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Geometric Separators and the Parabolic Lift
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Abstract

A geometric separator for a set U of n geometric ob-
jects (usually balls) is a small (sublinear in n) subset
whose removal disconnects the intersection graph of U
into roughly equal sized parts. These separators provide
a natural way to do divide and conquer in geometric set-
tings. A particularly nice geometric separator algorithm
originally introduced by Miller and Thurston has three
steps: compute a centerpoint in a space of one dimen-
sion higher than the input, compute a conformal trans-
formation that “centers” the centerpoint, and finally,
use the computed transformation to sample a sphere in
the original space. The output separator is the subset
of S intersecting this sphere. It is both simple and ele-
gant. We show that a change of perspective (literally)
can make this algorithm even simpler by eliminating
the entire middle step. By computing the centerpoint
of the points lifted onto a paraboloid rather than using
the stereographic map as in the original method, one can
sample the desired sphere directly, without computing
the conformal transformation.

1 Geometric Separators

A spherical geometric separator of a collection of n balls
in Rd is a sphere S that has at least n

d+2 balls cen-
tered inside, at least n

d+2 centered outside, and inter-

sects at most O(n1−
1
d ) of them (see Section 2 for a

formal definition). The existence of such separators in
two and three dimensions was established by Miller and
Thurston, though their method was quickly adapted to
higher dimensions. Across a series of papers, Miller,
Thurston, Teng, and Vavasis laid out the theory of ge-
ometric separators and their applications to scientific
computing [14, 15, 13, 10, 12]. This line of work is a trea-
sure trove for computational geometers as it hinges on a
novel trick that combines projective and combinatorial
geometry to solve an important algorithmic problem,
solving linear systems arising in finite element analysis.

More generally, geometric separators give a natural
way to do divide and conquer for geometric problems.
They have been applied to various nearest neighbor
search problems [11] as well as to mesh compression [1].
Other variations of geometric separators have been used
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for the Traveling Salesman and Minimum Steiner Tree
problems in geometric settings [18], or for packing and
piercing problems [2].

The Miller-Thurston algorithm for computing a geo-
metric separator maps the n points (the centers of the
balls) to a unit d-sphere in Rd+1 via a stereographic
map. It then computes a centerpoint, which is a geo-
metric generalization of a median (a formal definition
is given in Section 2). There exists a conformal trans-
formation of the points in Rd+1 so that this centerpoint
will lie exactly at the origin. To output a separator, one
samples a random unit vector in Rd+1. The hyperplane
through the origin normal to this vector intersects the
unit d-sphere at a (d − 1)-sphere. The output is just
the stereographic projection of this (d− 1)-sphere back
to Rd. With high probability, such a sphere will be a
geometric separator.

The one aspect of this algorithm that was left to the
reader, was the linear algebra required to compute the
desired conformal transformation. In the original pa-
per, it was simply asserted that it exists. Later pa-
pers explained that it can be computed via Householder
transformations and cited a textbook on matrix compu-
tations. In this paper, we show that this phase of the
algorithm is entirely unnecessary. By working initially
with the parabolic lifting

p 7→
[ p

‖p‖2
]
,

rather than the stereographic map, the desired sphere
can be sampled directly.

Related work In addition to the previously mentioned
work on sphere separators and their applications by var-
ious combinations of Miller, Thurston, Teng, and Vava-
sis, the generalization to other types of contact graphs
and other shapes of separators (in particular hyper-
cubes) was performed by Smith and Wormald [18]. This
method was refined slightly by Chan to apply separators
to geometric hitting set problems [2]. Eppstein et al.
gave a linear-time, deterministic algorithm for finding
geometric separators based on core sets [5]. Har-Peled
gave a simple proof of the existence of geometric sepa-
rators for interior-disjoint disks in the plane (that easily
extends to higher dimensions) [6].
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2 Definitions

