
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Spanning Colored Points with Intervals

Payam Khanteimouri ∗ Ali Mohades∗ Mohammad Ali Abam † Mohammad Reza Kazemi∗

Abstract

We study a variant of the problem of spanning colored
objects where the goal is to span colored objects with
two similar regions. We dedicate our attention in this
paper to the case where objects are points lying on the
real line and regions are intervals. Precisely, the goal is
to compute two intervals together spanning all colors.
As the main ingredient of our algorithm, we first intro-
duce a kinetic data structure to keep track of minimal
intervals spanning all colors. Then we present a novel
algorithm using the proposed KDS to compute a pair
of intervals which together span all the colors with the
property that the largest one is as small as possible. The
algorithm runs in O(n2 log n) using O(n) space where n
is the number of points.

1 Introduction

Background. In the view of location planning, sup-
pose there are n facilities with k types like banks, net-
work access points, etc. in the plane. Each type t can
be represented by a unique color c(t), i.e., each facility
of type t is colored with c(t). In some applications, ac-
cessing to one representative of each type suffices which
means location planning is defined based on types rather
than facilities in these applications. One basic problem
arises here is to find a location where there is at least one
representative of each type in its nearby. This suggests
the problems of computing the smallest area/perimeter
color-spanning objects. A region is said to be color-
spanning if it contains at least one point from each color.

The other motivation specially for 1D colored points
comes from planning a toolpath in layered manufactur-
ing [4, 11]. In this application, a 3D object is defined by
its layers in the plane and each layer consists of contours
or polygons. To construct an object, a toolpath like a
laser beam cuts the boundary of contours one by one.
In practice, the laser beam moves in an straight line
from one contour to other and each contour is traced
only once. A trace path contains all contours and the
line segments connecting them. Since the straight lines

∗Laboratory of Algorithms and Computational Geome-
try, Department of Mathematics and Computer Science,
Amirkabir University of Technology (Tehran Polytechnic),
{p.khanteimouri,mohades,mr.kazemi}@aut.ac.ir
†Department of Computer Engineering, Sharif University of

Technology, abam@sharif.edu

indicate the wasted time which is significant, toolpath
planning is computing the trace path which minimize
the total wasted time. In particular, when each con-
tour is almost a single point, the problem is computing
the TSP and clearly is NP-Hard. To obtain a heuristic
method, Tang and Pang [11] proposed an algorithm in
which they compute the smallest color-spanning inter-
val for a set of colored points on the real line. Beside
these two motivations, studying on spanning colored
points has other applications in imprecise data, statisti-
cal clustering, pattern recognition and generalized range
searching [6, 7, 9, 10].

Since the main ingredient of algorithms is a KDS for
maintaining the minimal color-spanning intervals, we
here sketch an overview of Kinetic Data Structures. A
kinetic data structure (KDS) is a structure for keeping
the trajectory of an attribute e.g. the sorting, for mov-
ing objects. We define a set of certificates for a KDS
which are some boolean functions. Indeed, the set of
certificates is a proof scheme for the attribute which
means the validity of all certificates leads to correctness
of the attribute. Therefore, when an event occurs, i.e.,
a certificate fails, we should update the KDS. Thus, we
use a priority queue like a min heap to store the failure
times of the events. A KDS is analysed with the follow-
ing concepts. We say a KDS is compact if it totally uses
O
(
n polylog(n)

)
space and is local if each object partic-

ipates in O
(
polylog(n)

)
certificates. In addition, a KDS

is responsive if it can be updated in O
(
polylog(n)

)
time

when an event occurs. The event which changes the
attribute is an external event and any KDS should be
updated in its failure time. Moreover, there may be an
internal event which means our KDS should be updated
while the attribute remains unchanged. A KDS is said
to be efficient if the ratio of the number of all events
and the number of external events is O

(
polylog(n)

)
.

