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Abstract

Considered a variation of the art gallery problem, the
wireless localization problem deals with the placement
of the smallest number of broadcasting antennas re-
quired to satisfy some property within a given polygon.
The case dealt with here consists of antennas that prop-
agate a unique key within a certain antenna-specific an-
gle of broadcast, so that the set of keys received at any
given point is sufficient to determine whether that point
is inside or outside the polygon. To ascertain this local-
ization property, a Boolean formula must be produced
along with the placement of the antennas.

In this paper, we propose an exact algorithm based
on integer linear programming for solving the NP-hard
natural wireless localization problem. The efficiency of
our algorithm is certified by experimental results which
include the solution of instances of up to 600 vertices in
less than five minutes on a standard desktop computer.

1 Introduction

The Art Gallery Problem (AGP) [9, 10, 8] is a long-
standing research topic in Computational Geometry.
New problems of this type arose upon the introduction
of a novel concept of visibility in which guards are able
to see through the gallery boundary [7]. The motiva-
tion for this formulation originated from applications to
wireless networks, where signals from antennas are not
blocked by walls.

To illustrate this situation consider the following folk-
loric example, which captures the essence of the problem
[1]. The owner of a café would like to provide wire-
less internet access to her customers while preventing
those outside her shop to access the network infrastruc-
ture. To accomplish this, antennas may be installed,
each of which broadcasting a unique (secret) key within
an arbitrary but fixed angular range. The goal is to
place these antennas and to adjust their angles of broad-
cast so that customers within the area of the café could
be distinguished from those outside simply by having
them name the keys received at their location. In a
more formal way, one seeks to characterize the poly-
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gon corresponding to the area of the shop by means of
a monotone Boolean formula whose variables are the
keys transmitted by the antennas. Since installation
and maintenance of the antennas carry a cost, a natu-
ral optimization problem amounts to finding a solution
with the minimum number of such devices.

Similarities between this problem and the traditional
art gallery problem are self-evident, e.g., guards of the
latter correspond to antennas in the former. Notwith-
standing that the notions of visibility differ, henceforth
we will use the term guard and antenna indistinctly.

As in the classical AGP, the wireless localization prob-
lem (WLP) has several variants depending on the choice
of potential locations for guards, their angular range and
maximum visibility distance. In this paper, we assume
visibility to be unbounded.

Now, assume that the gallery floor plan is described
by a simple polygon P . In the most general situation,
guards may be placed anywhere inside P and can broad-
cast in any direction, in which case they are called inter-
nal guards.In a more restricted version, guard placement
is limited to the vertices of P , and they are referred to as
vertex guards. Moreover, another situation often found
in the literature is the one known as natural guarding.
Here, the guards are limited to lie on vertices or edges
of P and to transmit their signals within the range cor-
responding to the interior angle of the polygon at that
point.

The corresponding Natural Wireless Localization
Problem (NWLP) is known to be NP-hard [2].

In [1] an alternative NP-hardness proof is given, which
can be extended to more general types of guards, such
as vertex and internal guards. There are also results
[7, 6, 3] that lead to upper bounds on the number of
guards sufficient for coverage, but these bounds are not
always tight.

To the best of our knowledge, no exact algorithm has
been proposed to this date to solve the NWLP. Fur-
thermore, we are also unaware of any computational
experiments reported in the literature for this problem.

Contribution This paper aims at filling these two gaps.
To this end, in Sections 3 to 6, we model the NWLP
problem as an integer program and in Section 7 we de-
scribe ingenious ways to use this formulation algorith-
mically. Computational results are presented in Sec-
tion 8 validating this technique as a viable method for
computing optimal solutions for instances comprised of
hole-free polygons with up to 600 vertices. Conclusions
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Figure 1: Polygon with guards on vertices a, b, c and d
and Boolean formula a · b+ a · c · d.

and future directions follow.

2 Problem Definition and Terminology

A guard can be viewed as a wireless station positioned
at a given location, which broadcasts a signal in a pre-
defined angle and direction. The region, Vis(g), covered
by a guard g positioned at a point p is the cone with
apex at p defined by two rays emanating from it. The
bounding rays establish the angle and the direction of
transmission of the corresponding guard in a natural
way. Hence, from this point on, a guard will be iden-
tified to its cone of broadcast: the position of its apex
and its angle of transmission.

