and only if vu ∈ E,
and the two edges have the same cost).
A survey of Power Assignment problems is given by

Santi [20]; like there we only consider centralized al-
gorithms (there is a vast literature on distributed algo-
rithms). Even in the Euclidean input model, Min-Power
Broadcast was proven NP-Hard [11], and it was a folk-
lore result in 2000 that Symmetric Min-Power Broad-
cast is as hard to approximate as Set Cover (this appears
in several papers [11, 17, 23, 7, 2, 16]). Based on Feige’s
hardness result for Set Cover [12], no approximation ra-
tio better than O(lnn) is possible unless P = NP . Here
n = |V |, and from now on m = |E|.
The first O(log n) approximation algorithm was given

by Caragiannis et al. [7] (journal version: [8]). A simi-
lar algorithm was presented in [3], and the simplest and
best variant (ratio of 2(1 + lnn)) of this algorithm was
presented by [18] and achieves a O(mn) running time
(their analysis claims O(mnα(mn)) running time, but
one observation can get rid of the inverse Ackermann
function α in the analysis). Later, [9] obtains another
O(log n) approximation algorithm, with a complicated
algorithms based on [14], that needs multiple calls to
Minimum Weight Perfect Matching. Two other algo-
rithms also achieve a 2(1 + lnn)-approximation ratio:
the Spider algorithm of [4] (which has the same ratio
if the input graph is not bidirected) and the Relative
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Greedy algorithm of [6] (which also achieves the best
known approximation ratio, of 4.2, in the Euclidean in-
put model).

All these algorithms use greedy methods, mostly
adopted from the Steiner Tree problems and its vari-
ants (precisely, [15, 26, 14]). Most of these papers do
not explicitly analyze the running time of the presented
algorithms (and none, as given, is faster than O(mn)).
We set to achieve the same 2(1 + lnn)-approximation
ratio with an improved running time.

For this, we give a faster variant of the “Hypergraph-
Greedy” algorithm of Mtenzi and Wan [18]. It turns out
this algorithm is a special case of the greedy method for
Polymatroid Cover of [25] (a simpler analysis in [13]),
and we use this observation to give an alternative proof
of its approximation ratio. For some readers, the direct
proof of [18] may be more enlightening; we just point
out in this paper that the proof is a special case of the
[13] proof. We achieve a running time of O(m log2 n)
by careful book-keeping and by using a data structure
of [5].

The next section presents the Hypergraph-Greedy al-
gorithm of [18] with our notation, and gives an alter-
native, shorter proof of its approximation ratio, based
on [25] and [7]. Then, in Section 3, we describe how to
use a known data structure. Section 4 combines several
data structures with careful book-keeping and analysis
to obtain the improved running time.

2 Algorithm Description and Approximation Ratio

Given a directed edge uv, its undirected version is the
undirected edge with endpoints u and v; for a set of
directed edges F , we denote by F̂ the multiset of edges
that are the undirected version of the edges of F .

For u ∈ V and r ∈ {c(uv) | uv ∈ E}, let S(u, r) be
the directed star (or, simply, star) consisting of all the
arcs uv with c(uv) ≤ r. We call u the center of S and
note that r is the power of S(u, r). For a directed star
S, let p(S) denote its power, let E(S) be its set of arcs,
and define V (S), its set of vertices, to be its center plus
the heads of its arcs. See Figure 1 for an example. The
algorithm treats V (S) as a hyperedge in a hypergraph
with vertex set V .

The algorithms described use all the possible stars,
and there are O(m) of them (for each vertex, the num-
ber of stars is its degree in the input graph). In the
first phase, the algorithm keeps a set of stars (initially
empty), giving a set of arcs H . It then selects the next
star such that to maximize the decrease in the number of
weakly connected components in (V,H) divided by the
power of the star (see Figure 2). The first phase stops
when (V,H) is weakly connected. At this moment, the
second phase of the algorithm constructs a spanning
tree in the undirected version of (V,H) (for example,
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Figure 1: A star with center x and four arcs, of power
max{2, 3, 4, 5} = 5.
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Figure 2: The current H is drawn as solid segments,
with arrows indicating the direction of the edges. The
directed edges with tail v are drawn as dashed segments.
The star with center v and power 2 has one edge, and
it does not decreases the number of weakly connected
components of H . The star with center v and power
3, with two edges, decreases the number of weakly con-
nected components of H by 1. The star S(v, 4) has
three edges and also achieves a reduction of 1. S(v, 5)
achieves a reduction of 2, and S(v, 8) achieves a reduc-
tion of 3. Among the stars with center v, the algorithm
would choose S(v, 5) as the next star.