Related works. In the view of imprecise data, for
a set of n points with k colors, the main problem
is computing exactly k points with different colors in
which a property like diameter, closest pair, and etc. is
minimized/maximized. C. Fan et al. [6] showed that
the problem of computing the largest closest pair is
NP-Hard under the Lp metric (1 ≤ p < ∞) even for
1D points. They [6] also proposed an algorithm with
O(n log n) expected time for computing the maximum
diameter.

In the view of location planning, for a given set of

25th Canadian Conference on Computational Geometry, 2013

n colored points with k colors in the plane, computing
the smallest color-spanning axes parallel rectangle is the
most studied problem. Abellanas et al. [1] proposed an
algorithm of O

(
(n − k)2 log2 k

)
time and O(n) space

while they showed there are Θ
(
(n−k)2

)
minimal color-

spanning rectangles in the worst case. Das et al. [5]
have recently improved the running time to O(n2 log n).
They [5] also present an algorithm in O(n3 log k) time
and O(n) space to solve the arbitrary oriented case. An-
other studied problem by these papers is computing the
smallest color-spanning strip. Das et al. [5] propose
an algorithm in O(n2 log n) time and O(n) space us-
ing the dual of the given points to solve the problem.
The results are near efficient with respect to testing all
minimal objects. Recall that, a minimal color-spanning
object contains at least one point from each color and
any sub-region of it does not contain all colors.

In addition, Abellanas et al. [2] defined the farthest
colored Voronoi diagram (FCVD). For a set of n colored
sites with k colors in the plane, the FCVD is the sub-
division of the plane in which for any region R there is
a unique site p such that any color-spanning circle cen-
tered at a point in R must contain p. Therefore, to com-
pute the smallest color-spanning circle a simple algo-
rithm is to compute the FCVD and test circles centered
at the vertices of FCVD. They [2] proposed an algorithm
with O

(
n2α(k) log k

)
time to compute the FCVD and

the smallest color-spanning circle. The other approach
mentioned by Abellanas et al. [1] is to obtain the small-
est color-spanning circle and the smallest color-spanning
axes-parallel square in O(kn log n) time and O(n) space
using the upper envelope of Voronoi surfaces [8].

Computing the smallest color-spanning interval has
been widely studied by Chen and Misiolek [4]. For a set
of n points with k colors on the real line they [4] showed
that minimal color-spanning intervals form a strictly
increasing sequence. Due to this property they pro-
posed two algorithms for computing the smallest color-
spanning interval. The first algorithm simply compute
the smallest color-spanning interval by a left to right
sweeping in O(n) time and space apart from sorting.
Next, they assumed that points are given one by one in
a sorted order and each point must be processed only
once which is suitable for an online processing. They [4]
proposed an algorithm of O(n) time and O(k) space.

Our results. In this paper, we study on spanning a set
of n points with k colors on the real line by two intervals.
We first assume points are moving on R1. We design a
kinetic data structure for keeping the track of all mini-
mal color-spanning intervals. We show our KDS is effi-
cient, responsive, local and compact. Next, we use this
result to propose an algorithm to compute two intervals
which together span all colors and the largest one is as
small as possible. The algorithm runs in O(n2 log n)
time and O(n) space.

This paper is organized as following. In Section 2 we
show how to keep track of all minimal color-spanning
intervals for a set of moving colored points on R1. Next,
in Section 3 we propose an almost efficient algorithm
to compute two intervals together spanning all colors
and the largest one is as small as possible. Finally we
conclude in Section 4.

2 Minimal Color-Spanning Intervals for Moving
Points

We first pay our attention to static points on the real
line and then switch to moving points where the tra-
jectory of each colored point is a polynomial function
with degree at most s. For moving points, we are inter-
ested in maintaining all minimal color-spanning inter-
vals. Since the problem is trivial for k = 2 we assume
k > 2.

