
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Data Structures for Incremental Extreme Ray Enumeration Algorithms

Blagoy Genov∗

Abstract

Given a halfspace H and a polyhedral cone P with a
known extreme ray set V we consider the problem of
finding the extreme ray set for the cone P ′ = H ∩ P.
Regarding the computational time of the above prob-
lem, best results have been achieved with data struc-
tures based on multidimensional binary search trees.
We refined the existing algorithm by developing a spe-
cific method for tree creation which brought further
computational speedup. Furthermore, we examined al-
ternative data structures based on vantage point trees
and identified potential scenarios for their application.

1 Introduction

Polyhedral Cones. A nonempty set P of vectors in
Rd is called a (convex) polyhedral cone if there exists a
nonzero representation matrix A ∈ Rn×d such that

P := {x ∈ Rd : Ax ≥ 0}.

Those vectors VE ⊆ P which cannot be expressed as a
conical combination of other vectors are called extreme
rays of P. The active set of extreme rays is defined by
means of a mapping

ψ : VE → {0, 1}n

from extreme rays to binary vectors: z = ψ(r) identifies
the row vectors of A which r satisfied with equality, in
the sense that

zi = 0⇒ aTi · r > 0 and zi = 1⇒ aTi · r = 0

where ai is the i-th row vector of A. Given the binary
vectors z = (z1, . . . , zn) and z′ = (z′1, . . . , z

′
n) the oper-

ations ∧ and z̄ (complement) as well as the relations ≤
and < are defined as (see [21]):

z ∧ z′ = (z1 ∧ z′1, . . . , zn ∧ z′n),

z̄ = (z̄1, . . . , z̄n),

z ≤ z′ ⇔ z1 ≤ z′1, . . . , zn ≤ z′n,
z < z′ ⇔ z ≤ z′ and z 6= z′.

The definition of ∨ is analogous to that of ∧. Addition-
ally, we define the population of a binary vector

ρ : {0, 1}n → N0

as the count of its 1 values.
∗Department of Computer Science, University of Bremen, Ger-

many, bgenov@informatik.uni-bremen.de

Extreme Ray Enumeration. For a polyhedral cone P
the extreme ray enumeration is defined as the problem
to find VE out of A. This problem, which is identical
to the vertex enumeration of polytopes, has a number
of algorithmic solutions developed over the years. The
first one, called the double description method, was in-
troduced by Motzkin et al. [20] and later improved by
Fukuda et al. [16]. Further algorithms with historical
significance are the algorithm of Chernikova [12, 19],
the beneath-and-beyond method of Seidel [23, 15], the
randomized algorithm of Clarkson and Shor [13], the de-
randomized algorithm of Chazelle [11] and the reverse
search method of Avis and Fukuda [3, 4]. For the mo-
ment, there is no general algorithm performing in time
polynomial in the size of A and VE [1, 2]. The question
of whether such an algorithm exists is open as well [18].
Yet, for nondegenerate problems polynomial time solu-
tions are available [24, 3, 10].

In this paper, we focus on the practical implemen-
tation of incremental cutting plane algorithms like the
double description method and Chernikova’s algorithm.
Those start with an approximation cone P1 ⊇ P for
which the extreme ray set VE

1 is known and perform
a step by step refinement. At each step, the currently
best known approximation Pi is cut with a new halfs-
pace Hi = {aTi ·x ≥ 0} which splits VE

i into the subsets

V0
i = {r0 ∈ VE

i : aTi · r0 = 0},
V+
i = {r+ ∈ VE

i : aTi · r+ > 0} and

V−i = {r− ∈ VE
i : aTi · r− < 0}.

The set VE
i+1 contains V0

i , V+
i and one new element for

each pair of adjacent extreme rays (r+, r−) ∈ (V+
i ×V

−
i).

In practice, enumerating those pairs is the most time
consuming part of the algorithm. We propose improve-
ments related to the currently used data structures in
order to speed up this process.

