
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Map Folding

Rahnuma Islam Nishat∗ Sue Whitesides ∗†

Abstract

A crease pattern is an embedded planar graph on a piece
of paper. An m×n map is a rectangular piece of paper
with a crease pattern that partitions the paper into an
m×n regular grid of unit squares. If a map has a config-
uration such that all the faces of the map are stacked on
a unit square and the paper does not self-intersect, then
it is flat foldable, and the linear ordering of the faces is
called a valid linear ordering. Otherwise, the map is
unfoldable. In this paper, we show that given a linear
ordering of the faces of an m×n map, we can decide in
linear time whether it is a valid linear ordering, which
improves the quadratic time algorithm of Morgan. We
also define a class of unfoldable 2 × n mountain-valley
patterns for every n ≥ 5.

1 Introduction

A piece of paper is a connected polygon in R2, with or
without holes. A paper has a light side and a dark side.
A crease pattern is an embedded planar graph on a piece
of paper. Each edge of a crease pattern that is not on
the boundary of the paper is called a crease. The crease
pattern divides the surface of the paper into a set of
bounded regions called faces. Each face is bounded by
a set of creases and possibly by part of the boundary of
the paper. Each crease is incident to exactly two faces.
A vertex of a crease pattern is an endpoint of a crease
that is not on the boundary of the paper.
If a crease pattern partitions a rectangular piece of

paper without holes into an m × n regular grid of unit
squares, then the piece of paper is called an m× n grid
paper or an m× n map. A crease pattern on an m× n
map is called an m × n crease pattern. When we fold
a piece of paper with a given crease pattern, we are
restricted to fold the paper only along the creases. A
crease can be folded either as a mountain or as a valley.
A mountain fold folds the paper such that the two faces
incident to the crease touch each other on the dark side
after the fold. Similarly, a valley fold folds the paper
such that the two faces incident to the crease touch each
other on the light side after the fold.

∗Department of Computer Science, University of Victoria, BC,
Canada, rnishat@uvic.ca, sue@uvic.ca

†Supported by an NSERC Discovery Grant and the Univer-
sity of Victoria. Results here appear in the first author’s MSc
thesis [9].

A mountain-valley assignment is a many-to-one func-
tion from the creases in a crease pattern to a label set
{M,V }. A mountain-valley pattern is a crease pat-
tern together with a mountain-valley assignment. Fig-
ure 1(a) shows a mountain-valley pattern on a 3×3 map.
The valley creases are denoted by triple-dot dashed
(red) lines and the mountain creases are denoted by
dashed (blue) lines.

v0,1 v0,2v0,0
v0,3

v1,0 v1,1 v1,2 v1,3

v3,0
v3,2v3,1 v3,3

v2,0
v2,1 v2,2 v2,3

f0,0 f0,1 f0,2

f1,0 f1,2f1,1

f2,0
f2,1 f2,2

V

V

V

V

V

M

M

M

M

M

M

M

(b)(a)

Figure 1: (a) A mountain-valley pattern on a 3×3 map.
(b) A 3×3 map with crease pattern C, where the vertices
of C are shown as black disks and the dummy vertices
are shown as red disks.

Hull [4] gave upper and lower bounds on the number
of flat foldable mountain-valley assignments on a single-
vertex crease pattern on a disk. Researchers have also
been interested in combinatorial problems in origami.
Justin [5] enumerated a number of unfoldable mountain-
valley patterns on 2×5, 2×6 and 2×7 maps. Uehara [11]
showed that any mountain-valley 1 × n pattern is flat
foldable, and gave new upper and lower bounds on the
number of flat folded states for that case. Jack Edmonds
posed the following open problem in 1997 [3].