We may now associate to a guard g a Boolean vari-
able that, for every point p in the plane, takes a true
value if and only if p belongs to Vis(g). Given a poly-
gon P and set of guards G, one may ask whether there
exists a Boolean formula B on these variables that is
satisfied uniquely on the points in P . In the affirmative
case, G is said to form a guarding of P . Figure 1 illus-
trates this idea. For simplicity, in the remainder of the
text, Boolean formulas are assumed to be in disjunctive
normal form.

In the context of WLP, one is given a guard candidate
setG known to contain a guarding of P . When a unitary
cost is assigned to each guard in a guarding subset of G,
the optimization problem seeks a guarding subset with
minimum total cost. Variants of the problem depending
on how the set of candidate guards G is defined can be
formulated. Usually, G consist of a predefined finite set
of locations, broadcasting angles and directions. Com-
mon locations for guards are the vertices and edges of P .
In this work, we focus on the so-called natural guardings
and on the resulting optimization problem, NWLP. A
guard placed on a vertex of the polygon P is a natural
vertex guard if its angle is the interior angle at that ver-
tex, relative to P . A guard placed anywhere on an edge
of P and broadcasting within an angle of π directed to
the interior of P is called a natural edge guard. Since
any two of these guards on a single edge would cover
the same region, we can restrict the placement of natu-
ral edge guards to midpoints of edges. Accordingly, we
will refer to a guarding consisting only of natural vertex
and edge guards as a natural guarding [7].

3 Discretization

Viewing the NWLP as a continuous problem, for any
point in the plane, the resulting Boolean formula should
correctly identify whether it is inside or outside the poly-
gon. In this section, we show that it actually suffices to
ensure the validity of the formula for a finite set of points
in the plane.

The rays on the boundary of the visibility regions of
all natural guards define a planar arrangement. Notice
that this arrangement coincides with the one obtained
from the lines that support the edges of P . Moreover,
since P has n edges, the planar subdivision induced by
this arrangement has O(n2) faces. From here on, we
use the term face to refer to a face of this subdivision.
The next result shows that the correctness of a Boolean
formula that solves the NWLP follows from its validity
on any single point in each of these faces.

Lemma 1 Given a simple polygon, let G be the set of
its natural guards. Denote by Sub(G) the planar subdi-
vision induced by the visibility regions of all guards in
G. A guard g ∈ G covers one point in the interior of a
face f of Sub(G) if and only if g covers all points in f .

Proof. Let g ∈ G and let p be a point in the interior of
a face f of Sub(G) so that p is guarded by g. Suppose,
by contradiction, that there exists a point q in f that
is not guarded by g. Then, one of the rays that form
the boundary of Vis(g) must separate p from q. This
contradicts the fact that f is a face of Sub(G). The
converse is immediate. �

Recall that a Boolean formula that solves NWLP
must be satisfied at all points in the closure of P but
not at the external ones. Lemma 1 establishes that it
suffices to verify this property at a single point per face
of the resulting subdivision and hence on O(n2) points.

4 An Integer Programming Model

We now turn our attention to the algorithm we propose
for solving the NWLP to optimality. It is divided into
two phases: a preprocessing phase, where the discretiza-
tion described in Section 3 is computed and a solution
phase, where we create and solve an Integer Linear Pro-
gramming (ILP) model. In this section, we describe this
model.

Consider an instance of the NWLP in which a polygon
P is given. Recall that a solution consists of a Boolean
formula, in disjunctive normal form, that discriminates
the points in P from the points in the exterior of P . We
say that a Boolean variable accepts (rejects) a point if
it is true (false) for that point. Similarly, it accepts (re-
jects) a face if it accepts (rejects) all points of that face.
Therefore, it suffices to create a clause that accepts the
points (a single point actually will do) of each inter-
nal face while rejecting the points of all external faces.
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Clearly, redundant clauses (covering the same internal
faces) may be eliminated in a post-processing phase.

Let G be the set of all natural guards of P and F be
the set of faces of the corresponding planar subdivision.
Denote by FP ⊂ F (FP ⊂ F ) the subset of faces internal
(external) to P . Furthermore, we denote by Cf ⊂ G the
set of guards which cover face f , and by Nfh ⊂ Cf the
subset of its guards that, while covering face f , do not
cover face h.

