
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

On the Rectangle Escape Problem

Sepehr Assadi∗ Ehsan Emamjomeh-Zadeh∗ Sadra Yazdanbod∗ Hamid Zarrabi-Zadeh∗†

Abstract

Motivated by a bus routing application, we study the
following rectangle escape problem: Given a set S of n
rectangles inside a rectangular region R, extend each
rectangle in S toward one of the four borders of R so
that the maximum density over the region R is mini-
mized, where the density of each point p ∈ R is defined
as the number of extended rectangles containing p. We
show that the problem is hard to approximate to within
a factor better than 3/2 in general. When the opti-
mal density is sufficiently large, we provide a random-
ized algorithm that achieves an approximation factor of
1 + ε with high probability improving upon the current
best 4-approximation algorithm available for the prob-
lem. When the optimal density is one, we provide an
exact algorithm that finds an optimal solution in O(n4)
time, improving upon the current best O(n6)-time al-
gorithm.

1 Introduction

Consider a set of electrical components (e.g., chips)
placed on a printed circuit board (PCB), where both
the board and the chips are axis-parallel rectangles. We
want to connect each chip to one of the four sides of the
board using a rectangular bus (see Figure 1). The goal
is to find a routing direction for the chips so that the
maximum number of bus conflicts at any single point
over the board is minimized. This is equivalent to min-
imizing the number of layers needed for routing all the
chips on the board. The problem is called the rectangle
escape problem [3], and has been extensively studied in
the literature (see, e.g., [1, 2, 3, 4, 5, 7, 8, 9, 10]). The
problem is formally defined as follows:

Problem 1 (Rectangle Escape Problem (REP))
Given an axis-parallel rectangular region R, and a set
S of n axis-parallel rectangles inside R, extend each
rectangle in S toward one of the four borders of R, so
that the maximum density over R is minimized, where
the density of a point p ∈ R is defined as the number of
extended rectangles containing p.

∗Department of Computer Engineering, Sharif University of
Technology. {s asadi,emamjomeh,yazdanbod}@ce.sharif.edu,
zarrabi@sharif.edu
†School of Computer Science, Institute for Research in Funda-

mental Sciences (IPM), Tehran, Iran.

Figure 1: An instance of the rectangle escape problem.
Chips are shown in dark, and buses in light gray.

An example of the rectangle escape problem is illus-
trated in Figure 1. In this example, the optimal density,
which is equal to the minimum number of layers needed
for routing the chips is two.

The rectangle escape problem is known to be NP-
hard [3]. The decision version of the problem, called
k-REP, is defined as follows: Given an instance of the
rectangle escape problem and an integer k > 1, deter-
mine whether any routing is possible with a density of
at most k. It is known that the k-REP problem is NP-
complete, even for k = 3 [3]. The best current ap-
proximation algorithm for the optimization version of
the problem is due to Ma et al. [3] that achieves an
approximation factor of 4, using a deterministic linear
programming (LP) rounding technique.

For a special case when the optimal density is 1 (i.e.,
when all chips can be routed with no conflict), the prob-
lem can be solved exactly using a polynomial-time al-
gorithm for the related maximum disjoint subset prob-
lem, for which an O(n6)-time algorithm is proposed by
Kong et al. [1].

Our results. In this paper, we obtain some new re-
sults on the rectangle escape problem, a summary of
which is listed below.

• We show that the k-REP problem is NP-complete
for any k > 2. Given that the problem is polyno-
mially solvable for k = 1, this fully settles the com-
plexity of the problem for all values of k. An impor-
tant implication of this result is that the rectangle
escape problem is hard to approximate to within
any factor better than 3/2, unless P = NP.



25th Canadian Conference on Computational Geometry, 2013

• We present a new algorithm that solves the 1-REP
problem in O(n4) time, improving upon the current
best solution for the problem that requires O(n6)
time [1]. Our algorithm can indeed solve the follow-
ing more general optimization version of the prob-
lem: given an instance of the rectangle escape prob-
lem, find a maximum-size subset of rectangles in S
that can be routed disjointly.