Open Problem: What is the complexity of deciding
whether an m × n map with a given mountain-valley
pattern is flat foldable?
In an attempt to answer the above question, Arkin

et al. [1] introduced “simple folding” techniques. They
showed that any flat foldable 1D mountain-valley pat-
tern is flat foldable using simple folding. Recently, Mor-
gan [8] has given an O(n9) algorithm for 2×nmountain-
valley patterns and an exponential time algorithm for
m × n mountain-valley patterns. Bern and Hayes [2]
proved that both the flat foldability and the assigned flat
foldability problems are NP-complete. The flat foldabil-
ity problem asks whether a paper with a given crease



25th Canadian Conference on Computational Geometry, 2013

pattern has a final flat folded state, where the creases are
not necessarily labeled and the crease pattern is “locally
flat foldable”. In an assigned flat foldability problem,
each crease is labeled either mountain or valley.
In this paper, we give an exponential time algorithm

to determine whether a given m × n mountain-valley
pattern is flat foldable. We also investigate the com-
binatorial properties of mountain-valley patterns. The
main results of the paper are as follows.
In Section 3, we show that given a linear ordering

of the faces of an m × n mountain-valley pattern, we
can decide in linear time whether it is a valid linear
ordering or not. In Section 4, we give an exponential
time algorithm to decide flat foldability of an m × n
mountain-valley pattern. In Section 5, we show that
there is an unfoldable 2×n mountain-valley pattern for
each and every n ≥ 5 and define a class of unfoldable
2× n mountain-valley patterns for every n ≥ 5.

2 Preliminaries

In this section, we define the terminology used through-
out the paper. We also mention some previous results
that we use.
Let P be a piece of paper. Let C be a crease pattern

on P such that P is flat foldable with respect to C. Let
v be a vertex of C. Suppose we draw any circle r around
v such that no other vertex of C is on r or inside r. Since
P is flat foldable with respect to C, the disk bounded by
r is also flat foldable. The following results are known
for a crease pattern on a disk with a single vertex v at
the center of the disk.

Lemma 1[7] The difference between the number of
creases with the label mountain and the number of
creases with the label valley meeting at v is 2.

Let P be a map with crease pattern C. It easily fol-
lows from Lemma 1 that each vertex of C must have
either three mountain creases and one valley crease or
three valley creases and one mountain crease incident
to it when P is flat foldable. If the conditions stated
in Lemma 1 is satisfied for all the vertices in C, we say
that the crease pattern C is locally flat foldable.
A fragment of P is a subset of faces of C that form

a connected rectangular region (without a hole). A flat
folded state of P is a stack of disjoint fragments of P that
are parallel to each other, connected along the creases
of C, and such that the union of all the fragments is
P . Each fragment in the stack is called a layer. A final
flat-folded state of P is a flat folded state where each
layer consists of exactly one face of C. If P has a final
flat-folded state, then P is flat foldable. A final flat-
folded state of P is also called a final flat-folded state of
C. Figure 2 shows an example of a flat folded state of
a 6× 8 map.

l4

l3

l2

l1

Figure 2: A flat folded state of P with four layers l1, l2, l3
and l4.

A vertex of C is an endpoint of a crease of C that is not
on the boundary of the paper. A vertex of P is either
an endpoint of a crease or a corner of the boundary of
P . We call a vertex of P that is not a vertex of C a
dummy vertex. Figure 1(b) shows the vertices of a 3×3
map.

We denote by fi,j a face of C that has the vertices
vi,j , vi+1,j , vi,j+1, vi+1,j+1 on its boundary as shown in
Figure 1(b). For each face fi,j of C, we associate the
creases (vi,j , vi+1,j) (left side of the unit square), where
0 < j < n, and (vi,j , vi,j+1) (top of the unit square),
where 0 < i < m, to fi,j . The creases associated with
each face are shown in Figure 1(b).

A column cj of C is a set of m faces
f0,j , f1,j , . . . , fm−1,j , where 0 ≤ j ≤ n − 1. A
row ri of C is a set of n faces fi,0, fi,1, . . . , fi,n−1,
where 0 ≤ i ≤ m − 1. The creases associated with a
column cj are the creases associated with the faces in
cj . Similarly, the creases associated with a row ri are
the creases associated with the faces in ri.

2.1 Checkerboard Pattern

Let us assume that P is flat foldable and let L be the
linear ordering of the faces of C in a final flat folded state
Sf of P . Without loss of generality we assume that the
face f0,0 is facing light side up in Sf and the vertex v0,0
is incident to the top-left corner of the unit square on
which the faces are stacked. It is easy to observe that
the faces that share an edge with f0,0 must face dark
side up. In a similar way, if a face fi,j , 0 ≤ i ≤ m − 1
and 0 ≤ j ≤ n−1, is facing light side (respectively, dark
side) up, then all the faces that share an edge with fi,j
must face dark side (respectively, light side) up. So the
faces of C form a checkerboard pattern, where the color
of a face f depends on which side of f must face up in
any final flat folded state of P (under our assumption),
as shown in Figure 4(a).