To each g ∈ G, we associate a binary variable xg,
which is 1 whenever guard g is used in the solution and
0 otherwise. Moreover, to each guard g and interior face
f ∈ FP , we relate a binary variable ygf , which is 1 if and
only if the Boolean variable corresponding to guard g is
part of the clause built to ensure that face f is satisfied
by the Boolean formula. We now formulate the Integer
Linear Program:

min
∑
g∈G

xg,

s.t.
∑
g∈Cf

ygf ≥ 1,∀f ∈ FP , (1)

∑
g∈Nfh

ygf ≥ 1,∀f ∈ FP ,∀h ∈ FP , (2)

ygf ≤ xg,∀f ∈ FP ,∀g ∈ Cf , (3)

xg ∈ {0, 1}, ygf ∈ {0, 1},∀g ∈ G,∀f ∈ FP .

The objective function seeks to minimize the number
of natural guards used. It is easy to see that the re-
quired Boolean formula may be built from the ygf vari-
ables in the following fashion. A clause is associated to
each f ∈ FP and the Boolean variable corresponding
to a guard g will be part of this clause if, and only if,
ygf = 1. Constraints (1) guarantee that the internal
faces are accepted, since at least one guard covers each
face in FP . Constraints (2) assure that exterior faces
are not accepted by the formula, since for every pair
of an internal face f and an external face h there is at
least one guard accepting f and rejecting h. Constraints
(3) prevent a clause from containing Boolean variables
associated with a unused guard.

It is easy to modify this model so that the resulting
Boolean formula is minimized along the process.

5 Strengthening the Model

Usual techniques to increase the computational effi-
ciency of an ILP model amount to making it stronger in
relation to dual bounds and more compact by reducing
the number of constraints and variables in the formula-
tion. In this section, we describe how these techniques
can be applied to the model given in the previous sec-
tion.

Firstly, notice that any single guard always covers
external faces of the polygon, so, there is no point al-

lowing for a clause consisting of a single Boolean vari-
able.Therefore, we can tighten constraints (1) to require
at least two guards to cover any given internal face.
This already leads to a slightly more restricted linear
relaxation. However, we can strengthen the model even
further as a consequence of the following lemma:

Lemma 2 For every edge e of a polygon P , any feasi-
ble solution of P includes a guard whose visibility cone
contains e on its boundary.

Proof. Since e is an edge of P , there is a pair of faces
f ∈ FP and h ∈ FP adjacent to e on the subdivision
induced by the (natural) guard candidates. If p and q
are interior points of f and h, respectively, any Boolean
formula that accepts p and rejects q must contain a
Boolean variable that corresponds to a guard g whose
cone contains p and excludes q. This is only possible if
Vis(g) is bounded by a ray that contains e, otherwise,
both f and h would not be faces. �

Let E denote the set of edges of P and Ge the set
of natural guards g such that one of the rays that de-
fine Vis(g) contains e. By Lemma 2, we can add the
following constraints to the model:∑

g∈Ge

xg ≥ 1,∀e ∈ E (4)

6 Shadow and Light Faces

Solving the ILP model proposed in Section 4 using all
faces can be very costly. However, we can significantly
reduce the number of faces considered in constraint (2)
and still guarantee that the algorithm finds a valid for-
mula using the minimum number of guards. To accom-
plish this, we can extend to the NWLP the notion of
shadow and light faces, presented in [4].

Firstly, define a partial order ≺ both on FP and on FP
as follows. If f, f ′ ∈ FP (∈ FP ) then f ≺ f ′ if and only
if Cf ′ ⊂ Cf . We call f ∈ FP (∈ FP ) an internal shadow
face (external light face) if f is minimal (maximal) with
respect to ≺.

Lemma 3 If a Boolean formula accepts all internal
shadow faces, then it accepts all internal faces.

Proof. Let B be a Boolean formula that accepts all
internal shadow faces. Let f be any internal face. If f
is a shadow face, we are done. Suppose f is not a shadow
face. Then, there must exist an internal shadow face f ′

such that Cf ′ ⊂ Cf . Since B accepts f ′, there is at
least one clause of B whose Boolean variables represent
guards that cover f ′. Since Cf ′ ⊂ Cf , this clause also
accepts f . �

Lemma 4 If a Boolean formula rejects all external light
faces, then it rejects all external faces.



25th Canadian Conference on Computational Geometry, 2013

Figure 2: Example of internal shadow and external light
faces of a polygon.

Proof. Analogous to the previous proof. �

From Lemmas 3 and 4, the following theorem follows.

