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Abstract

In this paper, a geometric shortest path problem in
weighted regions is discussed. An arrangement of lines
A, a source s, and a target t are given. The objec-
tive is to find a weighted shortest path, πst, from s
to t. Existing approximation algorithms for weighted
shortest paths work within bounded regions (typically
triangulated). To apply these algorithms to unbounded
regions, such as arrangements of lines, there is a need to
bound the regions. Here, we present a minimal region
that contains πst, called SP-Hull of A. It is a closed
polygonal region that only depends on the geometry of
the arrangement A and is independent of the weights.
It is minimal in the sense that for any arrangement of
lines A, it is possible to assign weights to the faces of
A and choose s and t such that πst is arbitrary close to
the boundary of SP-Hull of A. We show that SP-Hull
can be constructed in O(n logn) time, where n is the
number of lines in the arrangement. As a direct conse-
quence we obtain a shortest path algorithm for weighted
arrangements of lines.

1 Introduction

The geometric shortest path problem ranks among the
fundamental problems studied in Computational Geom-
etry and related fields. In this problem, the input is a
set of regions (often a triangulation), where each region
(triangle) has a corresponding weight, and two points,
source s and target t. The output is the weighted short-
est path from s to t, πst, which is the path with mini-
mum cost. The cost of the path is the total sum of the
length of each segment multiplied by the corresponding
region’s weight.

Mitchell and Papadimitriou [2] introduced this prob-
lem and proposed a (1 + ε)-approximation algorithms.
Subsequently, positioning Steiner points to discretize
the triangulation became a common technique to ob-
tain an approximation for the geometric shortest path
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problem in weighted regions (cf. [3, 4]). The gen-
eral idea of this technique is to place a set of Steiner
points in each triangle and then build a graph by con-
necting them. The approximation solution is achieved
by finding a shortest path inside this graph, by using
well-known combinatorial algorithms (e.g., Dijkstra’s,
BUSHWHACK[4]). Some geometric factors (such as
segment lengths, angles) are taken into account in the
process of Steiner point placement. Therefore, the num-
ber of Steiner points depends on these geometric factors.

To the best of our knowledge, nobody has studied the
weighted shortest path problem when the input is an ar-
rangement of lines. It is impossible to cover the whole
length of the lines with Steiner points, because lines
are infinite and we cannot afford an infinite number of
Steiner points. Therefore, in this context, the first chal-
lenge is to bound the number of Steiner points. Conse-
quently, we need a bound on the region that weighted
shortest paths, from s to t, lie on. After establishing
this bound (i.e., a closed region) the infinite lines can
be clipped to bounded length segments, and the faces
of the arrangement inside that region can be triangu-
lated. Finally, by using the algorithm in [3] a (1 + ε)-
approximation can be obtained.

The formal problem statement is as follows: let s and
t be two points in the plane R2 and let A be an arrange-
ment of n lines li, i = 1 . . . n. For simplicity, assume no
two lines in A are parallel to each other and no three
lines have a common intersection. Each face of A is
assigned positive weight wi. By convention, the weight
of each edge of A is the minimum of the weights of its
adjacent faces. The task is to find a closed region in R2

that contains a weighted shortest path from s to t, πst.

A naive solution is a circle, centered at s whose radius
is the Euclidean distance between s and t multiplied by
wmax = max

i
wi. It is easy to see that πst will be inside

this circle. This circle clips the lines to segments and
the lengths of segments are bounded by the diameter of
the circle. However, this bound is very sensitive to out-
liers and if wmax is large, then so is the size of the circle.
In this paper, we propose an algorithm to construct a
closed polygonal region, called SP-Hull (Shortest Path
Hull), that only depends on the geometry of the ar-
rangement and is independent of the weights. This al-
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gorithm exploits the fact that in an arrangement of lines,
the lines outside of the convex hull of A diverge. There-
fore, any shortest path, started and ended inside of the
convex hull of A, cannot go arbitrarily far from the con-
vex hull (i.e., there is a bound). We show that there are
some polygonal chains that define this bound for short-
est paths, and they intersect in a restricted way. From
this, we construct the SP-Hull. We will prove that any
πst lies inside the SP-Hull. We also justify that this is
an optimally bounded region, one in which πst is located
in the absence of any assumptions on the weights.