2.2 Butterflies

A butterfly B is a pair of faces f, f ′ of C incident to the
same crease e. We call f and f ′ the wings of B and the
crease e the hinge of B. A pair of butterflies is a set of
two butterflies B1 and B2 with no wing in common.



CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Let S be any flat folded state of P and let B1, B2

be a pair of butterflies such that the wings of B1, B2

lie above the same unit square u on the XY -plane and
the hinges of B1, B2 lie above the same edge of u. Let
the wings of B1 and B2 be f1, f

′
1 and f2, f

′
2, respec-

tively. Here, f1 and f2 denote the lower wings and f ′
1

and f ′
2 denote the upper wings of their respective but-

terflies. Then the ordering of the four wings from bot-
tom to top must be one of the following: (f1, f

′
1, f2, f

′
2),

(f2, f
′
2, f1, f

′
1), (f2, f1, f

′
1, f

′
2) or (f1, f2, f

′
2, f

′
1), as shown

in Figure 3(a)–(d), respectively. Note that the ordering
of the wings cannot be (f1, f2, f

′
1, f

′
2) or (f2, f1, f

′
2, f

′
1)

as P would self-intersect. If the order of the wings is
as in Figure 3(a) or (b), we say that B1 and B2 stack.
Otherwise, we say that B1 and B2 nest.

(a) (b)

(c) (d)

1f2f

2f 1f

Figure 3: A pair of butterflies B1, B2, where (a) B2 is
stacked on B1, (b) B1 is stacked on B2, (c) B1 nests in
B2, and (d) B2 nests in B1.

If P is flat foldable, then there exists a final flat folded
state of P where all the faces of C lie above a unit square
u on the XY -plane. Since we assume that in any final
flat folded state (if one exists) of P , v0,0 is incident to
the top-left corner of u, the horizontal creases in row ri,
0 ≤ i ≤ m−1, lie above the top edge of u when i is even.
We call the butterflies that have these creases as hinges
the north butterflies. Similarly, the horizontal creases
in row ri, 0 ≤ i ≤ m − 1, lie above the bottom edge of
u when i is odd. We call butterflies with these hinges
the south butterflies. The vertical edges in column cj ,
0 ≤ j ≤ n−1, lie above the left edge of u when j is even
and they lie above the right edge of u when j is odd. We
call butterflies with those hinges the west butterflies and
the east butterflies, respectively. A pair of butterflies B1

and B2 is called a pair of twin butterflies if both of them
are north or south or east or west butterflies.

2.3 Directed Network

Let B be a butterfly of P with hinge e and wings f, f ′.
Since f and f ′ are adjacent faces, exactly one of them
has light side up in the checkerboard pattern. Without
loss of generality, we assume that f has the light side
up. Then the label of e (mountain or valley) determines

the ordering of f and f ′. If e has the label mountain,
then f (the face with the light side up) comes above
f ′ (the face with dark side up). We denote the order-
ing by f ≺ f ′, where ≺ means ‘comes above’. On the
other hand, if e has the label valley, then the ordering
is f ′ ≺ f . The labels of all the creases give a directed
network (of the faces) of C. For example, Figure 4(a)
shows a 2 × 2 mountain-valley pattern. The creases

e1

e3e2

e4

f0,0
f0,1

f1,0 f1,1

f0,0 f0,1

f1,1f1,0

(a) (b)

Figure 4: (a) A 2× 2 mountain-valley pattern, and (b)
the directed network.

e1, e2, e3 and e4 impose the following directed network.
(See Figure 4(b).) f1,1 is facing light side up and f1,0
is facing dark side up. Since e4 has the label valley,
then f1,0 ≺ f1,1. f0,0 is facing light side up and f1,0 is
facing dark side up. Since e2 has the label mountain,
then f0,0 ≺ f1,0. f0,1 is facing dark side up and f0,0 is
facing light side up. Since e1 has the label mountain,
then f0,0 ≺ f0,1. In a similar way, f1,1 ≺ f0,1.
Since f0,0 comes above all other faces, it must be the

topmost face. Similarly, the bottommost face must be
f0,1. In fact, in this particular example, the directed
network gives a unique candidate for a valid linear order-
ing of the faces of C, which is L = (f0,0, f1,0, f1,1, f0,1)
from top to bottom. Notice that the directed network
in Figure 4(c) is a directed acyclic graph (DAG).
We claim that the directed network of any flat fold-

able m × n mountain-valley pattern must be a DAG.
Our approach is independent of, but similar to [8].