by breadth-first search or depth-first search), and it re-
orients if needed the edges of this tree to lead away from
y (the vertex given in the input as the source), and thus
obtains a feasible output. This re-orientation, first ap-
plied in [7], only works if the input graph is bidirected.
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2.1 Approximation Ratio

We first cast the problem in a different setting. A poly-
matroid f : 2N → Z+ on a ground set N is a non-
decreasing (monotone) integer-valued submodular func-
tion. A function f is monotone iff f(A) ≤ f(B) for all
A ⊆ B. A function f is submodular iff f(A) + f(B) ≥
f(A ∪ B) + f(A ∩ B) for all A,B ⊆ N . Polymatroids
generalize matroids which have the additional condition
that f({i}) ≤ 1 for all i ∈ N . We call a subset A ⊆ N
spanning iff f(A) = f(N).

Assume each element j ∈ N has a weight wj . De-
fine fA(B) = f(A ∪ B) − f(A) and t = maxi∈N f({i}).
The greedy algorithm of Wolsey [25] find a Ht-
approximation to the minimum weight polymatroid
spanning set, where Ht is the tth harmonic number,∑t

i=1(1/i), which is known to be at most 1 + ln t.
This algorithm, a generalization of Chvatal’s algorithm
[10] for Set Cover, starts with B = ∅, and as long as
f(B) < f(N), adds to B the element j ∈ N that maxi-
mizes fB({j})/wj .

In our setting, define N to be the set of all stars,
and for a set B of stars, define f(B) to be the size of a

maximal forest in
⋃

S∈B Ê(S). We do have a polyma-
troid: as explained in [21], Example 44.1(a), the rank
function of a matroid (in our case, the graphic matroid,
where a set of edges of an undirected graph is indepen-
dent iff it is a forest) produces a polymatroid. Note
that f(N) = n − 1 and a spanning set in the polyma-
troid corresponds to a set of stars whose arcs form a
spanning weakly connected subgraph of G. Note also
that, if for a set of stars B, we let co(B) be the number

of connected components of (V,
⋃

S∈B Ê(S)), we have
f(B) = |V |−co(B). Then fB(S) = f({S}∪B)−f(B) =
|V |−co(B∪{S})−(|V | − co(B)) = co(B)−co(B∪{S}),
which is the decrease in the number of weakly connected
components in (V,H) when H , given by

⋃
S′∈B E(S′),

is replaced by
⋃

S′∈B E(S′) ∪E(S). With the weight of
a star defined to be its power, the algorithm of [18] is
the greedy algorithm for polymatroids.

Let OPT be an optimum solution of the instance
at hand. Without increasing total power or decreas-
ing connectivity, add, if needed, to OPT every arc vu
with c(vu) ≤ pOPT (v). For each v ∈ V , call the star
S = S(v, pOPT (v)) a star of OPT . Since OPT contains
a path from the source y to every other vertex of G,
we have that the stars of OPT form a spanning set in
the polymatroid above. Thus, using [25], the collection
of stars A selected by the first phase of the algorithm
satisfies:

∑

S∈A

p(S) ≤ (1 + lnn)
∑

S star of OPT

p(S)

≤ (1 + lnn)opt , (1)

where opt = p(OPT ).
Let H be obtained by keeping an arbitrary subtree

of
⋃

S′∈A Ê(S′) and orienting the edges away from the
source y. For vertex u ∈ V , we denote by u′ its parent
in this outgoing arborescence. Also, we denote by c̃(S)
the center of star S. Now, using the argument of [8], we
have:

p(H) =
∑

u∈V

pH(u)

≤
∑

u∈V




∑

S∈A|u=c̃(S)

p(S) +
∑

S∈A|u=c̃(S)′

p(S)




≤ 2
∑

S∈A

p(S),

where we use that a star S ∈ A appears at most twice
in the middle summation: once for the center of S, and
once for the parent in H of the center of S. Combined
with Inequality 1, we obtain the desired approximation
ratio.