Assuming that P is pointed and thus rank[A] = d,
the adjacency test of two extreme rays could be per-
formed in two different ways known as a combinational
(see Lemma 1) and an algebraic test (see Lemma 2).
For the proof of both lemmas we refer to [16, Proposi-
tion 7]. Corollary 3 expresses an incomplete form of the
algebraic test delivering either a negative or an indeci-
sive result.

Lemma 1 (Combinational Test) Two extreme rays
r′, r′′ ∈ VE are adjacent if and only if there is no other

25th Canadian Conference on Computational Geometry, 2013

extreme ray r′′′ ∈ VE such that ψ(r′) ∧ ψ(r′′) < ψ(r′′′).

Lemma 2 (Algebraic Test) Two extreme rays
r′, r′′ ∈ VE are adjacent if and only if rank[A′] = d− 2
where A′ ∈ Rk×d is a submatrix of A containing
only those row vectors ai for which zi = 1 with
z = ψ(r′) ∧ ψ(r′′).

Corollary 3 Two extreme rays r′, r′′ ∈ VE are nonad-
jacent if ρ(z) < d− 2 with z = ψ(r′) ∧ ψ(r′′).

Using the above criteria we can outline a simple al-
gorithm to identify all adjacent extreme ray pairs in
(V+

i ×V
−
i). First, we eliminate all pairs satisfying Corol-

lary 3. We call this a narrowing phase and all remaining
pairs feasible ones. Second, we check each feasible pair
against Lemma 1 for a definite result. We call this a
verification phase.

With regard to the narrowing phase, the enumera-
tion of all feasible pairs has a quadratic complexity in
the worst case, as each pair may indeed be a feasible
one. If, however, the feasible pairs are only a small
fraction, the enumeration could be sped up by applying
the divide-and-conquer approach. First, the set V+

i is
partitioned into finitely many subsets, and then for each
r− ∈ V−i the search for feasible pairs is limited to those
subsets which can produce a valid result. A closely re-
lated problem in metric spaces is the fixed-radius near
neighbor search [7, 8]. Note that we are dealing here
with a nonmetric space.

The divide-and-conquer approach is also applicable
in the verification phase. Each application of Lemma 1
is basically a partial match query [22] on VE

i where the
result is reduced to the existence or nonexistence of a ray
r′′′ matching the given active set constraint. A general
analysis on the lower bounds of this problem (referred
to as a no partial match query) can be found in [9].

Contributions and Related Work. Thus far, the most
efficient implementation of the outlined algorithm has
been given by Terzer et al. [25, 26]. Terzer et al. intro-
duced the bit pattern tree (here bp-tree), a data struc-
ture based on Bentley’s k-d tree [6], on which near
neighbor and partial match queries are performed. The
overall performance of the implementation, however, de-
pends very much on the structure of the bp-trees. Differ-
ently structured trees may require completely different
number of operations to process the same set of queries.
We made use of the fact that in our case all query in-
puts are known before the tree creation and developed
an optimization called query bits neutralization. This
method for tree creation considered the query inputs
during the creation process. The so generated bp-qbn-
trees accelerated the overall computation for most of
the investigated problems. In some cases, the calcula-
tion time was reduced by more than 80%. Furthermore,

S

S0

...

(V0...0,S0...0) (V0...1,S0...1)

...

S1

...
...

Figure 1: Generic structure of the binary tree.

we examined the performance of vp-trees (vantage point
trees) [28], also known as metric trees [27], as alterna-
tive data structures for the algorithm. In this respect,
we identified scenarios for which they tend to perform
better than bp-trees.

2 Binary Trees for Adjacency Tests

In order to examine the performance of bp- und vp-trees
we created a generic framework which supports adja-
cency tests using different binary tree types. In this
section, we briefly introduce three major aspects of its
functionality: tree generation, narrowing and verifica-
tion. Functions whose implementation differs for differ-
ent tree types are called generic. Specific implementa-
tions for bp- and vp-trees are presented in Sections 3
and 4.