Points We treat points in Euclidean space as column
vectors. As the algebra will be in both Rd as well as
Rd+1, we adopt the convention that a boldface vector p
is a vector of Rd and an overline such as in p indicates a
vector in Rd+1. In particular, we write 0 to indicate the
zero vector in Rd. Scalars are italic and when it is useful,
we add a subscript d+ 1 as in pd+1 to indicate a scalar
that is the (d+ 1)st coordinate of a vector in Rd+1. So,
for example, we will write p =

[ p
pd+1

]
to indicate that

p ∈ Rd+1 with its first d coordinates matching those
of p and last coordinate equal to pd+1. Whenever we
speak of Rd as a subspace of Rd+1, it is always assumed
that we mean the hyperplane {p | pd+1 = 0} in Rd+1.

Projections Given a point f =
[

f
fd+1

]
, we define Π1

f
to

be the stereographic map from Rd to the sphere centered
at f with radius fd+1. That is, Π1

f
(p) is the intersec-

tion of the sphere with the line through
[ p
0

]
and the

north pole,
[

f
2fd+1

]
(other than the pole itself). Sim-

ilarly, we define Π∞
f

to be the parabolic lifting map

from Rd to Rd+1 that lifts p to p =
[ p
pd+1

]
so that

p lies on the paraboloid with focal point f and directrix
{pd+1 = −fd+1}. The reason for the notation comes
from the fact that the parabola is the limiting case of
an ellipse formed by moving one focal point to infinity.
We will consider more general stereographic projections
in Section 4. In all cases, these maps are invertible (ex-
cept at the north pole).

We abuse notation slightly and let Π1
f
(S) denote the

set {Π1
f
(p) | p ∈ S} and similarly for Π∞

f
. In par-

ticular, Π1
f
(Rd) denotes the sphere centered at f with

radius fd+1 and Π∞
f

(Rd) denotes the paraboloid with

focal point f and directrix {pd+1 = −fd+1}.

Centerpoints Given n points in Rd, a centerpoint is a
point c ∈ Rd such that any closed halfspace containing
more than nd

d+1 points also contains c. The existence
of centerpoints follows from Helly’s Theorem and the
pigeonhole principle. Let Centerpoint(P ) denote the
set of all centerpoints of the set P .

It is not known how to find a centerpoint determinis-
tically in polynomial time for point sets in Rd. However,
there is an efficient randomized algorithm [3] known for
at least twenty years and some recent work on deter-
ministic approximation algorithms [9, 16].

Sphere Separators A graph separator is a subset
of vertices in a graph whose removal disconnects the
graph. Usually, the goal is to find a small separator
that separates the graph into roughly equal sized pieces.
The most famous example of graphs admitting small
separators is the Planar Separator Theorem of Lipton

and Tarjan [8], which states that a separator of size
O(
√
n) is always possible for planar graphs that has at

least n
3 vertices in each of the resulting components.

The early work on separators was directed at solv-
ing linear systems by generalized nested dissection, a
method for ordering pivots in Cholesky decomposition
of sparse, symmetric, positive definite matrices [7]. Of
particular interest were those linear systems arising in
the finite element method. These systems reflected the
underlying geometric structure of the problem domain
and thus it was natural to look to the geometry to find
small separators [12]. In particular, it often sufficed to
consider various definitions of intersection graphs of sys-
tems of balls.

Let B = {B1, . . . , Bn} be a collection of interior dis-
joint balls in Rd. Let S be a sphere in Rd and let BI(S),
BE(S), and BO(S) be the subsets of B that are interior
to, exterior to, and intersecting S respectively. The fol-
lowing theorem is a combination of the main existence
result for geometric separators with the algorithm used
to prove existence. We state it this way, to make clear
that the geometric challenge for computing a separator
this way lies in finding a stereographic projection to a
sphere that has a centerpoint at the center of the sphere.