• Despite the fact that the problem is hard to ap-
proximate to within a constant factor when the op-
timal density is low, we present a randomized al-
gorithm that achieves an approximation factor of
1 + ε with high probability, when the optimal den-
sity is at least cε log n, for some constant cε. This
improves, for instances with high density, upon the
current best algorithm of Ma et al. [3] that guaran-
tees an approximation factor of 4 for all instances.
Our algorithm is based on a randomized rounding
technique applied to a linear programming formu-
lation of the problem.

2 Hardness Result

We first show that the k-REP problem is NP-complete,
for any k > 2. As a corollary, we show that the rectangle
escape problem is hard to approximate to within any
factor better than 3/2, unless P = NP. Our hardness
result holds even in a more restricted setting where the
input rectangles are all disjoint.

Theorem 1 The k-REP problem is NP-complete for
k > 2, even if all input rectangles are disjoint.

Proof. We prove by reduction from 3-SAT. The reduc-
tion is similar to that of [3], but uses a more clever
construction to handle the special case of k = 2, and a
more restricted setting where all rectangles are disjoint.
Given an instance of 3-SAT, we create an instance of
2-REP as follows. Fix a rectangular region R. We par-
tition R into four (virtual) sub-regions, labeled with top,
left, variables, and clauses, as shown in Figure 2. Then,
we start building a set of rectangles S inside R as fol-
lows. We first add one long rectangle to the right side
of the variables region, and three long rectangles to the
left, right, and bottom sides of the clauses region, as
shown in Figure 2. The following rectangles are then
added to S.

• For each variable xi, we add a pair of “variable
rectangles” vi and v̄i along each other to the vari-
ables region in such a way that no two rectangles
from different variables can be stabbed by a single
horizontal or vertical line.

• For each clause Cj , we add three “literal rectangles”
in a horizontal row in the clauses region. Each lit-
eral rectangle is placed beneath a variable rectangle

Variables Region

Clauses Region

Top Region

Left Region

(a ∨ b̄ ∨ c)

(a ∨ b ∨ c̄)

a ā

b b̄

c c̄

Figure 2: Reduction from 3-SAT to 2-REP.

corresponding to the literal appeared in the clause.
Again, no two literal rectangles intersect, and no
two of them can be stabbed by a vertical line.

• For each variable, we add a “block gadget” to the
left region, directly to the left of the correspond-
ing variable row. Each gadget is composed of five
smaller rectangles in a cross-shape arrangement, as
shown in Figure 2. Likewise, for each literal in each
clause, we add a block gadget to the top region di-
rectly above the corresponding literal rectangle. If
a literal appears in no clause, we add a block gad-
get above the corresponding variable rectangle in
the top region. The block gadgets are placed in a
way that no two rectangles from different gadgets
can be stabbed by a single horizontal or vertical
line.

Now, we claim that the answer to the constructed in-
stance of 2-REP is yes if and only if the corresponding
3-SAT instance is satisfiable. First, suppose that the
answer to the 2-REP is yes, i.e., there is a proper rout-
ing of rectangles with a density of at most 2. We show
that there is a satisfying assignment for the 3-SAT in-
stance, in which a literal is set to true (resp., false), if
the corresponding variable rectangle is routed rightward
(resp., downward). To show this, first observe that for
each variable vi, the two variable rectangles vi and v̄i
cannot be routed simultaneously to the right, because
otherwise, they will cause a density of 3 on the rectangle
located to the right side of the variables region. More-
over, for each gadget in the top and the left region, the
density over at least one of the gadget rectangles is more
than one, and hence, in a proper routing of rectangles,
no variable rectangle can be routed neither to the top,
nor to the left side.