Lemma 2 Let C be an m×n mountain-valley pattern.
If C is flat foldable, then its directed network N is a
directed acyclic graph.

3 Recognizing Valid Linear Orderings

In this section, we give an algorithm to decide whether
a given linear ordering of the faces of a mountain-valley
pattern C is a valid linear ordering of C.
Here is an outline of our algorithm, which is essen-

tially the method of [8]. Let L be any linear ordering of
the faces of C. For each pair of twin butterflies B1, B2

in C, we check whether B1, B2 nest, stack or intersect in
L. If they either stack or nest, then we check whether
the ordering of the wings of B1 and B2 satisfies the



25th Canadian Conference on Computational Geometry, 2013

ordering in the directed network. If each pair of twin
butterflies satisfies the ordering in the directed network
and does not intersect, then L is a valid linear ordering.
Otherwise, it is not a valid linear ordering.
We now prove the correctness the algorithm.

Theorem 3 Let P be an m×n map with the mountain-
valley pattern C. Let L be a linear ordering of the faces
of C. Then L is a valid linear ordering if and only if (a)–
(b) hold: (a) every pair of twin butterflies either stacks
or nests in L (i.e., satisfies the Butterfly Condition),
and (b) L satisfies the directed network N of C.

Proof. We first assume that L is a valid linear ordering
of C. Then Conditions (a) and (b) must hold. There-
fore, we assume that Conditions (a) and (b) hold. We
first decompose P intom×n distinct unit squares, where
each square is a face of C. Each of these squares has a
light side and a dark side. We stack these squares on a
unit square u according to the linear ordering L. The
checkerboard pattern of C decides for each face whether
it faces dark or light side up. For each north butterfly
B in P , we join its two wings (along the hinge of B)
such that its hinge lies above the top edge of u. Since
any two north butterflies either nest or stack, there will
be no intersection of butterflies. We join the wings of
the south, east and west butterflies along the bottom,
right and left edge of u in a similar way. In this way, we
construct a final flat folded state Sf of P and L is the
linear ordering of the faces of C in Sf . Therefore, L is
a valid linear ordering. �

We now calculate the running time of the algorithm.

Theorem 4 The running time of the algorithm above is
O(m2n2). With a careful implementation, the running
time can be reduced to O(mn) which is linear in the size
of the input.

Proof. Since there are O(m2n2) pairs of twin but-
terflies, and it takes O(1) time to check whether a
pair of twin butterflies intersect and whether the or-
der of the wings of each butterfly satisfies the ordering
given by the directed network, the total running time is
O(m2n2)×O(1) = O(m2n2).
We now show a careful implementation to reduce the

time complexity. We first check for each pair of north
butterflies whether they intersect or not. We take a
two dimensional array M [0 . . .m − 1][0 . . . n − 1] and a
stack S[1 . . .mn]. At first the stack is empty and each
of the entries in M is 0. We preprocess M based on
the directed network of C, and M remains unchanged
during the processing of the faces. Here are the rules
for preprocessing M .
For each 1 ≤ i ≤ m− 2, where i is odd, and for each

0 ≤ j ≤ n− 1, we do the following:

- If fi,j faces light side up in the checkerboard pattern of
C and the crease between fi,j , fi+1,j is labeled moun-
tain, then set M [i+1, j] = 1. This means that the face
fi,j must occur in L before the face fi+1,j .

- If fi,j faces dark side up in the checkerboard pattern of
C and the crease between fi,j , fi+1,j is labeled moun-
tain, then set M [i, j] = 1.

- If fi,j faces light side up in the checkerboard pattern of
C and the crease between fi,j , fi+1,j is labeled valley,
then set M [i, j] = 1.