Theorem 1 (Sphere Separator Thm.[14, 11, 12])
Let B be a collection of n interior disjoint balls with
centers P . Let v ∈ Rd+1 be chosen uniformly from the
unit d-sphere. If f is a point in Rd+1 such that f is a
centerpoint of Π1

f
(P ) and H = {p | v>(p − f) = 0} is

the hyperplane through f normal to v, then the sphere

S = (Π1
f
)−1(Π1

f
(Rd) ∩H)

has the property that

|BO(S)| = O(n1−1/d), and

|BI(S)|, |BE(S)| ≤ (d+ 1)n

d+ 2

with probability at least 1
2 .

For ease of exposition, we only give this simplest ver-
sion of the theorem. However, it has also been proven
for k-ply neighborhood systems where the balls are per-
mitted to have up to k−wise interior intersections [11]
as well as for α-overlap graphs where two balls are con-
sidered neighbors if for both balls increasing the radius
of one by a factor of α causes them to intersect [12].
In these cases, the bounds depend on k and α respec-
tively, but the algorithm is the same and so the results
of this paper apply to these versions of the theorem as
well. The version stated above, when combined with the
Koebe-Andreev-Thurston embedding theorem for pla-
nar graphs is strong enough to prove the Planar Sepa-
rator Theorem.
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3 The Algorithm

When Archimedes quipped that he could move the earth
if given a sufficiently long lever, he transferred the ma-
jority of the work to the lever builders of his day. We
will do likewise and assume that we are given a long
lever in the form of an algorithm to efficiently compute
a centerpoint of n points in Rd+1. Given such an algo-
rithm, the heavy lifting will be quite easy, and as with
Archimedes, that is entirely the point.

Let P = {p1, . . . ,pn} ⊂ Rd be a set of points. We
first present the Miller-Thurston algorithm for comput-
ing a separator and then present the new simplified ver-
sion.

3.1 The Miller-Thurston Algorithm

Let Π be the stereographic map from Rd to the unit
d-sphere centered at the origin in Rd+1. First, compute

c ∈ Centerpoint(Π(P )).

Find an orthogonal transformation Q such that

Q(c) =
[
0
θ

]
for some θ ∈ R.

Let D =
√

1−θ
1+θ I, where I is the identity on Rd.

Choose a random unit vector v ∈ Rd+1 and let S0 be
the d-sphere formed by intersecting the hyperplane {p |
v>p = 0} with the unit d-sphere centered at the origin.
Output S = Π−1(Q−1Π(DΠ−1(S0))).

3.2 A Simpler Algorithm Using the Parabolic Lift

First, compute

c =
[ c
cd+1

]
∈ Centerpoint(

[ p1

‖p1‖2
]
, . . . ,

[ pn

‖pn‖2
]
).

Next, choose a random unit vector v =
[ v
vd+1

]
∈ Rd+1.

Let

r =

√
cd+1 − ‖c‖2
|vd+1|

.

Output the sphere S with center (c − rv) and
radius r. In the improbable case that vd+1 = 0, the
output is just the hyperplane {p | v>(p− c) = 0}.

3.3 Correctness of the Algorithm

The remainder of this section will prove that the al-
gorithm works. According to the results of Miller et
al. [12], all we need is a stereographic projection of Rd
to a d-sphere such that the projected points have a cen-
terpoint at the center of the sphere. The trick presented
here is that we will instead show how to find a parabolic
lifting that has a centerpoint at the focal point of the
paraboloid. Then, we show that if we have a point f
such that Π∞

f
(P ) has a centerpoint at f , then Π1

f
(P )

also has a centerpoint at f , thus giving the desired map.
For any vector v ∈ Rd+1 and any p ∈ Rd,

v>(Π1
f
(p)− f) = 0 iff v>(Π∞

f
(p)− f) = 0.

That is, for sampling spheres, there is no difference be-
tween using the stereographic map or the parabolic lift-
ing. In fact, we prove a much more general statement
about the equivalence of various stereographic projec-
tions in Theorem 3.

