
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Aggregate-Max Nearest Neighbor Searching in the Plane

Haitao Wang∗

Abstract

We study the aggregate nearest neighbor searching for
the Max operator in the plane. For a set P of n points
and a query set Q of m points, the query asks for a
point of P whose maximum distance to the points in Q
is minimized. We present data structures for answer-
ing such queries for both L1 and L2 distance measures.
Previously, only heuristic and approximation algorithms
were given for both versions. For the L1 version, we
build a data structure of O(n) size in O(n log n) time,
such that each query can be answered in O(m + log n)
time. For the L2 version, we build a data structure
of O(n log log n) size in O(n log n) time, such that each
query can be answered in O(m

√
n logO(1) n) time, and

alternatively, we build a data structure in O(n2+ε) time
and space for any ε > 0, such that each query can be
answered in O(m log n) time.

1 Introduction

Aggregate nearest neighbor (ANN) searching [1, 7, 8,
9, 10, 11, 15, 16, 17, 18, 19], also called group nearest
neighbor searching, is a generalization of the fundamen-
tal nearest neighbor searching problem [2], where the
input of each query is a set of points and the result of
the query is based on applying some aggregate operator
(e.g., Max and Sum) on all query points. In this paper,
we consider the ANN searching on the Max operator
for both L1 and L2 metrics in the plane.

For any two points p and q, let d(p, q) denote the
distance between p and q. Let P be a set of n points
in the plane. Given any query set Q of m points, the
ANN query asks for a point p in P such that g(p,Q)
is minimized, where g(p,Q) is the aggregate function of
the distances from p to the points of Q. The aggregate
functions commonly considered are Max, i.e., g(p,Q) =
maxq∈Q d(p, q), and Sum, i.e., g(p,Q) =

∑
q∈Q d(p, q).

If the operator for g is Max (resp., Sum), we use ANN-
Max (resp., ANN-Sum) to denote the problem.

In this paper, we focus on ANN-Max in the plane for
both L1 and L2 versions where the distance d(p, q) is
measured by L1 and L2 metrics, respectively.

Previously, only heuristic and approximation algo-
rithms were given for both versions. For the L1 version,

∗Department of Computer Science, Utah State University, Lo-
gan, UT 84322, USA. E-mail: haitao.wang@usu.edu.

we build a data structure of O(n) size in O(n log n) time,
such that each query can be answered in O(m + log n)
time. For the L2 version, we build a data structure
of O(n log log n) size in O(n log n) time, such that each
query can be answered in O(m

√
n logO(1) n) time, and

alternatively, we build a data structure in O(n2+ε) time
and space for any ε > 0, such that each query can be
answered in O(m log n) time.

1.1 Previous Work

For ANN-Max, Papadias et al. [16] presented a heuris-
tic Minimum Bounding Method with worst case query
time O(n + m) for the L2 version. Recently, Li et al.
[7] gave more results on the L2 ANN-Max (the queries
were called group enclosing queries). By using R-tree
[6], Li et al. [7] gave an exact algorithm to answer ANN-
Max queries, and the algorithm is very fast in prac-
tice but theoretically the worst case query time is still
O(n+m). Li et al. [7] also gave a

√
2-approximation al-

gorithm with query time O(m+log n) and the algorithm
works for any fixed dimensions, and they further ex-
tended the algorithm to obtain a (1 + ε)-approximation
result. To the best of our knowledge, we are not aware of
any previous work that is particularly for the L1 ANN-
Max. However, Li et al. [9] proposed the flexible ANN
queries, which extend the classical ANN queries, and
they provided an (1 + 2

√
2)-approximation algorithm

that works for any metric space in any fixed dimension.
For L2 ANN-Sum, a 3-approximation solution is given

in [9]. Agarwal et al. [1] studied nearest neighbor
searching under uncertainty, and their results can give
an (1 + ε)-approximation solution for the L2 ANN-Sum
queries. They [1] also gave an exact algorithm that can
solve the L1 ANN-Sum problem and an improvement
based on their work has been made in [18].

There are also other heuristic algorithms on ANN
queries, e.g., [8, 10, 11, 15, 17, 19].

