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Counting Carambolas
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Abstract

We give upper and lower bounds on the maximum and
minimum number of certain geometric configurations
hidden in a triangulation of n points in the plane. Con-
figurations of interest include star-shaped polygons and
monotone paths. We also consider related problems in
directed planar straight-line graphs.

1 Introduction

Problems in extremal combinatorics typically ask the
minimum or maximum number of certain subconfigu-
rations in a configuration of a given size. We consider
extremal problems where both the configuration and the
subconfiguration have geometric attributes. Consider
a (straight-line) triangulation of n points in the plane.
Buchin et al. [1] showed that every triangulation contains
O(2.893n) simple cycles, and there are triangulations
that contain Ω(2.4262n) simple cycles and Ω(2.0845n)
Hamilton cycles. Buchin and Schulz [2] proved that ev-
ery n-vertex triangulation contains O(5.2852n) spanning
trees. These techniques are instrumental for bounding
the total number of noncrossing Hamilton cycles and
spanning trees that n points in the plane admit [4, 6].

Van Kreveld et al. [7] were the first to consider sub-
structures with geometric attributes. They proved that
every triangulation contains O(1.62n) convex polygons
(cycles), and some contain Ω(1.5028n) convex polygons.
Their upper bound is based on counting star-shaped
polygons in a “reduced” graph, which is a carefully con-
structed subgraph of a given triangulation.

In this note, we consider subgraphs of a straight-line
triangulation with other common geometric attributes.
A star-shaped polygon (a.k.a. carambola, see Fig. 1) is
a simple polygon P such that there is a point o with
the property that every ray emanating from o intersects
the boundary of P in exactly one point. Star-shaped
polygons are closely related to monotone paths. A path
P is monotone in direction u ∈ R2, u 6= 0, if every line
orthogonal to u intersects P in at most one point. A
special case is an x-monotone path, which is monotone
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Figure 1: A “carambola” in a triangulation..

in horizontal direction u = (1, 0). Table 1 summarizes
known and new results:

configurations lower bound upper bound

convex polygons Ω(1.50n) [7] O(1.62n) [7]
star-shaped polygons Ω(1.70n) O(n3αn)
monotone paths Ω(1.70n) O(nαn)
directed simple paths Ω(αn) O(n23n)

Table 1: Bounds for the maximum number of configurations
in an n-vertex plane (di)graph. Results in row 1 are and
included for comparison; the bounds in rows 2-4 are proved
in the paper. Note that α ≈ 1.84 is the real root of x3 =
x2 + x+ 1.

2 Lower Bounds

We construct plane straight-line graphs on n vertices that
contain Ω(1.70n) x-monotone paths (Fig. 2 and 3). By
orienting all edges from left to right, we obtain a directed
planar graph that contains Ω(1.70n) directed paths. By
connecting the leftmost and rightmost vertices by an
extra edge, we obtain a plane straight-line graph that
contains Ω(1.70n) monotone polygons. By arranging
three copies of this graph around the origin in a cyclic
fashion (Fig. 4), we obtain a plane straight-line graph
that contains Ω(1.70n) star-shaped polygons.

Figure 2: There are 1.70n monotone paths in this graph.

Let n = 2` + 2 for an integer ` ∈ N. We define the
plane graph G on n vertices V = {v1, . . . , vn}: it consists
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Figure 3: A straight-line embedding of the graph in Fig. 2,
where the points lie alternately on two circular arcs, preserv-
ing x-monotonicity.

of a path (v1, . . . , vn) and two balanced binary triangu-
lation of the vertices {v1, . . . , vn−1} and {v2, . . . , vn},
respectively, one on each side of the path (Fig. 2). A
straight-line embedding is shown in Fig. 3, where the odd
(resp., even) vertices lie on a concave (convex) polygonal
chain.

Figure 4: Cyclic embedding of 3 copies of the graph in Fig. 2.
The monotone order becomes cyclic order.

