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Polynomial Time Algorithms for Label Size Maximization on Rotating Maps
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Abstract

Map labeling is a problem of placing labels at corre-
sponding graphical features on a map. There are two
optimization problems: the label number maximization
problem and the label size maximization problem. In
general, both problems are NP-hard for static maps.
Recently, the widespread use of several applications,
such as personal mapping systems, has increased the
importance of dynamic maps and the label number max-
imization problem for dynamic cases has been studied.
In this paper, we consider the label size maximization
problem for points on rotating maps. Our model is as
follows. For each label, a point is chosen inside the la-
bel or on its boundary as an anchor point. Each label
is placed such that the anchor point coincides with the
corresponding point on the map. Furthermore, while
the map fully rotates from 0 to 2π, the labels are placed
horizontally according to the angle of the map. Our
problem consists of finding the maximum scale factor
for the labels such that the labels do not intersect, and
deciding the place of the anchor points. We propose an
O(n log n)-time and O(n)-space algorithm for the case
where each anchor point is inside the label. Moreover,
if the labels are of unit-height (or unit-width) and the
anchor points are on the boundary, we also present an
O(n log n)-time and O(n)-space algorithm.

1 Introduction

Map labeling is the problem of placing text or symbol la-
bels corresponding to graphical features on input maps
such that the labels are pairwise disjoint. This problem
is important in several areas, such as geographic infor-
mation system (GIS), cartography, and graph drawing.
On maps, labels of regions, rivers, stations, etc., are
placed in appropriate positions so that the correspond-
ing features in the map can be understood. In map
labeling, points, polylines, and polygons are considered
as graphical features. In this paper, we consider map
labeling for points.

A lot of map labeling research has been presented [15].
There are two optimization problems in map labeling.
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Figure 1: Example of label size maximization problem
for rotating maps.

One is the label number maximization problem of finding
the placement of a maximum cardinality subset of labels
with fixed size. The other is the label size maximization
problem of placing all labels such that the sizes of the
labels are maximized under a global scale factor. Most
research has considered static maps.
Recently, the importance of dynamic maps has in-

creased due to several applications such as personal
mapping systems. There are a lot of dynamic cases, for
example, panning, rotating, and zooming maps, trans-
lating points, moving points with different velocity. In
this context, research on map labeling for dynamic cases
has been presented [2, 3, 9, 10]. Mainly, the dynamic
label number maximization problem was investigated in
their research. In contrast to this, it is a natural direc-
tion to consider label size maximization problems for
dynamic maps.
In this paper, we consider rotating maps. Since com-

mercial GIS applications (e.g., navigation) often rotate
maps dynamically according to the direction in which
the user is facing, we assume that labels are placed hori-
zontally according to the angle of the map. We consider
the problem of maximizing the label size such that the
labels are pairwise disjoint over all rotations θ ∈ [0, 2π)
(Figure 1).

1.1 Problem Definition and Our Results

Let M be a map that includes a set of points P =
{p1, . . . , pn} in the plane with a set of labels L =
{ℓ1, . . . , ℓn}. In this paper, the labels are considered to
be open axis-aligned rectangles of different sizes. Each
initial size of ℓi ∈ L is expressed by its width wi > 0
and height hi > 0. When the scale factor is σ, the label
size of ℓi is wiσ × hiσ.
Each label is placed such that a point called an an-

chor point coincides with the corresponding point pi
(Figure 2 (a)). The anchor point is inside the label ℓi
or on its boundary. When the label ℓi is fixed in place,
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Figure 2: Definitions.

Table 1: Our results (running time). All solvable prob-
lems can be computed in O(n) space.

Rectangle shape MSR MSBR

Unit squares O(n log n)

(Theorem 4)

O(n log n)

(Corollary 5)
Squares -

Unit-height
rectangles

O(n log n)

(Theorem 6)

O(n log n)

(Corollary 9)
Rectangles -

we say that it is anchored at pi. While M fully rotates
from 0 to 2π with the anchor points touching the corre-
sponding points, the labels are placed horizontally, and
should not intersect each other. Our problem is finding
the maximum scale factor σ∗ such that the labels do not
intersect, and deciding the place of the anchor points.
In ordinary map labeling, each label is placed such that
the anchor point is on the boundary of its label. How-
ever, we also consider the case that the point is inside
the label. We call the former problem the maximization
problem of the size of labels with boundary anchor points
on rotating maps (MSBR), and the latter problem the
maximization problem of the size of labels on rotating
maps (MSR). This formulation on dynamic maps is a
natural extension of the label size maximization prob-
lem on static maps.
Our results are summarized in Table 1. We address

several rectangular label shapes (e.g., unit squares and
unit-height rectangles). Although static label size max-
imization is NP-hard [8], MSR and MSBR can be solved
in polynomial time, which is surprising.
In the following, we treat the clockwise rotation of M

as the counterclockwise rotation of labels around their
anchor points (Figure 2 (b)), as did Gemsa et al. [9].
Both rotations are equivalent and yield exactly the same
results.