Comparing with n, the value m is relative small
in practice. Ideally we want a solution that has a
query time o(n). Our L1 ANN-Max solution is the
first-known exact solution and is likely to be the best-
possible. Comparing with the heuristic result [7, 16]
with O(m+n) worst case query time, our L2 ANN-Max
solution use o(n) query time for small m; it should be
noted that the methods in [7, 16] uses only O(n) space
while the space used in our approach is larger.

25th Canadian Conference on Computational Geometry, 2013

q1
q2

q4
q3

Figure 1: Illustrating the four extreme points q1, q2, q3, q4.

2 The ANN-Max in the L1 Metric

In this section, we present our solution for the L1 version
of ANN-Max queries. Given any query point set Q,
our goal is to find the point p ∈ P such that g(p,Q) =
maxq∈Q d(p, q) is minimized for the L1 distance d(p, q),
and we denote by ψ(Q) the above sought point.

For each point p in the plane, denote by pmax the
farthest point of Q to p. We show below that pmax must
be an extreme point of Q along one of the four diagonal
directions: northeast, northwest, southwest, southeast.

Let ρ1 be a ray directed to the “northeast”, i.e., the
angle between ρ and the x-axis is π/4. Let q1 be an
extreme point of Q along ρ1 (e.g., see Fig. 1); if there is
more than one such point, we let q1 be an arbitrary such
point. Similarly, let q2, q3, and q4 be the extreme points
along the directions northwest, southwest, and south-
east, respectively. Let Qmax = {q1, q2, q3, q4}. Note
that Qmax may have less than four distinct points if
two or more points of Qmax refer to the same (physical)
point of Q. Lemma 1, whose proof is omitted, shows
that g(p,Q) is determined only by the points of Qmax.

Lemma 1 For any point p in the plane, it holds that
g(p,Q) = maxq∈Qmax d(p, q).

Note that a point may have more than one farthest
point in Q. For any point p, if p has only one farthest
point in Q, then pmax is in Qmax. Otherwise, pmax may
not be in Qmax, and for convenience we re-define pmax to
be the farthest point of p in Qmax. For each 1 ≤ i ≤ 4,
let Pi = {p | pmax = qi, p ∈ P}, i.e., Pi consists of the
points of P whose farthest points in Q are qi, and let pi

be the nearest point of qi in Pi. To find ψ(Q), we have
the following lemma, whose proof is omitted.

Lemma 2 ψ(Q) is the point pj for some j with 1 ≤ j ≤
4, such that d(pj , qj) ≤ d(pi, qi) holds for any 1 ≤ i ≤ 4.

Based on Lemma 2, to determine ψ(Q), it is suffi-
cient to determine pi for each 1 ≤ i ≤ 4. To this end,
we make use of the farthest Voronoi diagram [5] of the
four points in Qmax, which is also the farthest Voronoi
diagram of Q by Lemma 1. Denote by FVD(Q) the
farthest Voronoi diagram of Qmax. Since Qmax has only
four points, FVD(Q) can be computed in constant time,

q
a

b

q

(a) (b) (c)

a

b

q
aa

b
q’ q’ q’

Figure 2: Illustrating the bisector B(q, q′) (the solid curve) for q
and q′. In (c), since R(q, q′) is a square, the two shaded quadrants
are entirely in B(q, q′), but for simplicity, we only consider the two
vertical bounding half-lines as in B(q, q′).

e.g., by an incremental approach. Each point q ∈ Qmax

defines a cell C(q) in FVD(Q) such that every point
p ∈ C(q) is farthest to qi among all points of Qmax. In
order to compute the four points pi with i = 1, 2, 3, 4,
we first show in the following that each cell C(q) has
certain special shapes that allow us to make use of the
segment dragging queries [4, 14] to find the four points
efficiently. Note that for each 1 ≤ i ≤ 4, Pi = P ∩C(qi)
and thus pi is the nearest point of P ∩ C(qi) to qi. In
fact, the following discussion also gives an incremental
algorithm to compute FVD(Q) in constant time.

2.1 The Bisectors

We first briefly discuss the bisectors of the points based
on the L1 metric. In fact, the L1 bisectors have been
well studied (e.g., [14]) and we discuss them here for
completeness and some notation introduced here will
also be useful later when we describe our algorithm.

For any two points q and q′ in the plane, define r(q, q′)
as the region of the plane that is the locus of the points
farther to q than to q′, i.e., r(q, q′) = {p | d(p, q) ≥
d(p, q′)}. The bisector of q and q′, denoted by B(q, q′),
is the locus of the points that are equidistant to q and
q′, i.e., B(q, q′) = {p | d(p, q) = d(p, q′)}. In order to
discuss the shapes of the cells of FVD(Q), we need to
elaborate on the shape of B(q, q′), as follows.