The structure of this extended abstract is as follows.
In Section 2, necessary preliminaries are presented. In
Section 3, some relevant geometric properties are dis-
cussed. The construction algorithm for SP-Hull is de-
scribed and analyzed in Section 4. Due to space limita-
tion, some of the proofs of the lemmas are removed.

2 Preliminaries

Let A be an arrangement of n lines li, i = 1 . . . n,
and P be the set of intersection points of li, P =

{p1, p2,⋯, pn(n−1)/2}. The convex hull of P is denoted
by CH(P )= ⟨c1,⋯, cH⟩. Each line li either intersects
CH(P ) twice, at ai1 and ai2 , or contributes a segment to
the boundary of the convex hull, ∂CH(P ), from ai1 ∈ li
to ai2 ∈ li. For each li, i = 1 . . . n, we define two non-
intersecting rays (subset of li) from ai1 and ai2 , re-
spectively toward infinity. Sort all the rays based on
their slopes, and arrange them in a counter-clockwise
order around CH(P ). This defines an order for the rays
R = ⟨r1, r2,⋯, r2n⟩ (Figure 1). This is a circular order
and the relation “<” is well-defined. Note that all the
rays diverge and there is no intersection between any
two of them in the exterior of CH(P ).

For simplicity, it is assumed that s and t are inside (or
on the boundary of) CH(P ). If they are not, a set of at
most three lines, passing through s and t, can be added
to the arrangement. This ensures that s and t are not
outside of CH(P ). However, πst does not necessarily lie
inside CH(P ). For example, in Figure 1, suppose the
weight of the face fi is ”very large” and the weight of
the face fi+1 is ”very cheap”. Then, the shortest path
from s to t goes outside of CH(P ), as depicted in the
figure.

In this paper, each ray is identified by a pair r =

⟨a, d⃗⟩, where a is the starting point on the boundary of
CH(P ) and d⃗ is a vector pointing away from CH(P ).
W.l.o.g., it can be assumed for the remainder of the
paper that the angle between any two consecutive rays,
r1 = ⟨a1, d⃗1⟩, r2 = ⟨a2, d⃗2⟩ ∈ R, is less than π

2
. If it is

not, (since this angle is less than π) one extra ray r′ =
⟨a′, d⃗1+ d⃗2⟩ can be added in between, where a′ is a point
on the boundary of CH(P ), between a1 and a2. The
total number of such angles greater than or equal to

π
2

in R is at most 4. Therefore, by adding a constant
number of rays to R this assumption holds.

Definition 1 (Order of the points on a ray) For
two points x and y on a ray ri = ⟨a, d⃗⟩, x ≺ y if
∣a⃗x∣ < ∣a⃗y∣, where ∣.∣ denotes the length of a vector.

Note that this is defined for points on a ray ri ⊂ lj . The
point a is mapped to zero, and the points on the ray ri
are mapped to R+, in the direction of d⃗.

Definition 2 (Chains: chainccwi and chaincwi )
Let ci be a vertex of CH(P ) corresponding to the
intersection of rays ri−1 and ri. The chainccwi is a
polygonal chain, starting from ci, defined as follows.
Find the normal from ci to ri+1. Let it be incident at
the point hi+1. Find the normal from hi+1 to ri+2 and
repeat until, either the normal is incident on a vertex
of CH(P ) or is incident on a point in the interior
of CH(P ). Then, chainccwi = ⟨ci, hi+1,⋯, hj⟩, where
hj ∈ CH(P ) (see Figure 1). The chaincwi is defined
analogously.