Theorem 1 The graph G described in the above para-
graph has Ω(1.700n) x-monotone paths.

Proof. We count the number of x-monotone paths in
a sequence of subgraphs of G. Let G0 be a Hamilton
path (v1, . . . , vn); and we recursively define Gk from
Gk−1 by adding the edges (vi, vi+2k) for i = j2k + 1 and
i = j2k+2 for j = 0, 1, . . . , `/k−1. Denote by pk(vi) the
number of x-monotone paths in Gk that end at vertex
vi. Since every monotone path can be extended to the
rightmost vertex vn, the number of maximal1 monotone
paths in Gk is pk(vn). We establish recurrence relations
for pk(vi). The initial values are pk(v1) = pk(v2) = 1
for all k = 0, . . . , `. For k = 1 and i ≥ 2, we have
p1(vi) = p1(vi−1) +p1(vi−2), therefore p1(vi) = Fi is the
ith Fibonacci number and p1(vn) = Θ(1.619n).

The recurrence for pk(vi), k ≥ 2, is more nuanced, due
to the asymmetry between the triangulations on the two
sides of the Hamilton path. We partition the vertices
of Gk into disjoint groups of consecutive vertices of size
2k. Let ai = vi2k+1 denote the first vertex of group i,

1Maximal for containment.

and let bi = vi2k+2 be the second vertex of group i. We
count in how many ways one can route an x-monotone
path through a group. A path through group i starts at
either ai or bi, and ends at either ai+1 or bi+1. Thus, it
is enough to keep track of four different type of paths.
By our choice, the edge (ai, bi) belongs to group i but
not to group i + 1. We record the number of paths
connecting ai or bi to ai+1 or bi+1 in a 2× 2 matrix Mk,
such that

Mk · (pk(ai), pk(bi))
T = (pk(ai+1), pk(bi+1))T .

Figure 5: The five possible x-monotone paths in the group
of G2.

Once the matrix Mk is known, we can compute the

number of paths by (p(vn−1), p(vn))T = M
n/2k

k · (1, 1)T .
By the Perron-Frobenius theorem, limp→∞Mp

k/λ
p = A,

for some matrix A, and for λ being the largest eigen-

value of Mk. Hence, we have limn→∞ Tk(vn) = Θ(λn/2
k

)
maximal x-monotone paths in Gk.

Figure 6: Schematic drawing of the paths counted by Mk.

In the last step we show how to compute the matrices
Mk. The matrix M2 can be easily obtained by hand
(see Fig. 5). For a block of size 2k in Gk, we have all
the paths that use only the edges in Gk−1 (and can
therefore be decomposed in two paths of Gk−1’s blocks)
plus one additional path of type ai → ai+1, ai → bi+1,
and bi → bi+1 each (see Fig. 6). Therefore, we can
compute the matrices Mk as

M2 :=

(
2 1
1 1

)
, and Mi := M2

i−1 +

(
1 0
1 1

)
.

k 2 3 4 5 6

λ2
−k

1.61803 1.69605 1.70034 1.70037 1.70037

Table 2: The asymptotic growth of x-monotone paths in the
graphs Gk. For k = 6 it follows that there are Ω(1.70037n)
monotone paths.

Table 2 shows the values λ1/2
k

for k = 2, . . . , 6. We
observed that when going from k = 5 to k = 6, there is no

change in λ1/2
k

up to 8 digits after the point. The precise
value for k = 5 equals λ = 1/2(4885 + 9

√
294153). �
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Directed plane graphs. We also construct n-vertex di-
rected plane straight-line graphs that contain Ω(1.83n)
directed paths (Fig. 7). The directed paths, however,
cannot be extended to a cycle because in a planar embed-
ding the start and end vertex are not in the same face.
Similarly, most of the directed paths are not monotone
in any direction in a planar embedding.