Let R(q, q′) be the rectangle that has q and q′ as
its two vertices on diagonal positions (e.g., see Fig. 2).
If the line segment qq′ is axis-parallel, the rectangle
R(q, q′) is degenerated into a line segment and B(q, q′)
is the line through the midpoint of qq′ and perpendic-
ular to qq′. Below, we focus on the general case where
qq′ is not axis-parallel. Without loss of generality, we
assume q and q′ are northeast and southwest vertices of
R(q, q′), and other cases are similar.

The bisector B(q, q′) consists of two half-lines and one
line segment in between (e.g., see Fig. 2); the two half-
lines are either both horizontal or both vertical. Specif-
ically, let l be the line of slope −1 that contains the
midpoint of qq′. Let ab = l ∩ R(q, q′), and a and b are
on the boundary of R(q, q′). Note that if R(q, q′) is a
square, then a and b are the other two vertices of R(q, q′)
than q and q′; otherwise, neither a nor b is a vertex.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

q3

q1

(q)3l+

(q)3
−l

Figure 3: Illustrating an example where q1 is above l−(q3) and
below or on l+(q3). The bisector B(q1, q3) is a v-bisector.

We first discuss the case where R(q, q′) is not a square
(e.g., see Fig. 2 (a) and (b)). Let l(a) be the line through
a and perpendicular to the edge of R(q, q′) that contains
a. The point a divides l(a) into two half-lines, and we let
l′(a) be the one that doest not intersect R(q, q′) except
a. Similarly, we define the half-line l′(b). Note that l′(a)
and l′(b) must be parallel. The bisector B(q, q′) is the
union of l′(a), ab, and l′(b).

If R(q, q′) is a square, both a and b are vertices of
R(q, q′) (e.g., see Fig. 2 (c)). In this case, a quadrant
of a and a quadrant of b belong to B(q, q′), but for sim-
plicity, we consider B(q, q′) as the union of ab and the
two vertical bounding half-lines of the two quadrants.

We call ab the middle segment of B(q, q′) and de-
note it by BM (q, q′). If B(q, q′) contains two vertical
half-lines, we call B(q, q′) a v-bisector and refer to the
two half-lines as upper half-line and lower half-line, re-
spectively, based on their relative positions; similarly,
if B(q, q′) contains two horizontal half-lines, we call
B(q, q′) an h-bisector and refer to the two half-lines as
left half-line and right half-line, respectively.

For any point p in the plane, we use l+(q) to denote
the line through q with slope 1, l−(q) the line through q
with slope −1, lh(q) the horizontal line through q, and
lv(q) the vertical line through q.

2.2 The Shapes of Cells of FVD(Q)

A subset Q′ of Q is extreme if it contains an extreme
point along each of the four diagonal directions. Qmax

is an extreme subset. A point q of Qmax is redundant if
Qmax \ {q} is still an extreme subset. For simplicity of
discussion, we remove all redundant points from Qmax.
For example, if q1 and q2 are both extreme points along
the northeast direction (and q2 is also an extreme point
along the northwest direction), then q1 is redundant and
we simply remove q1 from Qmax (and the new q1 of Qmax

now refers to the same physical point as q2).
Consider a point q ∈ Qmax. Without loss of gen-

erality, we assume q = q3 and the other cases can be
analyzed similarly. We will analyze the possible shapes
of C(q3). We assume Qmax has at least two distinct
points since otherwise the problem would be trivial. We
further assume q1 6= q3 since otherwise the analysis is
much simpler. According to their definitions, q1 must

v1
v1

v1

v2v2v2

(a) (b) (c)

Figure 4: Illustrating three types of regions (shaded).

be above the line l−(q3) (e.g., see Fig. 3). However, q1
can be either above or below the line l+(q3). In the
following discussion, we assume q1 is below or on the
line l+(q3) and the case where q1 is above l+(q3) can be
analyzed similarly. In this case B(q3, q1) is a v-bisector
(i.e., it has two vertical half-lines).