Generation. The generation of a binary tree for some
set of extreme rays V involves two major steps. First,
V is recursively partitioned into finitely many subsets
V(0|1)∗ . Each subset corresponds to a single leaf node
of the resulting tree. Second, to each tree node, no
matter if intermediate or leaf, an auxiliary data S(0|1)∗
is attached. This data is produced during the genera-
tion process and encapsulates certain properties of the
extreme rays in the subsequent leaf nodes. The basic
structure of the resulting tree is shown in Figure 1. Its
recursive creation is covered in Function 1 which returns
either an intermediate node consisting of two subnodes
or a leaf one if no further partitioning is desired. The
generic function partition splits the set V into two dis-
joint subsets according to some criteria.

Narrowing. In the narrowing phase, we construct a
binary tree for the set V+

i and perform an operation
similar to a fixed-radius near neighbor search for each
r− ∈ V−i . The implementation of the search procedure
is given in Function 2. It recursively traverses the tree
and enumerates all extreme rays r′ building a feasible
pair with the given ray r. At each recursion step, the

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Function 1 create(V,S)

if leaf condition(V,S) then
return (V,S)

else
((V0,S0), (V1,S1))← partition(V)
T0 ← create(V0,S0)
T1 ← create(V1,S1)
return (T0, T1,S)

end if

Function 2 cand(r, T)

Require: T = (T0, T1,S) if T is an intermediate node
or T = (V,S) if T is a leaf one.
if proceed enum(r,S) then
if leaf(T) then

return {r′ ∈ V : ρ(ψ(r) ∧ ψ(r′)) ≥ d− 2}
else
return cand(r, T0) ∪ cand(r, T1)

end if
else
return ∅

end if

auxiliary data S is used to check whether such rays can
be found in the subsequent leaf nodes. If that is not the
case, the current branch is abandoned. This decision is
made by the generic function proceed enum.

Verification. Here a binary tree is constructed for the
set Vdeg

i = {r ∈ VE
i : ρ(ψ(r)) > d − 1} and then tra-

versed once for each feasible pair (r′, r′′) produced in
the narrowing phase. If no partial match according to
Lemma 1 is found then the corresponding rays are adja-
cent. The query implementation is given in Function 3
where proceed ver is a generic function using the auxil-
iary data S in order to check whether a certain branch
can produce a match.

3 Bit Pattern Trees

In this section, we give the implementation of all generic
functions for bp-trees and present the query bits neu-
tralization method.

Implementation. The partitioning process for bp-
trees is given in Function 4. It selects a vector q ∈
{0, 1}n with exactly one zero bit and groups all extreme
rays r for which q is a valid over-approximation of ψ(r)
into V0 and all others into V1. For each of the resulting
subsets Vk, k ∈ {0, 1}, an active set union uVk over all
ψ(r), r ∈ Vk, is generated and attached to the corre-
sponding tree node as an auxiliary data. It represents
an over-approximation of the active set for each extreme

Function 3 ver(r′, r′′, T)

Require: T = (T0, T1,S) if T is an intermediate node
or T = (V,S) if T is a leaf one.
e← ψ(r′) ∧ ψ(r′′)
if proceed ver(e,S) then
if leaf(T) then

if ∃r′′′ ∈ V \ {r′, r′′} : e < ψ(r′′′) then
return false

else
return true

end if
else

return ver(r′, r′′, T0) and ver(r′, r′′, T1)
end if

else
return true

end if

Function 4 partitionbpt(V)

Let q ∈ {0, 1}n and ρ(q̄) = 1
V0 ← {r ∈ V : ψ(r) ≤ q} ;V1 ← V \ V0
uV0 ←

∨
r∈V0

ψ(r); uV1 ←
∨

r∈V1
ψ(r)

return ((V0, uV0), (V1, uV1))

ray contained in one of the subsequent leaf nodes. Con-
sequently, applying Corollary 3 or Lemma 1 on uVk can
in some cases indicate the result for all extreme rays
stored in the subsequent leaf nodes. The implementa-
tion of proceed enum (see Function 5) and proceed ver
(see Function 6) for bp-trees rests on the above impli-
cation.