- If fi,j faces dark side up in the checkerboard pattern of
C and the crease between fi,j , fi+1,j is labeled valley,
then set M [i+ 1, j] = 1.

We now take the faces in the order given by L and
process them as follows. Let the current face be fx,y. If
x < 1, or x > m−2 and m is even, then it is not a wing
of a north butterfly. Therefore, we proceed to the next
face in L. Otherwise, it is the wing of a north butterfly
and we examine M [x, y].

- If M [x, y] = 0, then it is the wing of a butterfly that
occurs before the other wing. Push the face fx,y to S.

- If M [x, y] = 1, the other wing of the corresponding
butterfly is already in the stack. In this case, we check
the top of the stack. If the topmost face in the stack is
fx+1,y (x is odd) or fx−1,y (x is even), then we pop the
topmost face and proceed to the next face. Otherwise,
there is an intersection, and hence L is not a valid
linear ordering.

We stop when either we detect an intersection or we
reach the end of L. Therefore, checking for intersection
among the north butterflies takes O(mn) time. Simi-
larly we check the south, west and east butterflies. The
running time of the algorithm is 4 × O(mn) = O(mn),
linear in the size of the input linear ordering. �

4 Enumerating Valid Linear Orderings

In this section, we sketch the outline of an exponential-
time exact algorithm to enumerate all the valid linear
orderings (if any exist) of an m × n mountain-valley
pattern C. Note that the existance of a valid linear
ordering of C proves that C is flat foldable.
Since C is a mountain-valley pattern, there is a unique

directed network N of C. We assume that N is a di-
rected acyclic graph; otherwise C is not flat foldable
by Lemma 2. We now enumerate all the linear or-
derings of the faces of C using the algorithm of [10],
which takes constant amortized time; i.e., the total run-
ning time of the algorithm is O(e(N )), where e(N ) is
the number of linear orderings generated by the al-
gorithm from the partial order N . We can decide
whether a linear ordering is a valid linear ordering in



CCCG 2013, Waterloo, Ontario, August 8–10, 2013

O(mn) time. From Theorem 1.1 of [6], we know that
e(N ) ≤ 2mn(log(mn)−H(N )) ≤ 2mnlog(mn) = O(mnmn)
, where H(N ) ≤ logmn is the entropy function of N .
Therefore, enumerating all valid linear orderings takes
O(mn)×O(mnmn) = O(mnmn+1) time.

5 Unfoldable Maps

In this section, we define a class χn of unfoldable 2× n
mountain-valley patterns, n ≥ 5. Note that any 2 × n
mountain-valley pattern is flat foldable when n ≤ 4. We
first show a subclass Sn of unfoldable 2 × n mountain-
valley patterns, for every n ≥ 5. We then observe that
any map with an unfoldable pattern (i.e., a pattern in
Sn) as a fragment is unfoldable. Using this result, we
define the class χn, which includes Sn as a subclass.

Let P be a 2×n map with a mountain-valley pattern
C. By definition, there are n horizontal creases. We call
each of these creases a spinal crease and collectively we
call these creases the spine. We call the n − 1 vertical
creases above the spine the upper ribs and the remaining
creases the lower ribs. We denote the upper ribs in C by
u1, u2, . . . , un−1 from left to right. Similarly, the lower
ribs are denoted by l1, l2, . . . , ln−1 from left to right, and
the spinal creases are denoted by s1, s2, . . . , sn from left
to right. A pair of upper and lower ribs {ui, li} incident
to the same vertex is called a pre-spine fold if they both
have mountain or valley label.

We now define the subclass Sn of unfoldable 2 × n,
n ≥ 5, mountain-valley patterns. Let C be a pattern for
Sn that satisfies the following (a)–(d).

(a) C is locally flat foldable.

(b) There are exactly two pre-spine folds {u2, l2} and
{un−2, ln−2}.

(c) All the upper ribs receive the same label.

(d) s3 receives the opposite label of the upper ribs.

The upper ribs of C can be labeled either mountain
or valley. Without loss of generality we assume that the
upper ribs of C receive the label mountain as shown in
Figure 5. Consequently, all the lower ribs of C except
l2 and ln−2 must be labeled valley. Since {u2, l2} and
{un−2, ln−2} are the pre-spine folds, l2 and ln−2 receive
the same label mountain as u2 and un−2. The spinal
creases s4, . . . sn−2 must all be labeled the same as s3,
which according to requirement (s) must be labeled val-
ley. To preserve local flat foldability, the other spinal
creases s1, s2, sn−1, sn must be labeled mountain (oppo-
site to the label of s3).