For each clause, observe that none of its three lit-
eral rectangles can escape upward because of the block
gadgets in the top region, and no two of them can es-
cape simultaneously to neither left nor right, because



CCCG 2013, Waterloo, Ontario, August 8–10, 2013

QRk

Rk−1

Rk−1

Rk−1

Rk−1

Rk

Figure 3: Constructing an instance of k-REP from four
instances of (k − 1)-REP.

of the rectangles put on the left and the right sides
of the clauses region. Therefore, at least one literal
rectangle from each clause must be routed downward.
Furthermore, notice that if a variable rectangle escapes
downward, none of the literal rectangles below it can be
routed downward, because of the rectangle put at the
bottom side of the clauses region.

Now, given a proper routing of the 2-REP instance,
we set variable vi in the 3-SAT instance to 1 if rect-
angle vi escape to the right, otherwise, we set it to 0.
Note that rectangles for vi and v̄i cannot simultane-
ously escape to the right, so this assignment is feasible.
Moreover, for each clause, at least one of its literal rect-
angles, say xi, must escape downward, meaning that its
corresponding variable xi is set to 1 for sure, and thus
the clause is satisfied. Therefore, the 3-SAT instance is
satisfiable. The opposite side can be proved using the
same exact mapping, and taking into account the fact
that there is a proper routing for the top and the left
gadget rectangles, in which they do not interfere with
the rectangles in the variables and the clauses regions.
This completes the NP-completeness proof for k = 2.

To show NP-completeness for other values of k > 2,
we use the following recursive construction. Let Rk−1
be an instance of (k−1)-REP. We construct an instance
Rk of k-REP by putting a large rectangle Q in the mid-
dle, and four instances of Rk−1 around Q, as shown in
Figure 3. The four instances are placed in a way that no
horizontal or vertical line can simultaneously stab any
two of them. Now, suppose that Rk has a proper rout-
ing of density k. In this routing, Q escapes to one of
the four directions, and hence, one of the Rk−1 instances
must have a proper routing of density k− 1. Therefore,
the corresponding 3-SAT instance is satisfiable by in-
duction. The opposite side can be proved analogously
(details are omitted in this version). �

As a corollary of Theorem 1, we obtain the following
inapproximablity result.

Theorem 2 For any α < 3/2, there is no α-
approximation algorithm for the rectangle escape prob-
lem, even if all input rectangles are disjoint, unless P =
NP.

Proof. Suppose by way of contradiction that there is
an algorithm with an approximation factor of α < 3/2.
If we run this algorithm on an instance of the rectan-
gle escape problem with an optimal density of 2, the
algorithm must return a solution with density less than
3/2× 2, which is at most 2 due to the integrality of the
density. Such an algorithm solves the 2-REP problem
exactly, which is a contradiction. �

3 An Exact Algorithm for Unit Density

In this section, we present a dynamic programming algo-
rithm that solves the 1-REP problem in O(n4) time, im-
proving upon the previous solution due to Kong et al. [1]
that requires O(n6) time. Our algorithm solves the fol-
lowing optimization problem.

Problem 2 (Maximum Disjoint Routing) Given
an instance of the rectangle escape problem (Problem 1)
with disjoint rectangles, find the maximum number of
rectangles that can be routed disjointly, i.e., with unit
density.

It is easy to observe that any algorithm for Problem 2
can also solve 1-REP: we first find the maximum num-
ber of rectangles that can be routed disjointly, and then
verify if this number is equal to n. Note that in the
above definition, the initial locations of unescaped rect-
angles are also important: an escaped rectangle cannot
collide with any other rectangle, even if that rectangle
is not escaped.

Let R1, . . . , Rn be the input rectangles, sorted in de-
creasing order of the y-coordinates of their bottom sides.
For a rectangle Ri, the direction d ∈ {left, right, up,
down} is said to be free if by escaping toward that di-
rection, Ri does not collide with any other rectangle in
its initial place. Note that the freeness of direction d
for Ri is independent of the escaping direction of other
rectangles. Furthermore, we define the set {v1, . . . , vk}
(k 6 2n) as the set of all vertical lines obtained by ex-
tending the vertical sides of the rectangles, sorted from
left to right.