Figure 7: There are Θ(αn), α ≈ 1.84, directed paths in this
graph. A plane embedding of the graph is depicted in Fig. 8.

Figure 8: A plane embedding of the graph in Fig. 7. The
edges are directed from the outer circles to inner inner circles.

Denoting by T (i) the number of directed paths ending
at vertex vi, we have T (1) = T (2) = 1, T (3) = 2, and a
linear recurrence relation

T (i) = T (i− 1) + T (i− 2) + T (i− 3)

for i ≥ 4. The recurrence solves to T (i) = O(αi), where
α ≈ 1.83929 is the real root of x3 = x2+x+1. Therefore
the total number of directed paths, starting from any
vertex, is Θ(αn).

3 Upper Bounds

Monotone Paths. We start with x-monotone paths
in plane straight-line graph. We prove the bound for
a broader class of graphs, plane monotone graphs, in
which every edge is an x-monotone Jordan arc (since
some of the operations in our argument may not preserve
straight-line edges).

Let n ∈ N, n ≥ 3, and let G = (V,E) be a plane
monotone graph with |V | = n vertices that maximizes
the number of x-monotone paths. We may assume that
the vertices have distinct x-coordinates (otherwise we
can perturb the vertices without decreasing the number
of x-monotone paths). We may also assume that G

is fully triangulated (i.e., it is an edge-maximal planar
graph), otherwise we add extra edges which only increase
the number of x-monotone paths. Label the vertices in
V as v1, v2, . . . , vn sorted by their x-coordinates. Orient
each edge {vi, vj} ∈ E from vi to vj if i < j.

i jk

l

i jk

l

Figure 9: The flip operation.

Consider an edge vivj ∈ E that is not on the boundary.
There are two triangular faces incident to vivj , and two
other vertices vk and vl that are connected to both vi
and vj .

Claim 2 If i < k < j and i < l < j, then flipping vivj
to vkvl or vlvk (depending on whether k < l or l < k)
only increases the number of paths. (See Fig. 9.)

Since G has the maximum number of x-monotone
paths, we may now assume that for all edges in G, there
is a vertex either to the left or to the right of the edge
that is adjacent to both endpoints. We show next that
G contains an x-monotone Hamilton path.

Lemma 3 All edges vivi+1 are present in G.

Proof. Suppose, to the contrary, that there are two non-
adjacent vertices vi and vi+1. Since G is a triangulation,
there must be an edge vjvk, with j < k, that separates
vi and vi+1. Since the edge vjvk is x-monotone, we have
j < i < i + 1 < k. Assume w.l.o.g. that vi lies below
vjvk and vi+1 lies above vjvk. By Claim 2, the triangle
incident to vjvk from either above or below connects to
a vertex vl either to the left of vj or to the right of vk.
Assume w.l.o.g. it is the triangle above, and that vl lies
to the right of vk. Now consider edge vjvl. Since the tri-
angle below it has vk as third vertex and j < k < l, there
must be another vertex vm that connects to vjvl and lies
either to the left of j or to the right of l. This argument
repeats, and we never reach vi+1. Contradiction. �

For any pair i < j, let Vij denote the set of consecutive
vertices vi, vi+1, . . . , vj , and let Gij = (Vij , Eij) be the
subgraph of G induced by Vij .

Since G is planar, we know that |E| ≤ 3|V | − 6, and
furthermore, that |Eij | ≤ 3|Vij | − 6 for all subgraphs
induced by groups of 3 or more consecutive vertices.

In the remainder of the proof we will apply a sequence
of operations on G that may create multiple edges and
edge crossings. Hence, we consider G as an abstract
multigraph. However, the operations will maintain the
invariant that |Eij | ≤ 3|Vij | − 6 for all i < j.

Let i < j < k be a triple of indices such that
vivj , vivk ∈ E. The operation shift(i, j, k) removes the
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edge vivk from E, and inserts the edge vjvk into E (see
Fig. 10). Note that the new edge may already have been
present, in this case we insert a new copy of this edge
(i.e., we increment its multiplicity by one).

i

j

k i

j

k

Figure 10: The operation shift(i, j, k).