Theorem 2 Let B be a collection of n interior disjoint
balls with centers P = {p1, . . . ,pn} ⊂ Rd and let S be
the sphere output by the algorithm in Section 3.2. Then,

|BO(S)| = O(n1−1/d), and

|BI(S)|, |BE(S)| ≤ (d+ 1)n

d+ 2

with probability at least 1
2 .

Proof. Using Theorem 1, it will suffice to show there
exists f such that S = (Π1

f
)−1(Π1

f
(Rd) ∩H) where

H = {p | v>(p− f) = 0}

and f ∈ Centerpoint(Π1
f
(P )). The equivalence of dif-

ferent stereographic projections proven in Theorem 3
implies that it will suffice to prove the same facts re-
placing the stereographic map Π1

f
with the parabolic

lift Π∞
f

. We will show that the focal point that makes
this true is

f =
[ c

1
2

√
cd+1−‖c‖2

]
,

where c =
[ c
cd+1

]
is the centerpoint of Π∞

f
(P ) computed

in the first step.
First, we show that S = (Π∞

f
)−1(Π∞

f
(Rd) ∩H). We

will assume without loss of generality that vd+1 > 0
since

[ v
vd+1

]
and

[ v
−vd+1

]
are sampled with equal prob-

ability and both yield the same sphere. We need only
check that S is the orthogonal projection of Π∞

f
(Rd)∩H

to Rd. The equation for Π∞
f

(Rd) is

pd+1 =
‖p− c‖2

2
√
cd+1 − ‖c‖2

=
‖p− c‖2

2rvd+1
,

and the equation for H can be rewritten as

pd+1 =
v>(c− p)

vd+1
+

1

2

√
cd+1 − ‖c‖2

=
v>(c− p)

vd+1
+

1

2
rvd+1.

So, for a point p =
[ p
pd+1

]
in the intersection,

‖p− c‖2

2rvd+1
=

v>(c− p)

vd+1
+

1

2
rvd+1.
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Multiplying by −2 and completing the square twice
gives

‖p− (c− rv)‖2 = r2v2d+1 + ‖rv‖2 = r2,

which is precisely the equation for S.
Now, we show that the focal point f is a center-

point of Π∞
f

(P ). There are several different ways to
show this, but one nice approach is to observe that for
any hyperplane normal to v passing through f there
is a corresponding hyperplane H normal to

[ c−rv
− 1

2

]
passing through c. The hyperplane H intersects the
paraboloid Φ = {

[ p
pd+1

]
| pd+1 = ‖p‖2} in an ellipse

that projects orthogonally to the very same sphere of
radius r centered at c − rv. It will suffice to show for
any p =

[ p

‖p‖2
]
∈ H ∩Φ, that ‖p− (c− rv)‖2 = r2. By

the definition of H,

(c− rv)>p− 1

2
‖p‖2 = (c− rv)>c− 1

2
cd+1.

Multiplying by −2 and completing the square yields

‖p− (c− rv)‖2 = ‖c− rv‖2 − 2(c− rv)>c + cd+1

= r2‖v‖2 − ‖c‖2 + cd+1

= r2.

The last equality follows from the definition of r and
the fact that ‖v‖2 = 1.

This implies that f is a centerpoint of the points
Π∞

f
(P ) because every hyperplane passing through f sep-

arates the same set of points as the corresponding hy-
perplane through c, which is a centerpoint by defini-
tion. �

Figure 1: Three examples of ER are illustrated for R =
1, R = 2, and R = ∞ from left to right. In each case,
the stereographic map of a single point is illustrated.
For the last case, the pole is at infinity, so the result is
a vertical projection.

4 Equivalence of Stereographic Maps

Let f =
[
0
1

]
. Let R be a real number and consider the

ellipsoid ER ⊂ Rd+1 defined as the points p =
[ p
pd+1

]
such that

‖p‖2

2R− 1
+

(pd+1 −R)2

R2
= 1.

It is tangent to
[
Rd

0

]
at the origin, has major radius R

and all minor radii all equal to
√

2R− 1. The stereo-
graphic map ΠR

f
through

[
0
2R

]
, the north pole of this

ellipse, from Rd to ER is well-defined as is the inverse
map (except at

[
0
2R

]
).