Function 5 proceed enumbpt(r,S)

Require: S = uV
if ρ(ψ(r) ∧ uV) ≥ d− 2 then
return true

else
return false

end if

Query Bits Neutralization. Using the vector q, at each
partitioning step we can influence all active set unions
in the left branch by defining a specific position at which
their value is zero. Consequently, we can use this fact
to stimulate the elimination of branches from the search
procedures in both phases. In the narrowing phase,
for example, we can intendedly plant zeros on positions
which are likely to meet nonzero ones in the query input
ψ(r). The idea is to neutralize those positions in ψ(r)
which are likely to be 1 and thus reduce the value of
ρ(ψ(r)∧uV) as much as possible. We call the so chosen
zero positions neutralizers. The determination of the

25th Canadian Conference on Computational Geometry, 2013

Function 6 proceed verbpt(e,S)

Require: S = uV
if e < uV then
return true

else
return false

end if

neutralizers can be done at the beginning of the nar-
rowing phase by analyzing the set of all query inputs.
Thus, if the bp-tree is built out of V+

i then each vector
q is extracted out of V−i .

Neutralizers are also applicable in the verification
phase as each zero position in uV which is nonzero in e
leads to termination of the search in the current branch.
In this phase, however, analyzing the input data may
cause a substantial overhead due to its generally large
size. For those cases, the sets V+

i and V−i could be used
to determine the neutralizers instead as e ∈ (V+

i ×V
−
i).

There are two major metrics to evaluate the quality
of the query bits neutralization. First, the probability
of each neutralizer to meet a nonzero bit for some ar-
bitrary query input. We call this a hit probability. Sec-
ond, the number of neutralizers per active set union. It
should be pointed out that those two factors may eas-
ily build a trade-off. A good neutralizer according to
the first metric might also produce a bad partitioning
where |V0| << |V1| (see Function 4). In those cases,
the impact of the neutralizer is considerably reduced as
it will be planted only in a small fraction of the subse-
quent active set unions. Consequently, for an effective
neutralizer selection both hit probability and potential
partitioning should be taken into account.

4 Vantage Point Trees

In this section, we give the implementation of all generic
functions for vp-trees.

In the partition function (see Function 7) we select
an arbitrary extreme ray v ∈ V, the so called vantage
point, and measure the distance from v to all other rays
in V using the distance function

δ(v, r) = ρ(ψ(v))− ρ(ψ(v) ∧ ψ(r)).

Let δmax be the maximal measured distance. The set
V is then split by selecting some arbitrary distance
l, 0 < l ≤ δmax, and grouping all rays r with δ(v, r) < l
into V0 and all others into V1. To each of the result-
ing subsets Vk, k ∈ {0, 1}, we attach as an auxiliary
data the active set union uVk , the vantage point v, the
distance range qVk and the population range pVk . The
distance range qVk is a closed interval bounded by the
minimal and maximal distance from v to any ray in Vk.
The population range pVk is a closed interval bounded

Function 7 partitionvpt(V)

Let v ∈ V
δmax ← δ(v, r) with r ∈ V : ∀r′ ∈ V, δ(v, r) ≥ δ(v, r′)
Let l ∈ (0, δmax]
V0 ← {r ∈ V : δ(v, r) < l} ;V1 ← V \ V0
uV0 ←

∨
r∈V0

ψ(r); uV1 ←
∨

r∈V1
ψ(r)

qV0 ← [0, l − 1]; qV1 ← [l, δmax]
pV0 ← [pmin0 , pmax0] where
∀r0 ∈ V0, pmin0

≤ ρ(ψ(r0)) ≤ pmax0

pV1 ← [pmin1
, pmax1

] where
∀r1 ∈ V1, pmin1

≤ ρ(ψ(r1)) ≤ pmax1

S0 ← (uV0 , v, qV0 , pV0); S1 ← (uV1 , v, qV1 , pV1)
return ((V0,S0), (V1,S1))

by the minimal and maximal population of the elements
in Vk. With respect to the narrowing phase, the imple-

Function 8 proceed enumvpt(r,S)

Require: S = (uV , v, qV , pV) with qV = [qmin, qmax]
and pV = [pmin, pmax]
c1 ← ρ(ψ(r)) + δ(v, r)− qmin

c2 ← pmax + qmax − δ(v, r)
if c1 ≥ d− 2 and c2 ≥ d− 2 then
return true

else
return false

end if

mentation of proceed enum (see Function 8) rests on
the implication given in the following Lemma 4.