Static Points. Let P = {p1, p2, · · · , pn} be a set of n
colored points with k colors on the real line. We assume
points are in general position which means no two points
coincide. A minimal color-spanning interval (MCSI) is
an interval containing all colors and any sub-interval
of it, does not contain all colors. From the definition,
we can immediately deduce that the colors of the start
point and the end point of an MCSI are different and
unique in the interval. We first present the following
lemma.

Lemma 1 For a set of n points with k colors on the real
line, there are at most n−k+1 minimal color-spanning
intervals.

Proof. Let pi be the start point of an MCSI [pi, pj].
Obviously, pi cannot be the start point of another MCSI
[pi, p

′
j] due to the minimality of both intervals. There-

fore, each MCSI can be uniquely charged to its start
point. On the other hand, the start point cannot be
among the k − 1 rightmost points as MCSI must con-
tain at least k points. These together show the num-
ber of MCSIs is at most n − k + 1. To give a tight
lower bound, consider the sequence 1, 2, · · · , k repeated
n
k times. The number of MCSIs in this example obvi-
ously is n− k + 1. �

To compute the MCSIs, it suffices to sweep the points
from left to right with two sweep lines. The sweep lines
stop at the start and the end points of an interval. To
recognize if the sweep lines indicate an MCSI, we use an
array for keeping the number of points from each color
and a variable for the number of different colors between
the two sweep lines. From the fact that both sweep lines
go forward in each step, the algorithm runs is O(n) time
and space apart from sorting. We avoid the details due
to the simplicity and conclude the following lemma.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Lemma 2 For a set of n points with k colors on the
real line, all minimal color spanning intervals can be
computed in O(n) time and space apart from sorting.

Moving Points. We now concentrate on maintaining
MCSIs while points are moving continiously on the real
line. Let p(t) be the position of point p at time t. We
define the following ordered sets:

• P(t) = {pi1 , · · · , pin} ; pi1(t) < · · · < pin(t),

• M(t) =
{

[pi, pj] | [pi, pj] is an MCSI at time t
}

.

• S(t) =
{
pi | [pi, pj] ∈M(t)

}
,

• E(t) =
{
pj | [pi, pj] ∈M(t)

}
.

Indeed, P(t) is the increasingly ordered list of the
moving points according to their positions at time t.
Moreover, M(t) is the set of all MCSIs [pi, pj] at time
t. Since for any two MCSIs [pi, pj] and [ps, pt], we have
either pi < ps and pj < pt or ps < pi and pt < pj due to
the minimality, M(t) can be recognized as an ordered
list based on MCSI’s start points. We have also stored
the start and respectively the end points of MCSIs at
time t in distinct sets S(t) and E(t). In addition, let
c(p) denotes the color of point p, pred(p) and suc(p) be
the previous and respectively the next point of p with
color c(p).

Now, we show how M(t) changes while the points are
moving. It is obvious while the sorted list of points,
P(t), does not change which means there is no swap
between two consecutive points in P(t), M(t) remains
unchanged. Therefore, we maintain a kinetic sorting for
moving points in P and explain how to handle an event
in the kinetic sorting where two consecutive points p
and q swap.

To handle events, we start with a useful lemma. Sup-
pose there are two MCSIs Ii = [pi, p] and Ij = [pj , q] in
M(t) such that p and q are consecutive points in P(t)
(p < q) —see Figure 1. Therefore, Ii and Ij should also
be consecutive in M(t). Since the intersection of Ii and
Ij contains exactly k− 1 colors

(
all colors except c(q)

)
,

the color of point pi should be the same as the color
of q, i.e, c(pi) = c(q). In addition, pi = pred(q) which
means pi is the previous point of q with color c(q). Put
together we obtain the following result.

Lemma 3 Suppose there are two intervals Ii = [pi, p]
and Ij = [pj , q] in M(t) such that p and q are consecu-
tive in P, then c(pi) = c(q) and pi = pred(q).

Now, we concentrate on cases in which two consecu-
tive points p and q swap their positions in P(t). In all
cases, when M(t) changes we update the sets S(t) and
E(t). The arising cases are as following.