The inner angle between two consecutive segments of
chainccwi is the angle on the left-hand side, when the di-
rection is from ci towards hj. Analogously, for chaincwi ,
it is the angle on the right-hand side.

Figure 1: For each line in the arrangement there are two
rays (in blue). Also, each vertex of CH(P ), denoted by
ci, has two chains, chainccwi and chaincwi (the red dashed
lines in the figure). One of the inner angles of chainccwi
is shown in the figure (incident at ri+3). Furthermore,
suppose the weight of fi is ”very large” and the weight of
fi+1 is ”very cheap”. Then, πst goes outside of CH(P ).

3 Geometric Properties

In this section, some of the geometric properties on the
order of the rays in the set R are discussed. Based on
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these properties, some lemmas about the chains, which
are the primitive elements for constructing SP-Hull are
proven.

Property 1 Let rh < ri < rj be three rays in R and the
angles between rh and ri, and, ri and rj, are both less
than π

2
. Let x (y) be a point on rh (rj).

(a) The normal from x to rj, lies on the left side of
the normal from x to ri, directed from x toward ri.
Analogously, the normal from y to rh, lies on the
right side of the normal from y to ri, directed from
y toward ri (Figure 2 a).

(b) The normals from x and y to ri lie on the opposite
sides of the straight line that connects x to y, xy (or
both coincide with xy) (Figure 2 b).

Proof. The property follows from the fact that rays
in R diverge and do not intersect in the exterior of
CH(P ). ◻

(a) (b)

(c) (d)

Figure 2: a) Property 1a, the normal from x to rj lies on
the left side of the normal from x to ri. b) Property 1b,
the normals from x and y to ri lie on the opposite sides
of xy. c) Property 2b, if xh1 intersects with yh2, then
h2 ≺ x and h1 ≺ y. d) Lemma 1, one of the normals,
either from ci to ri+1 or from ci+1 to ri+k, lies outside of
CH(P ).

Lemma 1 Let ci ∈ rh and ci+1 ∈ rj be two consecutive
vertices of CH(P ). (i) If rh < ri < rj, then one of the
normals from ci or ci+1 to ri lies outside of CH(P ) (or
on its boundary). (ii) One of the normals, either from
ci to rh+1 or from ci+1 to rj−1, lies outside of CH(P )

(or on it) (see Figure 2 d).

Proof. (i) There is an edge e of CH(P ) which is con-
necting ci and ci+1. By Property 1b, normals from ci
and ci+1 lie on the different sides of e or they coincide.
Thus, either one of the normals lies outside or both are
on the boundary of CH(P ). (ii) If the normal from ci
to rh+1 lies outside the lemma is proved. Otherwise, by
first part of this lemma, the normal from ci+1 to rh+1 lies
outside (or on) the CH(P ). Therefore, by Property 1a,
the normal from ci+1 to rj−1 lies outside (or on it). ◻

Property 2 Let ri < rj be two rays in R so that the
angle between them is less than π

2
.

(a) Let x ≺ y be two points on ri. If the normal from x
(y) to rj is at h1 (h2), then h1 ≺ h2.

(b) Let x and y be two points on ri and rj, respectively.
If the normal from x (y) to rj (ri) is at h1 (h2),

and xh1 intersects with yh2, then h2 ≺ x and h1 ≺ y
(Figure 2 c).

Proof. The proof of (a) follows directly from the fact
that rays in R diverge. To prove (b) assume that the
axes are rotated until ri is horizontal. Therefore, yh2 is
vertical. Since ri and rj diverge, if x is chosen s.t. x ≺ h2
then h1 ≺ y. It implies that there will be no intersection.
Therefore, to obtain an intersection between xh1 and
yh2, x should be chosen s.t. h2 ≺ x. By this selection
for x the only possible choice to pick y is h1 ≺ y. ◻

Lemma 2 (i) All inner angles of a chain,
are less than π. (ii) Furthermore, let
chainccwi = ⟨ci, hi+1,⋯,hs−1, hs, hs+1,⋯⟩ and chaincwj
= ⟨cj , h

′
j−1,⋯,h

′
s+1, h

′
s, h

′
s−1,⋯⟩ intersect between rs and

rs+1 (see Figure 3a). Then, the common tangent lt of
chainccwi and chaincwj passes through hs ∈ chainccwi and
h′s+1 ∈ chaincwj .