1.2 Related Work

In map labeling, two models have been considered w.r.t.
the number of label candidates for each point: the fixed-
position model [8] and the slider model [14]. In both
models, each label is placed such that the corresponding
point is on the boundary of the label. The fixed-position
model has a finite number of label candidates (e.g., the

2-position and 4-position model). The label candidates
of the slider model are the specified sides of the labels
(e.g., in the 2-slider model, two sides of the label serve
as a set of label candidates).

It is known that the static label size maximiza-
tion problems, except for the 1-position and 2-position
model, are APX-hard, even for unit square labels [8].
A lot of constant-factor approximation algorithms have
been proposed for several axis-parallel rectangles [8, 11].
Doddi et al. [6] dealt with unit square labels with dif-
ferent orientations, and Zhu and Qin [16] considered
the case that all the square labels have the same ori-
entation. Furthermore, the static label number maxi-
mization problems in several models are known to be
NP-hard (e.g., [8, 14]). Therefore, many approximation
algorithms have already been presented (e.g., [1, 14]).

In dynamic map labeling, Been et al. [2] proposed
consistency desiderata for dynamic map labeling, which
are that labels should not pop and jump during pan-
ning and zooming. Been et al. [3] treated the problems
of maximizing the lengths of active ranges, where the ac-
tive range of a label ℓ is a contiguous range of map scales
at which ℓ is displayed. Moreover, the problem satisfies
that the labels are pairwise disjoint at any scale and
satisfy the consistency desiderata. They proved that
the problems for points in the plane are NP-hard, and
proposed several exact and approximation algorithms
for points in 1D and 2D. Gemsa et al. [10] extended
the above problems to the slider model, and also dealt
with selecting the slider positions. Moreover, Gemsa
et al. [9] considered similar dynamic map labeling for
rotating maps. They also proved that the problem is
NP-hard, and proposed approximation algorithms.

In the circular labeling problem [13], the correspond-
ing point in the plane is on the boundary of the circular
label. However, in MSR and MSBR, during the rota-
tion, the point is inside the label or on the boundary,
and it may not be on the circle obtained by rotation of
the label.

2 Properties

In this section, first, we investigate locations of anchor
points such that the scale factor is maximized. Next, for
the locations, we calculate the maximum scale factor.

Let ℓp be a label anchored at a point p with the initial
width wp and the initial height hp. Further, the top-
left, top-right, bottom-left, and bottom-right point of ℓ
rotated by angle 0 are denoted by vtl, vtr, vbl, and vbr,
respectively. Draw the segments passing through p in
parallel with the edges of ℓp. We assume that p divides
the horizontal segment and vertical segment internally
in the ratio lp : rp (where rp = 1− lp) and tp : bp (where
bp = 1− tp), respectively (Figure 2 (c)). We define each
parameter for a point p′ in the same way. Thus, ℓp′ is
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Figure 3: Four possible cases that the corner points of
two labels ℓp and ℓp′ intersect.

the label of p′. wp′ and hp′ are the initial width and
initial height of ℓp′ , respectively. Moreover, the above
parameters of ℓp′ are defined as v′tl, v

′
tr, v

′
bl, v

′
br, lp′ , rp′ ,

tp′ and bp′ . Finally, let d be the distance between p and
p′, and σpp′ be the maximum scale factor for p and p′.

Lemma 1 Let ℓp and ℓp′ be two labels, which are an-
chored at points p and p′, respectively. ℓp and ℓp′ can be
placed with the maximum scale factor σpp′ if and only
if the anchor points of ℓp and ℓp′ satisfy (1 − 2lp)wp =
(1− 2lp′)wp′ and (1− 2tp)hp = (1− 2tp′)hp′ .

Proof. Without loss of generality, we assume that p
and p′ lie on a horizontal line. Let σ be the scale factor
for p and p′. Note that ℓp and ℓp′ touch at their corner
points. Otherwise, if ℓp and ℓp′ touch on their boundary
segments, they overlap by slight rotation. Moreover,
ℓp and ℓp′ are parallel. Therefore, there are only the
following four possible cases: vbr = v′tl, vbl = v′tr, vtl =
v′br, and vtr = v′bl (Figure 3).
We consider the case that vtl = v′br (Figure 4). Since

ℓp and ℓp′ are parallel, we have (lpwpσ+(1−lp′)wp′σ)2+
(tphpσ + (1− tp′)hp′σ)2 ≤ d2. Therefore,

σ ≤ d/
√
(lpwp+(1−lp′)wp′)2+(tphp+(1−tp′)hp′)2. (1)