Claim 4 The operation shift(i, j, k) does not decrease
the number of x-monotone paths in G.

Proof. Clearly, any path that used vivk can be replaced
by a path that uses vivj and (the new copy of) vjvk. �

Now, we apply the following algorithm to the input
graph G. We process the vertices from left to right, and
whenever we encounter a vertex vi with outdegree 4 or
higher, we identify the smallest index j such that vi has
an edge to vj and the largest index k such that vi has
an edge to vk; and then apply shift(i, j, k). We repeat
until there are no more vertices with outdegree larger
than 3.

Claim 5 The algorithm terminates and maintains the
invariants that (1) all edges vivi+1 are present in G
with multiplicity one; and (2) |Eij | ≤ 3|Vij | − 6 for all
subgraphs induced by Vij, i < j.

Proof. Initially, invariant (1) holds by Lemma 3, and
(2) by planarity. Suppose, to the contrary, that there is
an operation that increases the number of edges of an
induced subgraph above the threshold. Let shift(i, j, k)
be the first such operation. Since the only new edge is
vjvk, any violator subgraph must contain both vj and
vk; and it cannot contain vi since the only edge removed
is vivk. Recall that vj was the leftmost vertex that vi
is adjacent to; and by invariant (1), we know j = i+ 1.
Therefore, the violator subgraph is induced by Vjk′ for
some k′ ≥ k, and we have |Ejk′ | > 3|Vjk′ | − 6 after
the shift. Since vk was the rightmost vertex adjacent
to vi before the shift, all outgoing edges of vi went to
vertices in Vjk′ . The outdegree of vi was at least 4
before the shift, hence Gik′ had at least 3|Vik′ |− 4 edges.
Contradiction. �

Now, after executing the algorithm, we are left with a
multigraph where the outdegree of every vertex is at most
3, and no subgraph induced by |Vi,j | ≥ 3 consecutive
vertices has more than 3|Vij | − 6 edges. This, combined
with invariant (1), implies that the multiplicity of any
edge vivi+2 is at most one. Thus, for every vertex vi,
the three outgoing edges go to vertices at distance at
least 1, 2, and 3, respectively, from vi. Denoting by T (i)

the number of x-monotone paths that start at vn−i+1,
we arrive at the recurrence

T (i) = T (i− 1) + T (i− 2) + T (i− 3)

for i ≥ 4, with initial values T (1) = T (2) = 1, T (3) = 2.
The recurrence solves to T (n) = O(αn) where α ≈
1.83929 is the real root of x3−x2−x−1 = 0. Therefore,
every plane straight-line graph on n vertices admits at
most O(αn) x-monotone paths.

Since the edges of an n-vertex planar straight-line
graph have O(n) distinct directions, the number of mono-
tone paths (in any direction) is bounded by O(nαn).

Star-shaped Polygons. Given a plane straight-line
graph G on n vertices, the lines passing through the
O(n) edges induce a line arrangement with O(n2) faces.
Choose a face f of the arrangement, and a vertex p of G.
We show that G contains O(αn) star-shaped polygons
with vertex v and a star center lying in f . Indeed, pick
an arbitrary point o ∈ f . Each edge of G is oriented
either clockwise or counterclockwise with respect to o
(with the same orientation for any o ∈ f). Order the
vertices of G by a rotational sweep around o starting
from the ray −→ov. Let Gv be the graph obtained from G
by deleting all edges that cross the ray −→ov. We can repeat
the argument for x-monotone path for Gf , replacing the
x-monotone order by the rotational sweep order about o,
and conclude that G admits O(αn) star-shaped polygons
with vertex p and star center o.