Figure 1: MCSIs Ii = [pi, p] and Ij = [pj , q] for two
consecutive points p and q.

1. p /∈ S(t) ∪ E(t) and q /∈ S(t) ∪ E(t).
In this case, M(t) does not change. If c(p) = c(q),
we update pred and suc of p, q and the adjacent
points.

2. p /∈ S(t) ∪ E(t) and q ∈ S(t) ∪ E(t).
Let I be the MCSI whose one of endpoints is q. We
can distinguish 4 sub-cases. In sub-cases (a) and
(b) p is inside I before the event and in sub-cases
(c) and (d) p is outside I before the event.

(a) p is inside I = [pi, q] and is the only point with
color c(p) in I. Since p is not the end point of
an MCSI, according to Lemma 3 there is no
point v in the left of pi such that c(v) = c(q).
In this case, if there is a point u with color
c(p) in the left of p, precisely u = pred(p), we
first update [pi, q] to [pi, p]. Then, we insert
MCSI [u, q] in M(t) —see Figure 2(a). If u
does not exist no new MCSI is inserted.

(b) p is inside I and there is a point u with color
c(u) = c(p) in I. In this case M(t) does not
change —see Figure 2(b).

(c) p is outside I = [pi, q] and c(p) 6= c(q). since I
is an MCSI, there should be point u inside I
with color c(u) = c(p) —see Figure 2(c). Re-
call that u 6= pi according to Lemma 3. There-
fore, M(t) remains unchanged.

(d) c(p) = c(q) —see Figure 2(d). In this case, we
first update pred and suc of p, q and adjacent
points. Then, we change the interval [pi, q] to
[pi, p] in M(t).

3. p ∈ S(t) ∪ E(t) and q /∈ S(t) ∪ E(t).
This case can be handled in the same manner in
case 2.

4. p ∈ S(t) ∪ E(t) and q ∈ S(t) ∪ E(t).
We can distinguish two cases based on whether
p, q ∈ E(t) or p ∈ S(t) and q ∈ E(t).

(a) p, q ∈ E(t). As Figure 3(a) illustrates, since
[pi, p] is not an MCSI after the swap, we first
remove the interval [pi, p] from M(t) and then
we update the interval [pj , q] to [pj , p].

(b) p ∈ S(t), q ∈ E(t). To handle this case, p af-
fects the interval [pi, q] as an ordinary point.

25th Canadian Conference on Computational Geometry, 2013

case 2(b)

case 2(c)

case 2(a)

case 2(d)

Figure 2: p /∈ S(t) ∪ E(t) and q ∈ S(t) ∪ E(t).

Thus, we consider p as a point inside the inter-
val [pi, q] and handle the event based on case 2.
This happens similarly for q which is inside the
interval [p, pj] —see Figure 3(b). Therefore,
we handle two events in the type of case 2 in-
stead of this case. The case p ∈ E(t), q ∈ S(t)
can be handled similarly.

Note that since a point can simultaneously be start
and end point of MCSIs, more than one of the above
cases may be handled when one event happens. As each
point can appear once as the start or the end point of
MCSIs, there are constant arising cases in an event and
all of them can be independently handled as described
in the above cases without priority.

To test whether p ∈ S(t) in O(log n) time, we main-
tain a dynamic search tree (like a red-black tree) over

case 4(a)

case 4(b)

Figure 3: p ∈ S(t) ∪ E(t) and q ∈ S(t) ∪ E(t).

S(t) supporting deletion and insertion in O(log n) time.
In each event-handling we update this tree by perform-
ing a constant number of deletions and insertions. We
also need a similar search tree over E(t) to test whether
p ∈ E(t).

Since we just use a kinetic sorting over P, our KDS
is obviously compact and local. Moreover, as described
above, each event can be handled in O(log n) time. In
the worst cast, we handle O(n2) events under the as-
sumption that the trajectory of each point is a bounded
degree polynomial. Putting all together we conclude the
following theorem.