3 The data structure used

A Rel-Max data structure stores a list of items i, sorted
by their cost ci (non-decreasing). A query is finding
the j maximizing j/cj . The update consists of, given
i, remove the ith item from the list (this changes the
position of the items k, for k > i). Calinescu and Qiao
[5] present an implementation for a generalization of
Rel-Max queries/updates In their data structure, each
item also has a “coverage” fi, non-decreasing in i, and
one must find the j maximizing fj/cj, while the update
consist of re-setting, for given i and delta > 0, for all
k ≥ i, fk = fk − δ. Their approach is based on keeping
upper convex hulls. See Figure 3 for some intuition.
It seems they re-invented some ideas from [19], also

concerned with keeping convex hulls, under different up-
date operations; [1] being a more recent work on this
topic. [5] obtains an initialization/preprocessing time
of O(l log2 l), a query time of O(log l), and an update
time of O(log2 l), where l is the number of items in the
initial list.

4 Book-keeping

One needs to find the next star at most n times, and
the main challenge is to compute the star that maxi-
mizes the decrease in the number of weakly connected
components in (V,H) divided by the power of the star.
The method of [18] is to try all O(m) stars, and with
careful bookkeeping one gets a O(mn)-time algorithm.
Our goal is O(m log2 n).
For every u, let vu1 , . . . , v

u
d(u) be the neighbors of u in

G, sorted in non-decreasing order by c(uvui ). Let Sj(u)
be the star with center u and power c(uvuj ).
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Figure 3: Points Pi have coordinates (ci, fi). On the
left, an example of points Pi, with the upper convex
hull drawn. Add for convenience P0 with coordinates
(0, 0). The answer to the query is the neighbor of P0 on
the upper hull. On the right, top, the points Pi after
f7 is updated (decreased), with the upper convex hull
drawn. On the right, bottom, the points Pi after an
update with i = 2, causing the second coordinate to
drop for points P2 . . . P7. The upper convex hull is also
drawn.

We keep the following three data structures. Let
Q1, . . . , Ql be the vertex sets of the current weakly con-
nected components of (V,H). We keep the components
by having an explicit representative vertex in each, that
is, an array comp[v] stores the representative of the com-
ponent containing vertex v. We keep l binary search
trees Bi (for i ∈ {1, 2, . . . , l}), one for each component.
The tree Bi keeps, sorted by ID, the nodes of Qi to-
gether with the nodes u such that an edge uv ∈ E ex-
ists with v ∈ Qi; in this case we also store the smallest
j such that vuj ∈ Qi. For each component with vertex
set Qi, we explicitly keep |Qi| and a linked list of its
vertices.

For each u, we keep a list Lu of items j, each cor-
responding to the edge uvuj and of value cj = c(uvuj ),
sorted in non-decreasing order by cj . We only keep the
item j if there exists a Qi with u 6∈ Qi and j is smallest
among those k with vuk ∈ Qi. As an example, in Fig-
ure 1, we only keep items 2, 4, and 5 corresponding to
the edges of cost 3,, 5, and 8. Then it is easy to check
that the star Sj(u) has endpoints in exactly l + 1 sets
Qi, where j is the lth item in Lu. Moreover, among
the stars with center u and endpoints in exactly l + 1
sets Qi, one with minimum power is Sj(u), where j is
the lth item in Lu. Notice also that in this situation,
l is the decrease in the number of weakly components
if E(Sj(u)) is added to H . We also keep, for each u,
the value zu = minj∈Lu

lj/cj, where lj is the position of

item j in Lu, and the item ju that achieves this mini-
mum.