Directed Simple Paths. Let G = (V,E) be a directed
planar graph. Denote by deg−(v) the outdegree of vertex
v ∈ V ; let V0 = {v1, . . . , v`} be the set of vertices with
outdegree at least 1, where 1 ≤ ` ≤ n. We show that
for every v0 ∈ V0, there are O(3n) maximal2 directed
simple paths starting from v0. Each maximal directed
simple path can be encoded in an `-dimensional vector
that contains the outgoing edge of each vertex v ∈ V0
in the path (and an arbitrary outgoing edge if v ∈ V0 is
not part of the path). The number of such vectors is

∏̀
i=1

deg−(vi) ≤

(
1

`

∑̀
i=1

deg−(vi)

)`
<

(
3n

`

)`
≤ 3n,

where we have used the geometric-arithmetic mean in-
equality, Euler’s formula

∑`
i=1 deg−(vi) ≤ 3n− 6 < 3n,

and maximized the function x → (3n/x)x over the in-
terval 1 ≤ x ≤ n. Since there are O(n) choices for the
starting vertex v0 ∈ V0, and a maximal simple path
contains O(n) nonmaximal paths starting from the same
vertex, the total number of simple paths is O(n23n).

2Maximal for containment.
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4 Minimizing the number of configurations

In this section, we explore the minimum number of
geometric configurations that a triangulation on n points
in the plane can have. Our bounds are summarized in
Table 3.

configurations lower bound upper bound

convex polygons Ω(n) O(n)
star-shaped polygons Ω(n) O(n2)
monotone paths Ω(n2) O(n3.39)
directed paths Ω(n) O(n)

Table 3: Bounds for the minimum number of configurations
in a (directed) triangulation with n vertices.

Potatoes. Every n-vertex triangulation has Θ(n) con-
vex faces, hence Ω(n) is a natural lower bound for
the number of convex polygons. The triangulation in
Fig. 11(left) contains Θ(n) convex polygons, which is
the best possible apart from constant factors. The tri-
angulation consists of the join of two paths P2 ∗ Pn−2,
where path Pn−2 is realized as a monotone zig-zag path.
Every convex polygon is either a triangle or the union
of two adjacent triangles that share a flippable edge [5].

Figure 11: There are Θ(n) convex polygons and x-monotone
paths in the triangulation on the left; it contains Θ(n4)
star-shaped polygons and monotone paths. There are Θ(n2)
star-shaped polygons and Θ(n4) monotone paths in the tri-
angulation on the right.

Carambolas. The sum of degree squares
Ω(
∑
v∈V deg2(v)) = Ω(n) is a natural lower bound for

the number of star-shaped polygons, since the union
of consecutive triangles incident to a vertex forms
a star-shaped polygon. This might suggest that a
triangulation that minimizes the number of star-shaped
polygons should have bounded degree. Surprisingly, the
best construction found so far is a triangulation with
a vertex of degree n− 1 (Fig. 11, right), which admits
Θ(n2) star-shaped polygons.

Monotone paths. It is not difficult to see that between
any two vertices, u and v, in a triangulation there is a

monotone path in direction −→uv [3]. Hence every trian-
gulation contains Ω(n2) monotone paths. Two vertices,
however, are not always connected by an x-monotone
path: a trivial lower bound for x-monotone paths is
Ω(n), since every edge is x-monotone.

The triangulation P2 ∗ Pn−2 in Fig. 11(left) is embed-
ded such that Pn−2 is x-monotone and lies to the right of
P2. With this embedding, it contains Θ(n2) x-monotone
paths: every x-monotone path consists of a sequence of
consecutive vertices of Pn−2, and 0, 1, or 2 vertices of
P2. However, both triangulations in Fig. 11 admit Θ(n4)
monotone paths (in some direction).

Triangulations with a polynomial number of monotone
paths are also provided by known constructions in which
all monotone paths are “short.” Dumitrescu et al. [3]
constructed full triangulations with maximum degree
O(log n/ log log n) such that every monotone path has
O(log n/ log n log n) edges. Furthermore, there are trian-
gulations with bounded degree in which every monotone
path has O(log n) edges. These constructions contain
polynomially many, but ω(n4), monotone paths.