We first introduce three types of regions (i.e., A, B,
and C), and we will show later that C(q3) must belong
to one of the types. Each type of region is bounded from
the left or below by a polygonal curve ∂ consisting of
two half-lines and a line segment of slope ±1 in between.

1. From top to bottom, the polygonal curve ∂ consists
of a vertical half-line followed by a line segment
of slope −1 and then followed by a vertical half-
line extended downwards (e.g., see Fig. 4 (a)). The
region on the right of ∂ is defined as a type-A region.

2. From top to bottom, ∂ consists of a vertical half-
line followed by a line segment of slope −1 and then
followed by a horizontal half-line extended right-
wards (e.g., see Fig. 4 (b)). The region on the right
of and above ∂ is defined as a type-B region.

3. From top to bottom, ∂ consists of a vertical half-
line followed by a line segment of slope 1 and then
followed by a vertical half-line extended downwards
(e.g., see Fig. 4 (c)). The region on the right of ∂
is defined as a type-C region.

In each type of the regions, the line segment of ∂
is called the middle segment. Denote by v1 the upper
endpoint of the middle segment and by v2 the lower end-
point (e.g., see Fig. 4). Note that the middle segment
may be degenerated to a point. By constructing C(q3)
in an incremental manner, Lemma 3 shows that C(q3)
must belong to one of the three types of regions. The
proof of Lemma 3 is omitted.

Lemma 3 The cell C(q3) must be one of the three types
of regions. Further (see Fig. 5), if C(q3) is a type-A
region, then C(q3) is to the right of lv(q3) and v2 is on
lh(q3); if C(q3) is a type-B region, then C(q3) is to the
right of lv(q3) and above lh(q3); if C(q3) a type-C region,
then C(q3) is to the right of lv(q3) and v1 is on lh(q3).

25th Canadian Conference on Computational Geometry, 2013

v1

v2q3

lv
q3()

lh
q3()

q3

q3

v1

v2
v2

v1C(q)3

C(q)3

C(q)3

(a) (b) (c)

Figure 5: Illustrating the three possible cases for C(q3): (a) a
type-A region; (b) a type-B region; (c) a type-C region.

2.3 Answering the Queries

Recall that our goal is to compute p3, which is is the
nearest point of P ∩C(q3) to q3. Based on Lemma 3, we
can compute the point p3 in O(log n) time by making
use of the segment dragging queries [4, 14]. The details
are given in Lemma 4.

Lemma 4 After O(n log n) time and O(n) space pre-
processing on P , the point p3 can be found in O(log n)
time.

Proof. We first briefly introduce the segment dragging
queries that will be used by our algorithm: parallel-track
queries and out-of-corner queries (e.g., Fig. 6).

Let S be a set of n points in the plane. For each
parallel-track query, we are given two parallel vertical
or horizontal lines (as “tracks”) and a line segment of
slope ±1 with endpoints on the two tracks, and the goal
is to find the first point of S hit by the segment if we
drag the segment along the two tracks. For each out-
of-corner query, we are given two axis-parallel tracks
forming a perpendicular corner, and the goal is to find
the first point of S hit by dragging out of the corner a
segment of slope ±1 with endpoints on the two tracks.

(a) (b)

Figure 6: Illustrating the segment dragging queries: (a) a
parallel-track query; (b) an out-of-corner query.

As shown by Mitchell [14], after O(n log n) time and
O(n) space preprocessing on S, each of the two types of
queries can be answered in O(log n) [4, 14].

Below, we present our algorithm for the lemma by
using the above segment dragging queries. Our goal is
to find p3. Depending on the type of the C(q3) as stated
in Lemma 3, there are three cases.

Type-A If C(q3) is a type-A region, we further decom-
pose C(q3) into three subregions (e.g., see Fig. 7 (a)) by
introducing two horizontal half-lines going rightwards

v1

v2q3

v1

v2

(b)

q3

q3 v1

v2

(c)(a)

C1

C2

C3

Figure 7: Illustrating the decomposition of C(q3) for segment-
dragging queries.

from v1 and v2 (i.e., the endpoints of the middle seg-
ment of the boundary of C(q3)), respectively. We call
the three subregions the upper, middle, and lower sub-
regions, respectively, according to their heights. To find
p3, for each subregion C, we compute the closest point
of P ∩ C to q3, and p3 is the closest point to q3 among
the three points found above.