Theorem 4 For a set of n moving colored points with
k colors on the real line, there is an efficient, respon-
sive, local and compact KDS which keeps the track of
all minimal color-spanning intervals.

Proof. In order to show our KDS is efficient, we give
a configuration of moving points where MCSIs change
Ω(n2) times when trajectories are bounded degree poly-
nomials. Consider n

2 static points with color 1 and n
2

moving points with color 2 passing through all static
points. When two points of different colors swap, def-
initely an MCSI changes. Therefore, the total number
of external events in this example is Ω(n2) as any point
with color 1 swaps with any point with color 2. This
shows our KDS is efficient as it handles O(n2) events in
the worst case.

�

3 Computing the Smallest Color-Spanning Two In-
tervals

We now present our novel algorithm to compute the
smallest color-spanning two intervals (SCS2I) which
is two intervals together spanning all colors with the
largest one as small as possible.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

We first give a naive algorithm to compute SCS2I. For
each interval [pi, qj] we can compute the smallest inter-
val [ps, pt] which spans the colors that are not appeared
in [pi, pj] in O(n) time using Lemma 2. As there are
O(n2) different intervals, this algorithm runs in O(n3)
time which is far from being efficient.

We next present our main algorithm that uses the
KDS described in the previous section. Suppose P is a
set of n points on the real line, each associated with one
of the given k colors. Let P ′ be obtained by translating
P by a vector ~d to the right such that all points of P are
left to all points of P ′ —see Figure 4. Now, consider the
kinetic maintenance of MCSIs of the set P ∪ P ′ where
points in P are static and points in P ′ move all with
the same speed to the left.

Figure 4: The copied points, P ′, move through the static
original points.

Let I(t) be the smallest color-spanning interval of
P(t) ∪ P ′(t) at time t and set I to be the smallest I(t)
for all t. We first show the length of I, the difference
of its two endpoints denoted by |I|, is the solution to
SCS2I and then we explain how to compute I during
the kinetic maintenance of MCSIs of P ∪ P ′.

Suppose intervals I1 = [pi, pj] and I2 = [ps, pt]
are the solution to the problem of SCS2I such that
|I1| > |I2| —see Figure 5(a). We first give the following
lemma.

Lemma 5 The length of the smallest color-spanning
interval over all time, I, is equal to the length of I1.

Proof. Let |I| be the length of the smallest color-
spanning interval I during the movement of points.
Since P ′(t) is the same as P(t), the intervals I ′1 = [p′i, p

′
j]

and I ′2 = [p′s, p
′
t] in P ′(t) are also the solution to SCS2I

—see Figure 5(b). Now, consider the time in which pj
and p′t are swapped. Since the color of the endpoints of
I1 and I ′2 are unique in both intervals and together span
all colors, the interval I1 = [pi, pj] becomes an MCSI
after the swap —see Figure 5(c) for more illustration.
Therefore, we conclude |I| ≤ |I1|.

To prove |I| ≥ |I1|, for the sake of contradiction
assume |I| < |I1|. Now, consider the time t when
the length of the smallest color-spanning interval is |I|.
Since I consists of points in P(t) ∪ P ′(t) we can define
two sub-intervals over the points in P(t) and respec-
tively P ′(t) which together span all colors and the length
of the largest one is I which is smaller than |I1|. This
leads us to a better solution which is a contradiction.
Therefore, we have |I| = |I1|. �

(a)

(c)

(b)

Figure 5: Intervals I1 and I ′2 becomes an MCSI after
swapping the points pj and p′t.

Note that the smallest color-spanning interval for all
time, I, is appeared at least two times; precisely at times
I ′2 ⊂ I1 and I2 ⊂ I ′1.