Lemma 4 If the extreme rays r′, r′′ ∈ VE are adjacent
then for any v ∈ VE

ρ(ψ(r′)) + δ(v, r′)− δ(v, r′′) ≥ d− 2 and

ρ(ψ(r′′)) + δ(v, r′′)− δ(v, r′) ≥ d− 2.

Let in the context of Lemma 4 r′ be the argument r from
Function 8. Then for r′′ we use the intervals qV and pV
as an over-approximation for the distance δ(v, r′′) and
the population ρ(ψ(r′′)). As a consequence, the traver-
sal of a certain tree branch needs to be proceeded only if
the inequations given in Lemma 4 hold for any distance
from qV and any population from pV . Otherwise the
nonexistence of feasible candidates in the subsequent
leaf nodes is guaranteed.

For the implementation of proceed ver (see Func-
tion 9) we apply the condition defined in Lemma 5. In
a similar way, for the distance δ(v, r′′′) and the popu-
lation ρ(ψ(r′′′)) we use the ranges qV and pV from the
auxiliary data. In order to maximize the branch elim-
ination the conditional function for bp-trees is invoked
as an additional criterion.

The proofs of Lemmas 4 and 5 can be found in the
full version of the paper.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Lemma 5 If r′, r′′, r′′′ ∈ VE are extreme rays such that
e < ψ(r′′′) for e = ψ(r′) ∧ ψ(r′′) then for any v ∈ VE

ρ(ψ(v) ∧ e) ≤ ρ(ψ(v))− δ(v, r′′′) and

ρ(ψ(v) ∧ e) ≤ ρ(ψ(r′′′))− ρ(ψ(v)) + δ(v, r′′′).

Function 9 proceed vervpt(e,S)

Require: S = (uV , v, qV , pV) with qV = [qmin, qmax]
and pV = [pmin, pmax]
c1 ← ρ(ψ(v) ∧ e)− ρ(ψ(v)) + qmin

c2 ← ρ(ψ(v) ∧ e) + ρ(ψ(v))− pmax − qmax

if (c1 ≤ 0 and c2 < 0) or (c1 < 0 and c2 ≤ 0) then
return proceed verbpt(e, uV)

else
return false

end if

5 Results

In this section, we present the results from a small study
comparing the performance of bp-trees, bt-qbn-trees
and vp-trees. We used our own implementation of the
double description method1 in order to apply the vertex
and facet enumeration on different polytopes. Those in-
cluded samples from the work of Avis et al. [1, 2] and
a small collection of cut [5], metric [14] and randomly
generated 0/1 polytopes by polymake [17]. Table 1 sum-
marizes the results for the cut polytope c7, the metric
one m7, the product of cyclic polytopes cyc4 26 2, the
product of two simplices and a cube glue54, the trun-
cated polytope trunc50 and three randomly generated
0/1 polytopes, one of which was joined with a hyper-
cube.

d bp-trees bp-qbn-trees vp-trees
cyc4 26 2 9 118.6 75.2 117.5
c7 22 110.4 53.0 102.9
m7 22 3463.8 1028.1 9393.9
rnd36 22 1391.8 206.4 319.2
rndcube 31 756.3 715.2 137.9
trunc50 51 470.0 582.7 421.0
glue54 55 22.9 7.3 5.5
rnd64 59 277.6 222.0 168.1

Table 1: Sum of narrowing and verification time (s)

On the basis of the experimental results, we outlined
four major tendencies. First, vp-trees scaled best with
growing dimensionality. This is visible, for instance, in
the calculation times for rnd36 and rnd64, which are
similar problems in a different dimension. Second, bp-
qbn-trees were not suitable for problems where only a