The following lemma shows that C is unfoldable.

Lemma 5 Let C be a 2×n mountain-valley pattern in
Sn, n ≥ 5. Then C is unfoldable.

...

...

Figure 5: An unfoldable 2×n mountain-valley pattern.

Proof. (Sketch of proof) We show the case when n is
odd. The case when n is even is similar. Let Li be
a candidate for a valid linear ordering of the faces in
the columns c0, . . . , ci of C, 0 ≤ i ≤ n − 1. From the
directed network of C, L3 = f0,0 ≺ f1,0 ≺ f1,1 ≺ f1,2 ≺
f0,2 ≺ f0,3 ≺ f1,3 ≺ f0,1 is the unique candidate for the
case i = 3. We show that for each 4 ≤ i ≤ n− 3, when
n > 5, the following (a)–(c) hold.

(a) Li is the only candidate,

(b) the order of the faces f0,i, f1,i, f0,i−2 and f0,i−1 in
Li is f0,i−2 ≺ f1,i ≺ f0,i ≺ f0,i−1, when i is even,
and f0,i−1 ≺ f0,i ≺ f1,i ≺ f0,i−2, when i is odd, and

(c) the faces f0,i, f1,i, f0,i−2 and f0,i−1 are consecutive
as a set (i.e., they appear together, with no other
faces lying between the extremal faces in this set).

We first construct the unique candidate Ln−3 (for n = 5,
Ln−3 is L3). We then show that we cannot avoid self-
intersection of the paper when constructing Ln−2 from
Ln−3.

f0,n−3

f1,n−2

f0,n−2 f0,n−1

f1,n−1f1,n−3

sn−1sn−2 sn

un−1

ln−1ln−2

un−2un−3

ln−3

...

...

(a) (b)

...

...

Figure 6: (a) The checkerboard pattern of the last three
columns cn−3, . . . , cn−1 of C, when n is odd and (b) the
directed network of C.

When n is odd, f0,n−3 ≺ f0,n−2 from Figure 6(b).
By the conditions (a)–(c) above, f0,n−5 ≺ f1,n−3 ≺
f0,n−3 ≺ f0,n−4 in Ln−3 (since n − 3 is even) and
these four faces are consecutive. If f0,n−4 ≺ f0,n−2,
then the linear ordering f0,n−5 ≺ f0,n−3 ≺ f0,n−4 ≺
f0,n−2 causes intersection between the east butterflies
un−4 and un−2 (since n is odd, n − 4 and n − 2 are
odd and hence the butterflies un−4, un−2 are east but-
terflies). Therefore, f0,n−2 ≺ f0,n−4 and the linear
ordering of the faces f0,n−3, f0,n−2, f0,n−4 in Ln−2 is
f0,n−3 ≺ f0,n−2 ≺ f0,n−4. Since there is a directed
path from f0,n−1 to f0,n−3 in the directed network,
f0,n−1 ≺ f0,n−3. We then have to place f0,n−1 some-
where above f0,n−3. But any such placement will have



25th Canadian Conference on Computational Geometry, 2013

the linear ordering f0,n−1 ≺ f0,n−3 ≺ f0,n−2 ≺ f0,n−4,
and thus cause intersection between the west butterflies
un−3 and un−1 (the indices of the ribs are even since
n is odd and hence the butterflies are west butterflies).
Therefore, there is no valid linear ordering of C. �
We claim that any mountain-valley pattern that has

an unfoldable fragment is also unfoldable.

Lemma 6 Let C be an m×n mountain-valley pattern.
Let C′ be a fragment of C. If C′ is not flat foldable, then
C is not flat foldable.

We now define a class χn of unfoldable 2×nmountain-
valley patterns, where n ≥ 5. We say a pattern belongs
to χn if and only if C satisfies the following (a)–(d).

(a) C is locally flat foldable.

(b) There are exactly two pre-spine folds {ui, li} and
{uj , lj}, where 2 ≤ i < j ≤ n− 2.