For the upper subregion, denoted by C1, according to
Lemma 3, C1 is in the first quadrant of q3. Therefore,
q3’s closest point in P ∩C1 is exactly the answer of the
out-of-corner query by dragging a segment of slope −1
from the corner of C1.

For the middle subregion, denoted by C2, according
to Lemma 3, C2 is in the first quadrant of q3. Therefore,
q3’s closest point in P ∩C2 is exactly the answer of the
parallel-track query by dragging the middle segment of
the boundary of C(q3) rightwards.

For the lower subregion, denoted by C3, according to
Lemma 3, C3 is in the fourth quadrant of q3. Therefore,
q3’s closest point in P ∩C3 is exactly the answer of the
out-of-corner query by dragging a segment of slope 1
from the corner of C3.

Therefore, in this case we can find p3 in O(log n) time
after O(n log n) time O(n) space preprocessing on P .

Type-B If C(q3) is a type-B region, we further decom-
pose C(q3) into two subregions (e.g., see Fig. 7 (b)) by
introducing a horizontal half-line rightwards from v1.
To find p3, again, we find the closest point to q3 in each
of the two sub-regions.

By Lemma 3, both subregions are in the first quad-
rant of q3. By using the same approach as the first case,
q3’s closest point in the upper subregion can be found
by an out-of-corner query and q3’s closest point in the
lower subregion can be found by a parallel-track query.

Type-C If C(q3) is a type-C region, the case is sym-
metric to the first case and we can find p3 by using two
out-of-corner queries and a parallel-track query.

As a summary, we can find p3 in O(log n) time after
O(n log n) time O(n) space preprocessing on P . �

By combining Lemmas 2 and 4, we conclude this sec-
tion with the following theorem.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Theorem 5 Given a set P of n points in the plane,
after O(n log n) time and O(n) space preprocessing, we
can answer each L1 ANN-Max query in O(m + log n)
time for any set Q of m query points.

Proof. As preprocessing, we build data structures
for answering the segment dragging queries on P in
O(n log n) time and O(n) space [4, 14].

Given any query set Q, we first determine Qmax in
O(m) time. Then, we compute the farthest Voronoi dia-
gram FVD(Q) in constant time, e.g., by the incremental
approach given in this paper. Then, for each 1 ≤ i ≤ 4,
we compute the point pi by Lemma 4 in O(log n) time.
Finally, ψ(Q) can be determined by Lemma 2. �

3 The ANN-Max in the L2 Metric

In this section, we present our results for the L2 version
of ANN-Max queries. Given any query point set Q,
our goal is to find the point p ∈ P such that g(p,Q) =
maxq∈Q d(p, q) is minimized for the L2 distance d(p, q),
and we use ψ(Q) to denote the sought point above.

We follow the similar algorithmic scheme as in the L1

version. Let QH be the set of points of Q that are on
the convex hull of Q. It is known that for any point p in
the plane, its farthest point in Q is in QH , and in other
words, the farthest Voronoi diagram of Q, denoted by
FVD(Q), is determined by the points of QH [5, 7]. Note
that the size of FVD(Q) is O(|QH |) [5].

Consider any point q ∈ QH . Denote by C(q) the
cell of q in FVD(Q), which is a convex and unbounded
polygon [5]. Let f(q) be the closest point of P ∩C(q) to
q. Similar to Lemma 2, we have the following lemma.

Lemma 6 If for a point q′ ∈ Q, d(f(q′), q′) ≤
d(f(q), q) holds for any q ∈ QH , then f(q′) is ψ(Q).

Hence, to find ψ(Q), it is sufficient to determine f(q)
for each q ∈ Q, as follows.

Consider any point q ∈ Q. To find f(q), we first tri-
angulate the cell C(q) and let Tri(q) denote the trian-
gulation. For each triangle 4 ∈ Tri(q), we will find the
closest point to q in P ∩ 4, denoted by f4(q). Conse-
quently, f(q) is the closest point to q among the points
f4(q) for all 4 ∈ Tri(q). Out goal is to determine
ψ(Q). To this end, we will need to triangulate each cell
of FVD(Q) and compute f4(q) for each 4 ∈ Tri(q) and
for each q ∈ Q. Since the size of FVD(Q) is O(|QH |),
which is O(m), we have the following lemma.

Lemma 7 If the closest point f4(q) to q in P ∩4 can
be found in O(t4) time for any triangle 4 and any point
q in the plane, then ψ(Q) can be found in O(m·t4) time.