To solve Problem 2, we first solve two simpler cases in
which the escaping directions are only vertical. Given
integers 0 6 i 6 n and 1 6 l, r 6 k, we define the
following two subroutines:

• One-Direction(i, l, r): returns the maximum
number of rectangles among R1, . . . , Ri that are be-
tween vl and vr and can be routed upward in unit
density.

• Two-Directions(i, l, r): returns the maximum
number of rectangles among R1, . . . , Ri that are be-
tween vl and vr and can be routed either upward
or downward in unit density.



25th Canadian Conference on Computational Geometry, 2013

vb vl vr

Figure 4: Illustrating Problem 3.

For each triple (i, l, r), the value of both One-
Direction(i, l, r) and Two-Directions(i, l, r) can be
calculated by the following simple greedy algorithm. For
each rectangle Rj (1 6 j 6 i) between vl and vr, find a
free direction upward (and downward, depending on the
subproblem). If such direction exists, route R through
that direction. Note that routing a rectangle vertically
poses no additional restriction on other rectangles in
these two subproblems. Next, we define the following
additional subproblem.

Problem 3 (No-Left-Escape) Given integers 0 6
i 6 n and 1 6 b, l, r 6 k, No-Left-Escape(i, b, l, r),
is defined as the maximum number of rectangles among
R1, . . . , Ri which can be routed in unit density under the
following restrictions:

• only rectangles to the right of vb are allowed to es-
cape,

• no rectangle is allowed to escape leftward, and

• only rectangle between vl and vr are allowed to es-
cape downward.

See Figure 4 for an illustration. To find the value of
No-Left-Escape(i, b, l, r) recursively, we consider all
possible actions for Ri. The first possible action for Ri
is not to escape at all. In this case, the solution is equal
to the solution of No-Left-Escape(i − 1, b, l, r). The
other possible three actions for Ri are listed below. In
what follows, we assume that the considered direction
is free for Ri, and that Ri is allowed to escape through
that direction according to the problem restrictions de-
scribed above. Otherwise, we simply rule out that di-
rection from the possible actions of Ri. Let vα and vβ
be the vertical lines obtained by extending the left and
the right sides of Ri, respectively.

• Downward If Ri escapes downward, the maximum
number of rectangles among R1, . . . , Ri−1 that can
escape is equal to No-Left-Escape(i − 1, b, l, r),
since routing Ri imposes no new restriction on
R1, . . . , Ri−1.

Algorithm 1 Max-Route(i, l, r)

1: if i = 0 then

2: return 0

3: ansn ← Max-Route(i− 1, l, r)

4: ansd ← ansu ← ansl ← ansr ← 0

5: α, β ← indices of the vertical lines through the left

and the right sides of Ri, respectively.

6: if down is feasible for Ri then

7: ansd ← Max-Route(i− 1, l, r) + 1

8: if left is feasible for Ri then

9: ansl ← Max-Route(i− 1,max{l, β}, r) + 1

10: if right is feasible for Ri then

11: ansr ← Max-Route(i− 1, l,min{r, α}) + 1

12: if up is feasible for Ri then

13: ansu ← No-Right-Escape(i−1, α, l, r) + No-

Left-Escape(i− 1, β, l, r) + 1

14: return max{ansn, ansd, ansu, ansl, ansr}

• Upward If Ri escapes upward, one additional re-
striction must be considered: rectangles not to
the right of vβ cannot escape rightward. There-
fore, by the problem definition, each rectangle be-
tween vb and vβ can only escape upward or down-
ward. As such, escaping the maximum number of
rectangles between vb and vβ can be solved inde-
pendently using subroutines One-Direction and
Two-Directions, depending on the position of
vl and vr. The rectangles to the right of vβ form
another subproblem, whose optimal answer is No-
Left-Escape(i− 1, β, l, r).