Proof. (i) It follows directly from the fact that the rays
diverge and chains are defined by the normals to the
rays. (ii) We provide a proof by contradiction for one
the cases, when lt passes through hs−1 and h′s+1. Other
cases for other pairs of vertices are analogous. Since
chainccwi and chaincwj are intersecting, both lie on the
same side of lt. Therefore, the normal from hs−1 to rs
and from h′s+1 to rs both lie on the same side of lt. This
contradicts Property 1b. ◻

Definition 3 (Complete revolution) Suppose R =

⟨r1,⋯,r2n⟩ is the counter-clockwise order of the rays
and chainccwi (chaincwi ) is initiated at ci ∈ CH(P ) where
ci ∈ rj. A chainccwi (chaincwi ), initiated at a point x ∈ rj,
is said to achieve a complete revolution, if it successively
traverse all the rays in (reverse) order and returns back
to rj at a point x′ such that x′ is equal to x or x ≺ x′.

Lemma 3 No chain starting at a vertex ci ∈ CH(P )

achieves a complete revolution.
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(a) (b)

Figure 3: a) Two chains, chainccwi (the red dashed
chain) and chaincwj (the blue dashed chain), and their
common tangent, lt. b) An example of topological struc-
ture of the SP-Hull is shown in black solid lines. The
red dashed line is the assumed weighted shortest path
between s and t.

The proof of this lemma is based on the following ob-
servation. Always there exists a circle cmax, passing
through ci with the center inside CH(P ), such that en-
closes CH(P ). We can prove that the initiated chain at
this vertex lies inside cmax. It implies that this chain
does not achieve a complete revolution.

Lemma 4 Let chainccwi = ⟨ci, hi+1,⋯,hs−1, hs, hs+1,⋯⟩

and chaincwj = ⟨cj , h
′
j−1,⋯,h

′
s+1, h

′
s, h

′
s−1,⋯⟩ intersect be-

tween rs and rs+1 (Figure 3a). Then, chainij=
⟨ci, hi+1,⋯,hs−1, hs, h′s+1, h

′
s+2,⋯,h

′
j−1, cj⟩ is a polygonal

chain, connecting ci to cj and the inner angles of chainij
are less than π.

Proof. By Lemma 2, chainij from ci to hs and from
h′s+1 to cj is convex. Therefore, it is enough to show
that ∠hs−1hsh′s+1 and ∠hsh

′
s+1h

′
s+2 are less than π.

In Lemma 2 we showed that the common tangent of
chainccwi and chaincwj , lt, passes through hs and h′s+1.
Since lt is a straight line and both chains lie on the
same side of lt, ∠hs−1hsh′s+1 and ∠hsh

′
s+1h

′
s+2 are less

than π. ◻

Let CW = {chaincwi ∣ i = 1..H} and CCW =

{chainccwi ∣ i = 1..H}.

Lemma 5 Every ri ∈ R intersects with at least one of
chainccwj ∈ CCW or chaincwj+1 ∈ CW.

Proof. Every ri ∈ R is between two consecutive vertices
of CH(P ), cj and cj+1. By Lemma 1, one of the normals
from cj and cj+1 to ri is not inside CH(P ). W.l.o.g. as-
sume that the normal from cj to ri is not inside. By
Property 1a, chainccwj lies on the left side (or on) the
normal from cj to ri. Therefore, chainccwj ∈ CCW inter-
sects rj . ◻

Lemma 6 Any two chains in CW (or CCW) are either
disjoint or share an end-point at a vertex of CH(P ).