In the following, we present our algorithms for com-
puting f4(q) for any triangle 4 and any point q in the
plane. If we know the Voronoi diagram of the points

in P ∩4, then f4(q) can be determined in logarithmic
time. Hence, the problem becomes how to maintain the
Voronoi diagrams for the points in P such that given
any triangle 4, the Voronoi diagram information of the
points in P ∩ 4 can be obtained efficiently. To this
end, we choose to augment the O(n)-size simplex range
(counting) query data structure in [12], as shown in the
following lemma.

Lemma 8 After O(n log n) time and O(n log log n)
space preprocessing on P , we can compute the point
f4(q) in O(

√
n logO(1) n) time for any triangle 4 and

any point q in the plane.

Proof. We first briefly discuss the data structure in
[12] and then augment it for our purpose. Note that
the data structure in [12] is for any fixed dimension and
our discussion below only focuses on the planar case,
and thus each simplex below refers to a triangle.

A simplicial partition of the point set P is a collection
Π = {(P1,41), . . . , (Pk,4k)}, where the Pi’s are pair-
wise disjoint subsets (called the classes of Π) forming
a partition of P , and each 4i is a possibly unbounded
simplex containing the points of Pi. The size of Π is
k. The simplex 4i may also contain other points in P
than those in Pi. A simplicial partition is called special
if max1≤i≤k{|Pi|} < 2 ·min1≤i≤k{|Pi|}.

The data structure in [12] is a partition tree, denoted
by T , based on constructing special simplicial partitions
on P recursively. The leaves of T form a partition of P
into constant-sized subsets. Each internal node v ∈ T
is associated with a subset Pv (and its corresponding
simplex 4v) of P and a special simplicial partition Πv

of size |Pv|1/2 of Pv. The root of T is associated with
P . The cardinality of Pv (i.e., |Pv|) is stored at v. Each
internal node v has |Pv|1/2 children that correspond to
the classes of Πv. Thus, if v is a node lying at a distance
i from the root of T , then |Pv| = O(n1/2i

), and the
depth of T is O(log log n). It is shown in [12] that T has
O(n) space and can be constructed in O(n log n) time.

For each query simplex 4, the goal is to compute the
number of points in P ∩ 4. We start from the root
of T . For each internal node v, we check its simplicial
partition Πv one by one, and handle directly those con-
tained in 4 or disjoint from 4; we proceed with the
corresponding child nodes for the other simplices. Each
of the latter ones must be intersected by at least one of
the lines bounding 4. If v is a leaf node, for each point
p in Pv, we determine directly whether p ∈ 4. Each
query takes O(n1/2(log n)O(1)) time [12].

For our purpose, we augment the partition tree T . For
each node v, we explicitly maintain the Voronoi diagram
of Pv, denoted by VD(Pv). Since at each level of T the
subsets Pv’s are pairwise disjoint, comparing with the
original tree, our augmented tree has O(n) additional
space at each level. Since T has O(log log n) levels,

25th Canadian Conference on Computational Geometry, 2013

the total space of our augmented tree is O(n log log n).
For the running time, we claim that the total time for
building the augmented tree is still O(n log n) although
we have to build Voronoi diagrams for the nodes. In-
deed, let T (n) denote the time for building the Voronoi
diagrams in the entire algorithm. We have T (n) =√
n · T (

√
n) + O(n log n), and thus, T (n) = O(n log n)

by solving the above recurrence.
Consider any query triangle 4 and any point q. We

start from the root of T . For each internal node v, we
check its simplicial partition Πv, i.e., check the children
of v one by one. Consider any child u of v. If 4u is
disjoint from 4, we ignore it. If 4u is contained in 4,
then we compute in O(log n) time the closest point of
P ∩4u to q (and its distance to q) by using the Voronoi
diagram VD(Pu) stored at the node u. Otherwise, we
proceed on u recursively. If v is a leaf node, for each
point p in Pv, we compute directly the distance d(q, p) if
p ∈ 4. Finally, f4(q) is the closest point to q among all
points whose distances to q have been computed above.