• Rightward By escaping rightward, one more re-
striction is posed to other rectangles: for any 1 6
j < i, Rj can escape downward if its initial place is
not only to the left of vr, but is also to the left of
vα. It means that if initial position of Rj is not to
the left of vmin{r,α}, it cannot be routed downward.
Therefore, the optimum answer for R1, . . . , Ri−1 in
this case is No-Left-Escape(i−1, b, l,min{r, α}).

The No-Right-Escape is analogously defined, and can
be solved similarly. Now, we have all ingredients neces-
sary to solve Problem 2. Indeed, we solve the following
more general problem:

Problem 4 (Max-Route) Given integers 0 6 i 6 n
and 1 6 l, r 6 k, find the maximum number of rectan-
gles among R1, . . . , Ri that can be routed in unit density
under the following restriction: if a rectangle is not be-
tween vl and vr, it is not allowed to escape downward.

The procedure Max-Route(i, l, r) defined in Algo-
rithm 1 solves the problem as follows. We consider all



CCCG 2013, Waterloo, Ontario, August 8–10, 2013

possible actions for Ri. Except for escaping upward, all
remaining actions can be solved like the previous prob-
lems. When Ri escapes upward, it is enough to cal-
culate the sum of No-Left-Escape(i − 1, β, r, l) and
No-Right-Escape(i − 1, α, r, l), since routing rectan-
gles to the left of vα and routing rectangles to the right
of vβ are two independent subproblems.

Lemma 3 Problem 4 can be solved in O(n4) time.

Proof. To solve this problem, consider a dynamic-
programming version of Max-Route algorithm. First,
using a greedy algorithm, solve the One-Direction
and Two-Directions problems for any tuple (i, l, r),
and store them in a table. This can be done in O(n4)
time. Then, by the definition of problem 3, we can
solve No-Left-Escape and No-Right-Escape inde-
pendently using dynamic programming. Note that in
dynamic programming, the value of each tuple (i, b, l, r)
can be obtained in O(1) time from four previously-
calculated values as described above. Putting all to-
gether, by using the description of Problem 4, each
value of Max-Route(i, l, r) can be obtained from the
previously-calculated values of this function, or solu-
tions of No-Left-Escape and No-Right-Escape.
This can be done in O(1) time assuming that the previ-
ous values are stored in a table. Thus, using a dynamic
programming algorithm, Problem 4 can be solved in
O(n4) time and space. �

The following theorem summarizes the result of this
section.

Theorem 4 1-REP can be solved in O(n4) time.

Proof. Observe that the answer to 1-REP is yes iff the
answer to Problem 4 for (n, 1, k) is equal to n, where k
is the index of the rightmost vertical line. The running
time therefore follows from Lemma 3. �

4 A Randomized Approximation Algorithm

As noted in Section 2, the rectangle escape problem is
NP-hard, even when the optimal density is 2. Therefore,
it is natural to look for approximation algorithms for the
problem. The current best approximation algorithm is
due to Ma et al. [3], which achieves an approximation
factor of 4. The algorithm is based on a determinis-
tic rounding of an integer programming formulation of
the problem. In this section, we show that a standard
randomized rounding technique [6] applied to the same
integer programming formulation of the problem, yields
an approximation factor of 1+ε, when the optimal den-
sity is at least cε log n, for some constant cε.

The integer programming formulation of the problem
is as follows. Let S = {r1, . . . , rn} be the set of input
rectangles inside a region R. We build a grid on top of R

Figure 5: The grid cells for an instance of the rectangle
escape problem.

Algorithm 2 Randomized-Rounding

1: find an optimal solution x∗ to the LP relaxation

2: route each ri to exactly one direction λ according

to the probability distribution x∗i,λ

by extending each side of the rectangles in S into a line
(see Figure 5). This partitions R into a set C of O(n2)
grid cells, where the density over each cell is fixed.