We now explain how to compute I, minimum over
all I(t). In general, we can maintain I using a kinetic
tournament over all MCSIs at current time. Note that
even there is no swap in the kinetic sorting, interval I
can combinatorially change. The kinetic maintenance
of I(t) can be simply done by putting a kinetic tour-
nament over intervals in M(t). It is straightforward to
show the kinetic sorting together with the kinetic tour-
nament handle O

(
λs+2(n2) log2 n

)
events where s is the

maximum degree of the polynomials describing the mo-
tions [3]. As we just need I, the minimum interval over
all times, we can do faster as follows. Fortunately, in
our setting where points of P are static and points of P ′
move with the same speed to the left, an MCSI reaches
its minimum length when it appears or disappears from
M(t). Appearance or disappearance of MCSIs happens
at event times where two points swap. Therefore, it
suffices to take the minimum over all MCSIs’ lengths
at their appearance or disappearance times. This obvi-
ously can be done in O(n2) time.

Theorem 6 For a given set of n colored points with k
colors on the real line, the smallest color-spanning two
intervals can be computed in O(n2 log n) time and O(n)
space.

In addition, We can show if the color of given points
is a sequence of 1, 2, · · · , k repeated n

k times, there are
Ω(n2) minimal color-spanning two intervals. So, our al-
gorithm is near efficient with respect to testing all min-
imal color-spanning two intervals.

25th Canadian Conference on Computational Geometry, 2013

4 Conclusion

For a set of n colored points with k colors on the real
line, first the problem of keeping the track of minimal
color-spanning intervals is studied in this paper. We
present a kinetic data structure which it is efficient, re-
sponsive, local and compact. Then, we use this result
to compute two intervals which they span all colors to-
gether and the length of the largest one is minimum.
This is a novel idea which solves a static problem from
the kinetic interpretation of it. We propose an algo-
rithm which compute the smallest color-spanning two
intervals in O(n2 log n) time and O(n) space.

References

[1] M. Abellanas and F. Hurtado and C. Icking and R.
Klein and E. Langetepe and L. Ma and B. Palop and
V. Sacristán. Smallest Color-Spanning Objects. ESA,
Springer-Verlag, 278–289, 2001.

[2] M. Abellanas and F. Hurtado and C. Icking and R.
Klein and E. Langetepe and L. Ma and B. Palop and
V. Sacristán. The Farthest Color Voronoi Diagram and
Related Problems. tech. report. University of Bonn.,
2006.

[3] J. Basch. Kinetic Data Structures. PhD thesis, 1999.

[4] D. Z. Chen and E. Misiolek. Algorithms for inter-
val structures with applications. Proceedings of the
5th joint international frontiers in algorithmics, FAW-
AAIM’11, Springer-Verlag, 196–207, 2011.

[5] S. Das and P. P. Goswami and S. C. Nandy. Small-
est Color-Spanning Object Revisited. Int. J. Comput.
Geometry Appl., 19:457–478, 2009.

[6] C. Fan and W. Ju and J. Luo and B. Zhu. On some
geometric problems of color-spanning sets. Proceedings
of the 5th joint international frontiers in algorithmics,
and 7th international conference on Algorithmic as-
pects in information and management. FAW-AAIM’11.
Springer-Verlag, 113–124, 2011.

[7] P. Gupta and R. Janardan and M. Smid. Further
Results on Generalized Intersection Searching Prob-
lems: Counting, Reporting, and Dynamization. J. Al-
gorithms., 19(2):282–317, 1995.

[8] D. P. Huttenlocher and K. Kedem and M. Sharir. The
Upper Envelope of voronoi Surfaces and Its Applica-
tions. Discrete Computational Geometry, 9:267–291,
1993.

[9] J. Matoušek. On enclosing k points by a circle. Infor-
mation Processing Letters, 53(4):217–221, 1995.

[10] M. Smid. Finding k points with a smallest enclosing
square. MPI-I-92-152, Max-Planck-Institut Inform.,
Saarbr cken, Germany, 1992.

[11] K. Tang and A. Pang. Optimal connection of loops
in laminated object manufacturing. Computer-Aided
Design, 35(11):1011-1022, 2003.