Comparing with the original simplex range query on
4, we have O(log n) additional time on each node u if
4u is contained in 4, and the number of such nodes is
bounded by O(n1/2(log n)O(1)). Hence, the total query
time for finding f4(q) is O(n1/2(log n)O(1) ·log n), which
is O(n1/2(log n)O(1)). The lemma thus follows. �

Similar augmentation may also be made on the O(n)-
size simplex data structure in [13] and the recent ran-
domized result in [3]. If more space are allowed, by
using duality and cutting trees [5], we can obtain the
following lemma, whose proof is omitted.

Lemma 9 After O(n2+ε) time and space preprocessing
on P , we can compute the point f4(q) in O(log n) time
for any triangle 4 and any point q in the plane.

Lemmas 7, 8, and 9 lead to the following theorem.

Theorem 10 Given a set P of n points in the plane,
after O(n log n) time and O(n log log n) space prepro-
cessing, we can answer each L1 ANN-Max query in
O(m

√
n logO(1) n) time for any set Q of m query points;

alternatively, after O(n2+ε) time and space preprocess-
ing for any ε > 0, we can answer each L2 ANN-Max
query in O(m log n) time.

References

[1] P.K. Agarwal, A. Efrat, S. Sankararaman, and
W. Zhang. Nearest-neighbor searching under uncer-
tainty. In Proc. of the 31st Symposium on Principles
of Database Systems, pages 225–236, 2012.

[2] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman,
and A.Y. Wu. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. Journal of
the ACM, 45:891–923, 1998.

[3] T.M. Chan. Optimal partition trees. Discrete and Com-
putational Geometry, 47:661–690, 2012.

[4] B. Chazelle. An algorithm for segment-dragging and its
implementation. Algorithmica, 3(1–4):205–221, 1988.

[5] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry — Algorithms and Ap-
plications. Springer-Verlag, Berlin, 3rd edition, 2008.

[6] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In Proc. of the ACM SIGMOD In-
ternational Conference on Management of Data, pages
47–57, 1984.

[7] F. Li, B. Yao, and P. Kumar. Group enclosing queries.
IEEE Transactions on Knowledge and Data Engineer-
ing, 23:1526–1540, 2011.

[8] H. Li, H. Lu, B. Huang, and Z. Huang. Two ellipse-
based pruning methods for group nearest neighbor
queries. In Proc. of the 13th Annual ACM Interna-
tional Workshop on Geographic Information Systems,
pages 192–199, 2005.

[9] Y. Li, F. Li, K. Yi, B. Yao, and M. Wang. Flexi-
ble aggregate similarity search. In Proc. of the ACM
SIGMOD International Conference on Management of
Data, pages 1009–1020, 2011.

[10] X. Lian and L. Chen. Probabilistic group nearest neigh-
bor queries in uncertain databases. IEEE Transactions
on Knowledge and Data Engineering, 20:809–824, 2008.

[11] Y. Luo, H. Chen, K. Furuse, and N. Ohbo. Effi-
cient methods in finding aggregate nearest neighbor by
projection-based filtering. In Proc. of the 12nd Inter-
national Conference on Computational Science and its
Applications, pages 821–833, 2007.

[12] J. Matoušek. Efficient partition trees. Discrete and
Computational Geometry, 8(3):315–334, 1992.

[13] J. Matoušek. Range searching with efficient hierarchi-
cal cuttings. Discrete and Computational Geometry,
10(1):157–182, 1993.

[14] J.S.B. Mitchell. L1 shortest paths among polygonal
obstacles in the plane. Algorithmica, 8(1):55–88, 1992.

[15] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis.
Group nearest neighbor queries. In Proc. of the 20th
International Conference on Data Engineering, pages
301–312, 2004.

[16] D. Papadias, Y. Tao, K. Mouratidis, and C.K. Hui. Ag-
gregate nearest neighbor queries in spatial databases.
ACM Transactions on Database Systems, 30:529–576,
2005.

[17] M. Sharifzadeh and C. Shahabi. VoR-Tree: R-trees
with Voronoi diagrams for efficient processing of spa-
tial nearest neighbor queries. In Proc. of the VLDB
Endowment, pages 1231–1242, 2010.

[18] H. Wang and W. Zhang. The L1 top-k nearest neigh-
bor searching with uncertain queries. arXiv:1211.5084,
2013.

[19] M.L. Yiu, N. Mamoulis, and D. Papadias. Aggregate
nearest neighbor queries in road networks. IEEE Trans-
actions on Knowledge and Data Engineering, 17:820–
833, 2005.