For each rectangle ri, we define four 0-1 variables
xi,l, xi,r, xi,u, and xi,d, corresponding to the four di-
rections left, right, up, and down, respectively. For a
direction λ ∈ {l, r, u, d}, we set xi,λ = 1 if ri is escaped
toward direction λ, otherwise, xi,λ = 0. Since any rect-
angle ri can escape toward only one direction, we have
the constraint xi,l +xi,r +xi,u +xi,d = 1. For each grid
cell c ∈ C, let Pc = {(i, λ) | ri passes c if it goes toward
direction λ}. Note that if cell c is contained in ri, then
(i, λ) ∈ Pc for all directions λ. Let Z be the maximum
density over the region R. Then, for each grid cell c ∈ C

we can add the constraint
∑

(i,λ)∈Pc
xi,λ 6 Z. Now,

the problem can be formulated as the following integer
program.

minimize Z

subject to
∑

(i,λ)∈Pc

xi,λ 6 Z ∀c ∈ C

xi,l + xi,r + xi,u + xi,d > 1 ∀ 1 6 i 6 n

xi,l, xi,r, xi,u, xi,d ∈ {0, 1} ∀ 1 6 i 6 n

The randomized rounding algorithm for the rectangle
escape problem is provided in Algorithm 2. The algo-
rithm works as follows. We first relax the integer pro-
gram to a linear program by replacing the constraints
xi,λ ∈ {0, 1} with xi,λ > 0, and solve the linear pro-
gramming relaxation to obtain a solution x∗ with objec-
tive value Z∗. Then, we randomly route each rectangle
to exactly one direction by interpreting the value of x∗i,λ
as the probability of routing ri toward direction λ.



25th Canadian Conference on Computational Geometry, 2013

Theorem 5 Algorithm 2 is a (1+ε)-approximation al-
gorithm for the rectangle escape problem with high prob-
ability, when Z∗ > 9/ε2 lnn.

Proof. For each cell c, let Dc be the density of c in
the solution returned by the algorithm. Define random
variables Xi,λ, where Xi,λ = 1 if rectangle ri is routed
toward direction λ by the algorithm, and Xi,λ = 0 oth-
erwise. Then, we have Dc =

∑
(i,λ)∈Pc

Xi,λ. Therefore,

E[Dc] =
∑

(i,λ)∈Pc

E[Xi,λ]

=
∑

(i,λ)∈Pc

Pr{Xi,λ = 1}

=
∑

(i,λ)∈Pc

x∗i,λ (by line 2 of algorithm)

6 Z∗. (by LP constraint)

Moreover, for each cell c, the variables Xi,λ for all
(i, λ) ∈ Pc are independent. To see this, notice that
there are two types of variables contributing to the den-
sity of c. If c is contained in a rectangle ri, then Xi,λ,
for all directions λ, pass through c. In this case, we can
replace these four variables in the constraint of c by just
a number 1, since one and exactly one of these variables
will be 1 in any optimal solution of LP. If c is not con-
tained in ri, then (i, λ) contributes to the density of c
for at most one value of λ, since no two directions of
ri can pass through c simultaneously. Therefore, after
substituting the first type of variables in the constraint
of cell c by 1, all other variables Xi,λ for all (i, λ) ∈ Pc
are independent, due to the fact that the direction of
rectangles are chosen independently.

We can now use Chernoff bound to show that Dc is
close to Z∗ with high probability. We use the following
statement of Chernoff bound: If X1, . . . , Xn are inde-
pendent 0-1 random variables, X =

∑
Xi, E[X] 6 U ,

and 0 6 ε 6 1, then Pr {X > (1 + ε)U} 6 e−Uε
2/3.