Proof. This proof uses contradiction. Suppose two
chains, chaincwi and chaincwj , intersect between two rays,
rs and rs+1, not at a vertex of CH(P ). Suppose chaincwi
intersects rs at x and rs+1 at h. Also, chaincwj intersects
rs at y and rs+1 at h′. W.l.o.g. assume x ≺ y. If they
intersect, it implies h′ ≺ h. This contradicts Property
2a. ◻

Definition 4 (Maximal chain) Suppose chainccwi
starts at rj and ends at rj+k, that is, chainccwi covers
rays from rj to rj+k−1. We represent chainccwi by a
range [j,⋯, j + k − 1]. It is a subrange1 of a circular
range of integers [1,⋯,2n]. We say chainccwi is maxi-
mal if there is no chainccwx ∈ CCW or chaincwx ∈ CW

such that its representative range fully covers the range
[j,⋯, j + k − 1]. Analogously, the maximal chaincwi is
defined.

Let CCWmax = {chainccwi ∣ i = 1..H, s.t. chainccwi
is maximal} and CWmax = {chaincwi ∣ i = 1..H, s.t.
chaincwi is maximal}. By Lemma 6, CCWmax (CWmax)
is a set of chains such that their representative ranges
are disjoint.

Lemma 7 Suppose chainccwi ∈ CCWmax and it covers
the starting point of chaincwx ∈ CWmax. Then they do
not intersect.

Proof. By definition, chainccwi starts at the boundary
of CH(P ) and ends inside. Therefore chainccwi forms
a closed region with the boundary of CH(P ). By the
assumption of the lemma, chaincwx starts from inside the
corresponding region of chainccwi . If these two chains
intersect, the intersection contradicts Property 2b. ◻

Corollary 1 Let chainccwi , chainccwj ∈ CCWmax

(chaincwi , chaincwj ∈ CWmax) be two disjoint chains.
There is no chaincwx ∈ CWmax (chainccwx ∈ CCWmax)
that intersects both of them.

Proof. If chaincwx intersects chainccwi and chainccwj
without intersecting CH(P ), then by Lemma 7 it must
intersects one of them at least twice. W.l.o.g. assume
that chaincwx intersects chainccwi twice, once to enter the
closed region formed by chainccwi and once to leave it.
The second intersection contradicts Property 2b. ◻

Lemma 8 Each chainccwi ∈ CCWmax intersects exactly
one chaincwj ∈ CWmax, or it ends at a vertex cx ∈

CH(P ).

1For simplicity, we are omitting ”modulo” as this is a circular
range.
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Proof. By definition, chainccwi ∈ CCWmax starts at a
vertex of CH(P ). We prove that if it does not end at
another vertex of CH(P ), then it intersects exactly one
chaincwj ∈ CWmax.

Suppose rs is the ray that chainccwi ends on. Thus,
the intersection of chainccwi and rs is in the interior
of CH(P ). By Lemma 5, there exists another chain,
chainx, that intersects rs outside (or on) CH(P ). This
chainx cannot be a member of CCWmax because it ei-
ther intersects with chainccwi (which contradicts Lemma
6) or fully covers chainccwi (which contradicts maximal-
ity). Therefore, it is a member of CW and intersects
chainccwi . If it is maximal, we have proved that there
exist at least one chain in CWmax that intersects. If it is
not maximal, then there exists a maximal chain, chainy,
that fully covers chainx. By the same reasoning, chainy
cannot be a member of CCWmax. Therefore, chainy
is a member of CWmax and intersects chainccwi (if it
does not intersect, it should fully cover chainccwi which
contradicts maximality of chainccwi ).