1Available at www.informatik.uni-bremen.de/agbs/bgenov

0

0.2

0.4

0.6

0.8

1

26 28 30 32 34 36 38 40

O
P
S
P
E
R
Q
U
E
R
Y
−
lo
g
2
(|V

+ i
|)

|V
+ i
|−

lo
g
2
(|V

+ i
|)

Iteration step i

O(
∣∣∣V−

i

∣∣∣× log(
∣∣∣V+

i

∣∣∣))

O(
∣∣∣V−

i

∣∣∣× ∣∣∣V+
i

∣∣∣)bp-trees
bp-qbn-trees

vp-trees

Figure 2: Narrowing phase for c7 (snapshot).

small amount of data was processed at each step as the
overhead for selecting neutralizers could not be compen-
sated (see trunc50). Third, the performance of vp-trees
was very sensitive to the size of the population range pV
(see Function 8). The wider the range the worse the per-
formance. Figure 2 illustrates the complexity of the nar-

0

0.2

0.4

0.6

0.8

1

326 328 330 332 334 336 338 340 342

O
P
S
P
E
R
Q
U
E
R
Y
−
lo
g
2
(|V

d
e
g

i
|)

lo
g
3 2
(|V

d
e
g

i
|)−

lo
g
2
(|V

d
e
g

i
|)

Iteration step i

O(log(
∣∣∣Vdeg

i

∣∣∣))

O(log(
∣∣∣Vdeg

i

∣∣∣)3)bp-trees
bp-qbn-trees

vp-trees

Figure 3: Verification phase for glue54 (snapshot).

rowing phase for c7. For the majority of steps vp-trees
could not reach the efficiency of the bp-qbn-trees due to
the size of the population range. In the final steps pV
narrowed down which eventually boosted the vp-trees
performance. In comparison, the verification phase of
glue54 (see Figure 3) illustrates a scenario with minimal
population ranges. Finally, vp-trees showed consider-
ably better results for rndcube which is a problem with
an extremely high rate of negative tests in the verifi-
cation phase. In the most time consuming steps, more
than 99.99% of the tests were negative. In comparison,
for m7 this rate remained between 95 and 99%.

It is worth mentioning that for the generation of the
complexity charts the invocation of proceed enumvpt|bpt
and proceed verbpt counted as one operation. The
execution of proceed vervpt might have produced

25th Canadian Conference on Computational Geometry, 2013

up to two operations due to the potential call to
proceed verbpt.

6 Conclusion

In this paper, we revisited the application of bp-trees
within incremental extreme ray enumeration algorithms
and proposed a dynamic optimization of the trees with
regard to the particular input problem. For most of the
investigated problems a reduction in the overall calcu-
lation time was achieved. Furthermore, we examined
the general suitability of vp-trees as an alternative data
structure and presented problems for which vp-trees
outperformed bp-trees. Still, further improvements are
necessary so that vp-trees become competitive in the
general case.

References

[1] D. Avis and D. Bremner. How good are convex hull
algorithms? In Proceedings of the eleventh annual sym-
posium on Computational geometry, SCG ’95, pages 20–
28, New York, USA, 1995. ACM.

[2] D. Avis, D. Bremner, and R. Seidel. How good are con-
vex hull algorithms? Computational Geometry: Theory
and Applications, 7:265–301, 1997.

[3] D. Avis and K. Fukuda. A pivoting algorithm for con-
vex hulls and vertex enumeration of arrangements and
polyhedra. In Proceedings of the seventh annual sympo-
sium on Computational geometry, SCG ’91, pages 98–
104, New York, USA, 1991. ACM.

[4] D. Avis and K. Fukuda. Reverse search for enumer-
ation. Discrete Applied Mathematics, 65(13):21–46,
1996.

[5] F. Barahona and A. R. Mahjoub. On the cut polytope.
Mathematical Programming, 36(2):157–173, 1986.

[6] J. L. Bentley. Multidimensional binary search trees used
for associative searching. Communications of the ACM,
18(9):509–517, 1975.