Theorem 5 A Boolean formula is a solution to an in-
stance of the NWLP if and only if it accepts all internal
shadow faces and rejects all external light faces.

Let SP be the set of internal shadow faces and LP
be the set of external light faces. Theorem 5 implies
that we can replace the sets FP and FP by the sets
SP and LP , respectively, hence reducing the size of the
ILP model. Based on our experimental results, this re-
duction has a significant impact on the efficiency of our
algorithm.

7 An Efficient Iterative Algorithm

In this section, we further enhance the model proposed
in Section 4, by incorporating the strengthening and
compression refinements proposed in Sections 5 and 6.
Furthermore, we propose a more effective way for solv-
ing the model in order to arrive at a more efficient algo-
rithm able to quickly handle instances of considerable
size.

From constraints (3), the Boolean variable associated
to a used guard might not be present in the clause liable
for accepting a face covered by that guard. However, in
order to make the model more compact, we may tighten
the constraints (3) to ygf = xg, effectively requiring
the clause responsible for accepting face f to contain all
variables associated to used guards that cover f . There-
fore, we can remove all variables ygf , obtaining following

ILP model:

min
∑
g∈G

xg,

s.t.
∑
g∈Cf

xg ≥ 2,∀f ∈ LP , (5)

∑
g∈Nfh

xg ≥ 1,∀f ∈ LP ,∀h ∈ SP , (6)

∑
g∈Ge

xg ≥ 1,∀e ∈ E (7)

xg ∈ {0, 1},∀g ∈ G.

This model finds a solution that minimizes the number
of guards, but the resulting formula may be much larger
than necessary, since the clause responsible for accept-
ing a face f will have all variables that represent used
guards that cover f . However, this model can be solved
much more efficiently than the initial model and, for
now, we are not particularly concerned with the length
of the Boolean formula.

Let us look into the growth of the number of con-
straints (6) compared to the increase in the size of the
instances (i.e., the number of edges of the input poly-
gons). While the model contains only n constraints (7),
the number of constraints (5) is O(n2) – proportional
to the number of internal shadow faces. However, there
is one constraint (6) for each pair of internal shadow
and external light faces, leading to O(n4) of these con-
straints. Hence, if we found constraints (6) that we
could avert checking, we might end up with a much
smaller and more efficient model.

We observed, experimentally, that if a small set of
constraints (6) are satisfied by the guards and clauses
used, many other constraints (6) are automatically sat-
isfied as well. Building upon this observation, we de-
vised the following iterative algorithm.

Preprocessing phase. Two procedures are exe-
cuted: the first one computes the visibility regions of the
guards (cones) while the second one creates the planar
subdivision and identifies the light and shadow faces.

Solution phase. The model is built without the con-
straints (6). Iteratively, the restricted model is solved
to optimality and any violated constraints (6) are added
to the model prior to the next iteration, until a viable
(and optimal) solution is found.

8 Computational Experiments

In this section, we discuss the experimental investiga-
tion we carried out to evaluate the algorithm proposed
in Section 7.

Our programs were coded in C++, compiled with GNU

g++ 4.6, and made use of CGAL 4.1 (Computational
Geometry Algorithms Library). The solver used to com-
pute the ILP models was IBM ILOG CPLEX 12.2. As for
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Table 1: Average number of faces.
Internal Shadow External Light

Vertices Faces Int Faces Faces Ext Faces

20 49 12 161 22
40 211 38 610 69
60 493 73 1338 134
80 852 116 2389 233
100 1331 175 3720 355
200 5541 604 14560 1268
300 12566 1278 32585 2762
400 22549 2191 57652 4829
500 35124 3336 90127 7386
600 51968 4815 128333 10477

hardware, a desktop PC featuring an AMD Phenom II
X6 1055T @ 2.80GHz and 8GB RAM was employed.

The instances tested correspond to simple poly-
gons randomly generated by a procedure present in
CGAL. This procedure starts off by randomly dis-
tributing the vertices of the polygon uniformly on
a given rectangle and then applies the method of
elimination of self-intersections using 2-opt moves.
The instances that comprise our benchmark may
be downloaded from www.ic.unicamp.br/ c̃id/Problem-
instances/Wireless-Localization.

The number of vertices of the polygons associated to
these instances was chosen in the ranges: [20, 100] with
step size 20 and (100, 600] with step size of 100. For
each polygon size, 30 instances were created.