Now suppose there are two chains chaincwx and
chaincwy ∈ CWmax, that intersect chainccwi . By Corol-
lary 1, chaincwx and chaincwy should either intersect each
other (which contradicts Lemma 6) or one should fully
cover the other one (which contradicts maximality).
Therefore, there exists exactly one chaincwj ∈ CWmax

that intersects chainccwi . ◻

4 The construction algorithm

In this section, we present an algorithm to construct the
SP-Hull (Algorithm 1). The input is an arrangement of
lines A, a source s, and a target t. The assumption is
that s and t are inside CH(P ). The output is a simple
closed polygonal region SP-Hull that encloses CH(P ).
The idea to construct SP-Hull is to cover all vertices
of CH(P ) by some polygonal chains, chainij , which lie
outside of CH(P ) (see Figure 3b). We will prove that
any weighted shortest path from s to t lies inside SP-
Hull. Furthermore, we will argue its minimality.

Theorem 9 Let A be an arrangement of lines. Any
weighted shortest path between two points inside CH(P ),
lies inside SP-Hull of A, constructed by Algorithm 1.

Proof. This proof has two main steps. First, we prove
that SP-Hull, generated by Algorithm 1, is a simple
polygon that encloses CH(P ). In the second step we
prove, by contradiction, that any weighted shortest path
between s and t, πst, does not go outside of SP-Hull,
where s, t ∈ CH(P ).

Based on the construction in Algorithm 1, SP-Hull
is a sequence of chains, chainij , which do not overlap
and cover all of the rays (Lemma 5). Figure 3b shows
an example of topological structure of SP-Hull around
CH(P ). By Lemma 4, each chainij is a simple chain in

Algorithm 1 SP-Hull

Input: Source (s), target (t), an arrangement of n
lines (A)
Output: A simple closed polygon, SP-Hull

1: Compute convex hull(A), CH = ⟨c1,⋯, cH⟩;
2: Mark all ci ∈ CH as not covered;
3: Find CCWmax and CWmax sets and sort them

based on chains’ subscripts;
4: while all ci’s are not covered do
5: chainccwi = First element of CCWmax;
6: if chainccwi intersects with chaincwk then
7: chainik=Merge (chainccwi , chaincwk );
8: Mark all cj (j = i..k) as covered;
9: else/*chainccwi ends at cx ∈ CH*/

10: chainix = chainccwi ;
11: Mark all cj (j = i..x) as covered;

12: return the list of chainij , sorted by their first index
(i.e., i), as the SP-Hull;

which its inner angles are less than π. It starts and ends
at the vertices of CH(P ). Therefore, the SP-Hull is a
closed simple polygon. Also, each chainij by definition is
outside of CH(P ). Therefore, SP-Hull encloses CH(P ).

Before continuing the proof, let us introduce some
notation. If πx is a polygonal chain and a and b are two
points on πx, then πx[a, b] denotes the subpath of πx
from a to b.

In the second step of the proof, we show that no point
of πst lies in the exterior of SP-Hull. We prove this
by contradiction. Since s and t are inside CH(P ), πst
intersects SP-Hull at least twice. Let i1 and i2 be the
first two consecutive intersections of πst and SP-Hull
(see Figure 3b). Our claim is SP-Hull[i1, i2] is shorter
than πst[i1, i2] which is a contradiction to the fact that
πst is a shortest path.

Suppose there are k regions between i1 and i2 which
are separated by k − 1 rays. W.l.o.g., let the rays in
order be ⟨r1,⋯, rk−1⟩. The number of segments in SP-
Hull[i1, i2] is at most k. Furthermore, the number of
segments in πst[i1, i2] is at least k, as it must traverse
through k diverging regions. We will show that each
segment of SP-Hull[i1, i2], oj , is shorter than the corre-
sponding segment of πst[i1, i2] in that region, πj . Then,
the total length of SP-Hull[i1, i2] is smaller than the to-
tal length of πst[i1, i2] and we will arrive at a contra-
diction.