(c) All the upper ribs receive the same label and all the
lower ribs except ui, uj receive the label opposite to
the upper ribs.

(d) si+1 receives the opposite label of the upper ribs.

We now show that every member of χn is unfoldable.

Theorem 7 Let C be a 2 × n mountain-valley pattern
in χn, where n ≥ 5. Then C is unfoldable. Furthermore,
membership in χn can be tested in linear time.

Proof. Let i = 2 and j = n − 2. Then C ∈ Sn, and
hence the pattern is unfoldable by Lemma 5. Therefore,
we assume that C /∈ Sn. Let C′ be the fragment of
C with the faces in the columns ci−2, . . . , cj+1. Then
C′ ∈ Sx, where x = j−i+4. Therefore, C′ is unfoldable
by Lemma 5. Since a fragment of C is unfoldable, C is
unfoldable by Lemma 6.
We can check in O(n) time whether all the upper

ribs receive the same label (i.e., Condition (c) is satis-
fied ) by scanning from left to right. We can check in
O(n) time whether C is locally flat foldable (i.e., Con-
dition (a) is satisfied ) by checking the creases incident
to each of the n− 1 vertices of C. If Conditions (a) and
(c) are satisfied, we check in O(n) time whether there
are exactly two pre-spine folds (Condition (b)) and get
the index i for the leftmost pre-spine fold {ui, li}. If
Conditions (a)–(c) are satisfied, then it takes O(1) time
to check whether the label of si+1 is opposite to the
label of the upper ribs (Condition (d)). Therefore, it
takes O(n)+O(n)+O(n)+O(1) = O(n) time to check
whether C is a member of χn. �

6 Conclusion

In this paper, we introduced the concepts of butter-
flies, checkerboard patterns and directed networks. Us-
ing these tools, we gave a linear time algorithm to rec-
ognize a valid linear ordering and an exponential time

algorithm to decide flat foldability of anm×nmountain-
valley pattern. We also have identified a class of unfold-
able 2×n mountain-valley patterns. It remains open to
characterize all the unfoldable 2 × n mountain-valley
patterns. It is also open to solve Edmonds’ open prob-
lem for m× n maps.

References

[1] Esther M. Arkin, Michael A. Bender, Erik D. De-
maine, Martin L. Demaine, Joseph S. B. Mitchell,
Saurabh Sethia, and Steven S. Skiena. When can
you fold a map? Computational Geometry : The-
ory and Applications, 29:23–46, September 2004.

[2] Marshall Bern and Barry Hayes. The complex-
ity of flat origami. In Proceedings of the 7th
annual ACM-SIAM symposium on Discrete algo-
rithms (SODA 1996), SODA 1996, pages 175–183.
Society for Industrial and Applied Mathematics,
1996.

[3] Erik D. Demaine and Joseph O’Rourke. Geometric
Folding Algorithms: Linkages, Origami, Polyhedra.
Cambridge University Press, New York, NY, USA,
2007.

[4] Thomas Hull. Counting mountain-valley assign-
ments for flat folds. Ars Combinatorica, 67, 2003.

[5] Jacques Justin. Aspects mathematiques du pliage
de papier (mathematical aspects of paper fold.
In H. Huzita, editor, 1st International Meeting
of Origami Science and Scientific Origami, pages
263–277, 1989.

[6] Jeff Kahn and Jeong Han Kim. Entropy and sort-
ing. In Proceedings of the 24th annual ACM sympo-
sium on Theory of computing (STOC 1992), pages
178–187. ACM, 1992.

[7] Kunihiko Kasahara and Toshie Takahama.
Origami for the Connoisseur. Japan Publications
Inc., 1987.

[8] Tom Morgan. Map folding. Master’s thesis, Mas-
sachusetts Institute of Technology, June 2012.

[9] Rahnuma Islam Nishat. Map folding. Master’s the-
sis, University of Victoria, BC, Canada, April 2013.

[10] Gara Pruesse and Frank Ruskey. Generating lin-
ear extensions fast. SIAM Journal on Computing,
23(2):373–386, 1994.

[11] Ryuhei Uehara. Stamp foldings with a given
mountain-valley assignment. In ORIGAMI 5,
pages 585–597. CRC Press, 2011.