As R goes to infinity, ER converges to the paraboloid
pd+1 = ‖p‖2/4. This is perhaps easier to see when one
observes that ER is the set of points equidistant from f
and the sphere centered at

[
0

2R−1
]

with radius 2R. As
R goes to infinity, this sphere becomes a plane and the
paraboloid is the set of points equidistant from a point
and a plane. See Figure 1.

If we intersect the ellipsoid ER with a hyperplane
through one if its focal points and then stereographi-
cally project that intersection to Rd from the pole of the
ellipse, then the result is a sphere. The following theo-
rem says that for a fixed hyperplane, it doesn’t matter
which ellipsoid ER we started with, we always get the
same sphere as illustrated in Figure 2.

Figure 2: The stereographic projection of the intersec-
tion of the ellipse and a plane through the focal point
is the same as the second focal point is moved up to
infinity.

Theorem 3 Let α and β be real numbers in [1,∞] and
let f ∈ Rd+1 be any point. If H is a hyperplane contain-
ing f , then

(Πα
f

)−1(Πα
f

(Rd) ∩H) = (Πβ

f
)−1(Πβ

f
(Rd) ∩H).

Proof. The sphere Sα = (Πα
f

)−1(Πα
f

(Rd)∩H) can also
be written as

Sα = {p ∈ Rd | v>(Πα
f

(p)− f) = 0},

where v is the normal vector of H. By translating the
points in Rd and scaling the space uniformly, we may
assume that f =

[
0
1

]
. Let R be any real number in

the range [1,∞] and let q ∈ Rd be any point. We will
show that ΠR

f
(q) lies on a line through f that does not
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depend on R. Thus, v>(Πα
f

(q) − f) = 0 if and only if

v>(Πβ

f
(q) − f) = 0 and therefore, the spheres Sα and

Sβ must be equal for all values of α and β.
Let p =

[ p
pd+1

]
be the projection ΠR

f
(q). All of the

relevant points 0, f , p, and q are contained in a plane,
so we proceed in two dimensions, letting x = ‖p‖, y =
pd+1, and a = ‖q‖.

Since p lies on ER, we have x2

2R−1 + (y−R)2

R2 = 1, or
equivalently,

x2R2 + y(y − 2R)(2R− 1) = 0. (1)

Since p is also on the line from
[

0
2R

]
, the north pole of

ER, to
[ q
0

]
, its planar coordinates x and y satisfy the

equation

y =
−2R

a
x+ 2R.

It follows that

R =
ay

2(a− x)
, 2R− 1 =

a(y − 1) + x

a− x
,

and y − 2R =
−xy
a− x

Plugging these values into (1) gives the following.

x2(ay)2

4(a− x)2
+
y(−xy)(a(y − 1) + x)

(a− x)2
= 0.

Multiplying by 4(a−x)2
xy2 and collecting terms yields the

line
(a2 − 4)x− 4a(y − 1) = 0.

We observe that this is the equation of a line through
f = (0, 1) as desired. �

5 Concluding Remarks

The main story of this paper is not entirely new to
computational geometry. When the parabolic lifting
map was first introduced in the problem of comput-
ing Voronoi diagrams by Edelsbrunner and Seidel [4],
they replaced previous methods based on the stereo-
graphic map. Today, the parabolic lifting is the pre-
ferred method for reducing Delaunay triangulations to
convex hulls in one higher dimension.

Throughout, we have worked directly with the Eu-
clidean coordinates. This gave the benefit of making
the computations more immediately clear, but came at
the cost of considering several special cases at infinity.
An alternative approach would be to exploit the power
of projective geometry, which has been shown to be the
natural language for stereographic projections. Even
the parabola is just an ellipse in the projective plane.
For more on projective geometry, I highly recommend
the book by Richter-Gebert [17].

I would like to thank Marc Glisse for helpful conver-
sations and advice on high school algebra.
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