1

2

3
4

o

ab

Figure 12: A triangulation from [3] in which every monotone
path has O(logn) edges.

A triangulation that contains only O(nβ log2 n) mono-
tone paths, where β = 2 + 2 log2((1 +

√
5)/2) ≈ 3.3885

comes from [3]: It has maximum degree n− 1 and every
monotone path has O(log n) edges. Refer to Fig. 12.

The number of vertices is n = 2` + 1 for some ` ∈ N.
The outer face is a regular triangle abo, where o is the
origin. The interior vertices are arranged on `− 1 circles
centered at the origin, with 2i points on circle i, where
the radii of the circles rapidly converge to 0. The vertices
on circle i are drawn interspersed (in angular order)
with the vertices of the previous layers. The origin is
connected to all other vertices, and a vertex on circle i is
connected to the two vertices of the previous layers that
are closest in angular order. The radii of the circles are
chosen recursively such that the edges that connect an
interior vertex v to vertices on smaller circles are almost
parallel—thus a monotone path can contain two such
edges for at most one interior vertex v. It follows that
every monotone path contains at most two vertices from
each circle, hence the O(log n) bound on the number of
edges [3].
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Claim 6 For every n ∈ N, there is an nvertex triangu-
lation that admit O(nβ log2 n) monotone paths, where
β = 2 + 2 log2((1 +

√
5)/2) ≈ 3.3885.

Proof. In the above construction, it is enough to count
maximal monotone paths, since every monotone path can
be extended to the outer triangle abo, and each maximal
monotone path contains only O(log2 n) subpaths. First,
consider paths between a and b. For every path between
a and b, we can record the layers of the vertices along
the paths, where a and b are at level 0, and o is at level
`. This sequence must be unimodal for a monotone path
(by construction). An a-b path that avoids the origin is
uniquely determined by its modality (the vertex lying on
the smallest circle), hence there are at most O(n) such
paths (all these paths happen to be monotone).

Consider now the paths incident to o. An a-b path
that goes though o is counted as the combination of a
path from o to a and one from o to b. By symmetry, it
is enough to count monotone paths from o to a. Such
a path also corresponds to a unimodal sequence (with
o being the only modality). We have n− 1 choices for
the first edge of incident to o, and the remainder of the
path is restricted to an outerplanar graph with at most
`+ 2 = 1 + log(n− 1) vertices.

In an outerplanar graph with k vertices, any two ver-
tices are connected by at most Fk = Θ((1 +

√
5)/2)k) =

O(1.62k) paths, where Fk is the kth Fibonacci num-
ber. Therefore, the number of o-a paths is at most

n · F`+2 = Θ(n1+log2((1+
√
5)/2)) = O(n1.70). (In fact,

all these paths are monotone.) Every path from a to
b via o is the combination of two branches: a path
from o to a and one from o to b. Hence the num-
ber of these paths is bounded by O(nβ log2 n), where
β = 2 + 2 log2((1 +

√
5)/2) ≈ 3.3885. �

Figure 13: There are Θ(n) directed paths in this directed
planar graph.

Directed paths. Every edge in a planar digraph is a
directed path on its own, hence there are Ω(n) directed
paths in every directed triangulation on n vertices. This

bound is tight, apart from constant factors. Directed
triangulation with O(n) paths consists of a sequence of
n/3 triangles, and edges between consecutive triangles
point either inward or outward alternately (Fig. 13).

5 Conclusion

We considered the maximum and minimum number of
star-shaped polygons, monotone paths, and directed
paths that a (directed) triangulation of n points in the
plane can have. Our results are summarized in Tables 1
and 3. Closing or narrowing the gap between the upper
and lower bounds is left for future research.
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