[7] J. L. Bentley. A survey of techniques for fixed radius
near neighbor searching. Technical report, Stanford,
CA, USA, 1975.

[8] J. L. Bentley. Multidimensional divide-and-conquer.
Commun. ACM, 23(4):214–229, 1980.

[9] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower
bounds for high dimensional nearest neighbor search
and related problems. In Proceedings of the thirty-
first annual ACM symposium on Theory of computing,
STOC ’99, pages 312–321, New York, USA, 1999. ACM.

[10] D. Bremner, K. Fukuda, and A. Marzetta. Primal-dual
methods for vertex and facet enumeration. Discrete &
Computational Geometry, 20:333–357, 1998.

[11] B. Chazelle. An optimal convex hull algorithm in any
fixed dimension. Discrete & Computational Geometry,
10:377–409, 1993.

[12] N. V. Chernikova. Algorithm for finding a general for-
mula for the non-negative solutions of system of linear
inequalities. U.S.S.R. Computational Mathematics and
Mathematical Physics, 5:228–233, 1965.

[13] K. L. Clarkson and P. W. Shor. Algorithms for diame-
tral pairs and convex hulls that are optimal, random-
ized, and incremental. In Proceedings of the fourth an-
nual symposium on Computational geometry, SCG ’88,
pages 12–17, New York, 1988. ACM.

[14] A. Deza, K. Fukuda, D. Pasechnik, and M. Sato. On
the skeleton of the metric polytope. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 125–136. Springer, 2001.

[15] H. Edelsbrunner. Algorithms in combinatorial geome-
try. Springer-Verlag, New York, 1987.

[16] K. Fukuda and A. Prodon. Double description method
revisited. In Combinatorics and Computer Science.
Springer-Verlag, Berlin/Heidelberg, 1996.

[17] E. Gawrilow and M. Joswig. polymake: a framework
for analyzing convex polytopes. In Polytopes — Com-
binatorics and Computation. Birkhäuser, 2000.

[18] L. Khachiyan, E. Boros, K. Borys, K. M. Elbassioni,
and V. Gurvich. Generating all vertices of a poly-
hedron is hard. Discrete & Computational Geometry,
39(1-3):174–190, 2008.

[19] H. Le Verge. A note on Chernikova’s Algorithm. Tech-
nical Report 635, IRISA, Rennes, France, 1992.

[20] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M.
Thrall. The double description method, in Contribu-
tions to the Theory of Games, volume II, pages 51–73.
Princeton University Press, 1953.

[21] C. Posthoff and B. Steinbach. Logic functions and equa-
tions: Binary models for computer science. Springer,
Dordrecht, The Netherlands, 2004.

[22] R. Rivest. Partial-match retrieval algorithms. SIAM
Journal on Computing, 5(1):19–50, 1976.

[23] R. Seidel. A convex hull algorithm optimal for point
sets in even dimensions. Technical report, Vancouver,
Canada, 1981.

[24] R. Seidel. Output-size sensitive algorithms for construc-
tive problems in computational geometry. PhD thesis,
Ithaca, USA, 1987.

[25] M. Terzer and J. Stelling. Accelerating the computa-
tion of elementary modes using pattern trees. In Pro-
ceedings of the 6th international conference on Algo-
rithms in Bioinformatics, WABI ’06, pages 333–343,
Berlin/Heidelberg, 2006. Springer-Verlag.

[26] M. Terzer and J. Stelling. Large-scale computation of
elementary flux modes with bit pattern trees. Bioinfor-
matics, 24:2229–2235, 2008.

[27] J. K. Uhlmann. Metric trees. Applied Mathematics
Letters, 4(5):61–62, 1991.

[28] P. N. Yianilos. Data structures and algorithms for
nearest neighbor search in general metric spaces. In
Proceedings of the fourth annual ACM-SIAM Sympo-
sium on Discrete algorithms, SODA ’93, pages 311–321,
Philadelphia, PA, USA, 1993. SIAM.