We also keep a binary max-heap with all u ∈ V having
as key the value zu. With these data structures, we can
find the star that maximizes the decrease in the number
of weakly components of H , divided by the power of the
star, if we pick an u with maximum zu and then use
Sju(u). Finding Sju(u) is then done in constant time.

Now we describe how the data structures are main-
tained when some Sju(u) is added to the set of selected
stars. Let lu be such that ju is the lthu item in Lu, and
let j1, . . . , jlu , be such that item ji is the i

th item in Lu.
Let Qk0

be the vertex set of the component of u, and
Qki

be the vertex set of the component of vji . The way
we keep Lu implies that these components are distinct.

The effect of adding Sj(u) to H is the merging into
one of the components Qk0

, Qk1
, . . . , Qkl

. The algo-
rithm will make these merges one by one, first Qk0

with
Qk1

, then the result with Qk2
(if l ≥ 2), and so on.

Consider such a merge between Qr and Qs, and as-
sume by symmetry that |Qr| ≤ |Qs|. We merge Qr into
Qs; that is Qs will be the resulting component. First,
for each vertex in Qr, we add it to the list of vertices of
Qs and change its representative to the representative of
Qs. The running time is O(n logn) over all the merges,
since if we spend time on vertex v, v will become part
of a component that has at least twice as many vertices
as the component of v before the merge.

Second, we traverse (inorder) the binary tree Br, and
for each v in the tree we proceed as described in the
four cases below. In Case 1, v 6∈ Bs; then we insert v in
Bs together with the j-index (if any) it has in Br. In
Case 2, v ∈ Bs and v ∈ Qr; then the v from Bs also
has an index j such that wv

j ∈ Qs and such that j is
the only item in Lv among those k with wv

k ∈ Qs. We
update Bs to mark that v ∈ Qs. We also remove item
j from Lv, updating if necessary, zv, lv, and the binary
max-heap which keeps vertices u with keys zu. Case 3
is when v ∈ Qs (and thus v ∈ Bs), and v 6∈ Qr (recall
that v ∈ Br); in this case, the v in Br also has an index
j such that wv

j ∈ Qr and such that j is the only item
in Lv among those k with wv

k ∈ Qr. We also remove
item j from Lv, updating if necessary, zv, lv, and the
binary max-heap which keeps vertices u with keys zu.
We update Bs to mark that v ∈ Qs. Case 4 is when
v ∈ Bs, but v 6∈ (Qr ∪ Qs); then we have two indices j
(from the v in Br) and j′ (from the v in Bs), such that
wv

j ∈ Qs, and wv
j′ ∈ Qr, and such j is the only item in

Lv among those k with wv
k ∈ Qs, and such that j′ is the

only item in Lv among those k with wv
k ∈ Qr. We will

keep the smaller of j, j′ for the v in Bs, and remove the
larger of j, j′ from Lv, updating if necessary, zv, lv, and
the binary max-heap which keeps vertices u with keys
zu.

To analyze the overall time of this updates, consider
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this: each directed edge uvuj appears in Lu initially, but

will only be removed once, with a time of O(ln2 n). This
time is also enough for updating zu after this removal,
and updating the position of u in the max-heap after zu
changes.

When we merge Br in Bs above, other than removals
from Lv’s, we spend O(log n) per element of Br, to find
and if necessary insert it in Bs. Say we process a v ∈ Br.
If v appears in Br without a j, or in other words, v ∈ Qr,
then we charge this O(log n) to v. Vertex v can be
charged at most lgn times this way, as each time it
belongs to a component with at least twice as many
vertices. If v appears in Br with a j, then we are in the
following case: there a vertex wv

j ∈ Qr, the head of a
directed edge vwv

j . We charge the time spent to directed
edge vwv

j . Notice that wv
j will belong to a component

twice the size, and thus edge vwv
j can be charged at

most lg n times. Each charge is O(lg n), thus we spend
O(lg2 n) per vertex and per directed edge of v.

In conclusion, the running time of the Hypergraph-
Greedy algorithm, implemented with these data struc-
tures is O(m log2 n).
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