Since E[Dc] 6 Z∗, by Chernoff bound we have

Pr {Dc > (1 + ε)Z∗} 6 e−Z∗ε2/3.

The solution produced by our algorithm has density
maxc {Dc}. Since there are at most (2n)2 grid cells,
assuming Z∗ > cε lnn for some constant cε > 0, we get

Pr {max
c
{Dc} > (1 + ε)Z∗} 6

∑
c

Pr {Dc > (1 + ε)Z∗}

6 (2n)2 × n−cεε2/3

= 4n2−(cεε
2/3).

Therefore, for a proper constant cε > 9/ε2, the prob-
ability that the solution returned by our algorithm is
greater than (1 + ε)Z∗ is at most 4

n . Taking into ac-
count that Z∗ 6 OPT, it shows that our algorithm has
an approximation factor of 1 + ε with high probability
if Z∗ > cε lnn. �

5 Conclusions

In this paper, we presented some new results on the
rectangle escape problem. In particular, we presented a
lower bound of 3/2 on the approximability of the prob-
lem, and a (1+ε)-approximation algorithm for the prob-
lem when the optimal density is high enough. It remains
open what the best approximation factor is for the prob-
lem in general case.

Acknowledgments The authors would like to thank
Hesam Monfared for suggesting the rectangle escape
problem, and the anonymous referees for their helpful
comments.

References

[1] H. Kong, Q. Ma, T. Yan, and M. D. F. Wong.
An optimal algorithm for finding disjoint rectan-
gles and its application to PCB routing. In Proc.
47th ACM/EDAC/IEEE Design Automation Conf.,
DAC ’10, pages 212–217, 2010.

[2] H. Kong, T. Yan, and M. D. F. Wong. Au-
tomatic bus planner for dense PCBs. In Proc.
46th ACM/EDAC/IEEE Design Automation Conf.,
DAC ’09, pages 326–331, 2009.

[3] Q. Ma, H. Kong, M. D. F. Wong, and E. F. Y. Young.
A provably good approximation algorithm for rectan-
gle escape problem with application to PCB routing.
In Proc. 16th Asia South Pacific Design Automation
Conf., ASPDAC ’11, pages 843–848, 2011.

[4] Q. Ma, E. Young, and M. D. F. Wong. An optimal al-
gorithm for layer assignment of bus escape routing on
PCBs. In Proc. 48th ACM/EDAC/IEEE Design Au-
tomation Conf., pages 176–181, 2011.

[5] M. M. Ozdal, M. D. F. Wong, and P. S. Honsinger. An
escape routing framework for dense boards with high-
speed design constraints. In Proc. 2005 IEEE/ACM
Internat. Conf. Computer-Aided Design, ICCAD ’05,
pages 759–766, 2005.

[6] P. Raghavan and C. D. Thompson. Randomized round-
ing: a technique for provably good algorithms and al-
gorithmic proofs. Combinatorica, 7(4):365–374, 1987.

[7] P.-C. Wu, Q. Ma, and M. D. Wong. An ILP-based au-
tomatic bus planner for dense PCBs. In Proc. 18th Asia
South Pacific Design Automation Conf., ASPDAC ’13,
pages 181–186, 2013.

[8] J. T. Yan and Z. W. Chen. Direction-constrained
layer assignment for rectangle escape routing. In Proc.
2012 IEEE Internat. System-on-Chip Conf., SOCC ’12,
pages 254–259, 2012.

[9] J. T. Yan, J. M. Chung, and Z. W. Chen. Density-
reduction-oriented layer assignment for rectangle es-
cape routing. In Proc. Great Lakes Sympos. VLSI,
GLSVLSI ’12, pages 275–278, 2012.

[10] T. Yan, H. Kong, and M. D. F. Wong. Optimal layer
assignment for escape routing of buses. In Proc. 2009
IEEE/ACM Internat. Conf. Computer-Aided Design,
ICCAD ’09, pages 245–248, 2009.