From the fact that there is no intersection between
SP-Hull[i1, i2] and πst[i1, i2] from i1 to i2, oj and πj
do not intersect. There are two cases: the segment oj
is one of the normals in a chain that is contributing to
SP-Hull, or it is a segment introduced by merging of
two chains. The first case is shown in Figure 4a. In this
case, even if πj is perpendicular, oj is shorter because
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the rays are diverging.
For case 2, assume that the endpoints of oj are q1 and

q2, and the endpoints of πj are q′1 and q′2 (see Figure 4b).
Since rj and rj+1 diverge, translating πj toward CH(P )

makes it shorter. Therefore, the shortest possible length
for πj while avoiding an intersection between oj and πj ,
is when one of the endpoints of πj is as close as possible
to one of the endpoints of oj . Assume q′1 is equal to
q1. Then, oj is shorter than πj because of the following
observation. The distance function from a point x to a
ray r is a convex function (i.e., there is one line segment
that connects x to a point xopt ∈ r such that it has the
minimum length). Assume a line segment from x to
x0 ∈ r. By translating x0 on r toward xopt it length
becomes shorter. ◻

(a) (b)

Figure 4: a) Proof of Theorem 9, case 1. b) Proof of
Theorem 9, case 2.

Theorem 10 For an arrangement of n lines, SP-Hull
can be computed in O(n logn) time.

Proof. Computing the convex hull of P takes
O(n logn) time and its size is O(n) [1].

The key here is that it is possible to find CCWmax

(CWmax) in linear time without computing all chainccwi
(chaincwi ), i = 1⋯H. Lemma 6 implies that if cj ∈ CH
is covered by a chainccwi then we can skip computing
chainccwj and chaincwj , because they are not maximal.
Also, members of CCWmax do not overlap. There-
fore, the computation of CCWmax requires at most two
traversals of the rays.

In the While-loop, CCWmax (CWmax) is a set of non-
overlapping ranges that are sorted. Based on Lemma 8,
each member of CCWmax, either has exactly one inter-
section with a member of CWmax, or both endpoints
of that chain are vertices of CH. Therefore, finding
the intersecting chains takes constant time, by compar-
ing only the endpoints of the first and the last chains
in the sets. When an intersection is detected, then re-
move both chains from the sets, merge them and re-
peat. Since the total number of operations for merging
all intersected chains is equal to the number of rays, the
While-loop takes linear time. ◻

Minimality of SP-Hull

In Theorem 9, we have shown that πst lies inside SP-
Hull. Now we address its minimality. We show that

for any arrangement of lines, A, it is possible to assign
weights to the faces of A and choose s, t ∈ CH(P ) such
that πst is arbitrarily close to the boundary of SP-Hull.

The procedure is as follows. Assign the weight “in-
finity” to the bounded faces of A. By this assignment,
we make sure that πst does not traverses these faces.
Choose one of the chains in SP-Hull, say chainij . This
chain is either chainccwi , or chaincwj , or the result of
merging them. Here, we prove the minimality for the
merging case. The other cases are analogous.

Let chainij be the result of merging chainccwi and
chaincwj . W.l.o.g., assume that chainccwi starts at ci ∈
CH(P ) and intersects CH(P ) at point x ∈ ∂CH(P ).
Place s on ci and t on x. Assume chainccwi traverses
k unbounded faces in order, ⟨f1,⋯, fk⟩. The weight for
the other unbounded faces that are not visited by this
chain, is set to infinity. To make πst close enough to
chainccwi , the corresponding weights for fi, i = 1 . . . k,
are set in such a way that w1 ≫ w2 ≫ ⋯ ≫ wk. It
suffices to set the weights of fi, i = 1 . . . k, as zi. If z
goes to zero, then wi ≫ wi+1 and πst is arbitrarily close
to chainccwi . An analogous argument can be used to
become as close as possible to chaincwj .

5 Further Work

Analogous question arises for existence of such bounded
region for an arrangement of line segments in an appro-
priately defined weighted region problem. Suppose P
is the set of endpoints of line segments and their in-
tersections. It is not difficult to show that if s and t
are inside the CH(P ), then πst will not go further than
the boundary of CH(P ). Also, an interesting exten-
sion of this problem is the question of existence of such
bound for a given arrangement of curves (e.g., algebraic
curves).
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