The first aspect to be considered in our analysis re-
lates to the reduction on the size of the original ILP
model described in Section 4 as a consequence of the
application of Theorem 5. Recall that the number of
faces on the planar subdivisions is the main determin-
ing factor of the number of constraints in the model.
Table 8 show the average number of internal, exter-
nal, shadow internal and light external faces per polygon
size. Using only the internal shadow and external light
faces, we reduced the number of internal and external
faces to be considered on average by 86.7%± 4.7% and
90.4% ± 1.7%, respectively. Taking into account that
in the original model there is one constraint of type (2)
for each pair of internal and external faces, when we
limited these pairs to the internal shadow and external
light faces, the number of constraints in the ILP formu-
lation dropped by 98.6%± 0.8% on average. This huge
decrease in the model size evoked by the results pre-
sented in Section 6 was one of the key ideas that made
solutions of instances of hundreds of vertices possible.

As our algorithm has two phases, the next analysis
focus on how the computation time breaks up between
them. Figure 3 summarizes the average percentage of
the time spent by the iterative algorithm in the pre-
processing and solution phases. The average total time
to solve an instance is displayed over each bar. Notice
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Figure 3: Average computation times, total and per
phase.

that solutions we found for all instances in less than
five minutes and the preprocessing phase took on av-
erage 23.7% ± 16.6% of that time. These results show
that our approach is a very good choice for calculating
optimal solutions for the NWLP on polygons of several
hundreds of vertices as they can be obtained in only a
few minutes. The fact that preprocessing requires about
one-third of the time spent by the solution phase may
seem surprising at first. After all, the former is a poly-
nomial time procedure while the latter involves multiple
solutions of an NP-hard problem. However, as observed
earlier in experiments on the classical AGP (see [5]),
the current technology of ILP solvers is extremely ad-
vanced and allows for handling difficult problems very
efficiently in practice.
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Figure 4: Number of iterations by polygon size.

An important point on the analysis of our algorithm
relates to how the number of iterations increases with
the size of the instances. This can be assessed by an-
alyzing the data displayed in Figure 4. We see that,
on average, 4.5 ± 1.2 iterations were sufficient to reach
the optimum and that no instance in our benchmark re-
quired more than 12 iterations. Preliminary tests, where
the entire initial ILP model was given as input to the
solver, failed to attain optimal solutions on polygons
of 50+ vertices within acceptable times. On the other
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hand, the data in Figure 4 show that the number of it-
erations until convergence is reached is small. Bringing
to mind that each iteration requires the solution of a
much lighter ILP, we conclude that the iterative com-
putation is indeed crucial in achieving the small com-
putation times shown in Figure 3.

To perceive how much smaller the ILP models solved
at each iteration are compared to the full model given
in Section 7, we measured the number of constraints
(6) added along the iterations and compared it to the
total of constraints of this type. On average, in the last
iteration of the algorithm, the model has only 0.6% ±
1.1% of all constraints (6).
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Figure 5: Ratio of guards to vertices by polygon size.

Lastly, an interesting insight on the guards per ver-
tices ratio. It is known that, for a polygon of n edges,
n/2 is a lower bound for the number of guards on an
optimal solution. Figure 5 shows that for the random
polygons in our benchmark, the number of guards used
in the optimal solutions approaches n/2 as n increases.

9 Comments and Future Directions

To the best of our knowledge, this investigation on prac-
tical solutions to the natural wireless localization prob-
lem is unprecedented. Besides being known as an NP-
hard problem [2] only a few theoretical studies on the
NWLP have been undertaken [7, 6, 3].

The algorithm we proposed in this paper is based on
an integer linear programming model and derives its ef-
fectiveness from an elaborate reduction on the number
of constraints. An iterative approach has lead to sig-
nificant gains in efficiency, which yielded solutions to
instances of up to 600 vertices in less than five minutes
of computation.

Extensions to this approach that might solve in-
stances where the polygons contain holes or when an-
tennas are not restricted to polygon vertices are worth
investigating.

Heuristics or alternative ILP models may be com-
pared to the results we described here by accessing our

set of benchmark instances made public together with
the optimal solutions we found.

Lastly, we believe that the knowledge of exact solu-
tions to a large collection of instances may lead to new
theoretical developments on the NWLP, hence improv-
ing the understanding of the problem.
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