In the same way, if vtr = v′bl,

σ ≤ d/
√
((1−lp)wp+lp′wp′)2+(tphp+(1−tp′)hp′)2, (2)

if vbr = v′tl,

σ ≤ d/
√
((1−lp)wp+lp′wp′)2+((1−tp)hp+tp′hp′)2, (3)

and if vbl = v′tr,

σ ≤ d/
√
(lpwp+(1−lp′)wp′)2+((1−tp)hp+tp′hp′)2. (4)

First, we focus on the inequalities (1) and (2) (or, (3)
and (4)). As the denominators of the right-hand sides

p p′
v′br

vtl

lpwpσ + (1− lp′)wp′σ

tphpσ + (1− tp′)hp′σ

Figure 4: The case that vtl = v′br.

of (1) and (2) become smaller, the maximum possible
σ becomes greater. (tphp + (1 − tp′)hp′)2 is appeared
in both right-hand sides of (1) and (2). The smaller
(lpwp+(1− lp′)wp′)2 becomes, the greater ((1− lp)wp+
lp′wp′)2 becomes. Therefore, if (lpwp + (1− lp′)wp′)2 =
((1 − lp)wp + lp′wp′)2, σ is maximized among values
satisfying (1) and (2). This condition is equivalent to
the equation (1 − 2lp)wp = (1 − 2lp′)wp′ . Similarly, in
case that the inequalities (1) and (4) (or, (2) and (3)),
if (1 − 2tp)hp = (1 − 2tp′)hp′ , σ is maximized among
values satisfying (1) and (4). The above two equations
are satisfied simultaneously. Therefore, if (1− 2lp)wp =
(1 − 2lp′)wp′ and (1 − 2tp)hp = (1 − 2tp′)hp′ , σ is the
maximum scale factor σpp′ .
The converse is also true. □

From Lemma 1, we can obtain the following lemma.

Lemma 2 For given points p and p′ with labels ℓp and
ℓp′ , if the anchor point of each label is the intersection
of two diagonals of the label, ℓp and ℓp′ can be placed
with the maximum scale factor σpp′ .

Proof. Let p and p′ be two points. In the case that the
anchor points lie in the label centers, lp = tp = lp′ =
tp′ = 1/2. Therefore, (1−2×1/2)wp = (1−2×1/2)wp′ =
0 and (1 − 2 × 1/2)hp = (1 − 2 × 1/2)hp′ = 0. The
conditions in Lemma 1 are satisfied, and hence, the scale
factor σpp′ is maximized. □

From Lemma 2, the maximum scale factor σpp′ of

MSR for p and p′ is 2d/
√
(wp + wp′)2 + (hp + hp′)2.

Therefore, we can solve MSR for more than two points
by computing the maximum scale factor σij for all point
pairs pi and pj , and choosing the minimum among
those. This naive algorithm runs in Θ(n2) time. More-
over, if all heights (or widths) of labels are equal to each
other, we obtain the following proposition.

Proposition 3 MSBR for unit-height (or unit-width)
rectangular labels can be computed in Θ(n2) time.

Proof. The naive algorithm of MSR gives the maxi-
mum scale factor σ∗ for the unit-height rectangular la-
bels. We consider points obtained by translating the
anchor points placed at the center of rectangles in MSR
to the top or bottom (or, left or right) boundary. Those
points satisfy the equations (1)–(4) in Lemma 1. There-
fore, the points are the anchor points in MSBR and σ∗

is also the maximum scale factor in MSBR. □
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In the following sections, we will improve the time
complexity of these algorithms for MSR and MSBR to
O(n log n).

3 Square Labels

When the labels of all points are squares, the prob-
lem has a strong connection to the weighted closest pair
problem [7]: The input is a set of disks. Each disk has a
point in P as its center, a weight W , and a radius Wσ,
where σ is a scale factor. The goal is to find the max-
imum scale factor σ∗ such that the disks are pairwise
disjoint.

Theorem 4 MSR for square labels can be computed in
O(n log n) time and O(n) space.

Proof. Let p and p′ be two points that have square
labels, and lie on a horizontal line. Let σpp′ be the
maximum scale factor for p and p′. Since the labels are
square, we have wp = hp and wp′ = hp′ . When the
labels are anchored at p and p′, and their anchor points
are their centers by Lemma 2, the distance between p

and p′ is
√
2
2 (w + w′)σpp′ . Then, σpp′ is determined by

the angles π/4, 3π/4, 5π/4, and 7π/4. We consider the
disks drawn by fully rotating the square labels around
the points p and p′. The maximum scale factor σpp′ is
obtained by maximizing the size of the disks such that
they are pairwise disjoint.
Therefore, MSR for square labels is considered as the

weighted closest pair problem with weight W =
√
2
2 wp

for each point p. For the weighted closest pair problem,
Formann [7] proposed an O(n log n)-time and O(n)-
space algorithm based on a plane sweep. Therefore,
this completes the proof. □

Corollary 5 MSBR for unit square labels can be com-
puted in O(n log n) time and O(n) space.

4 Rectangular Labels

For the rectangular labels, the algorithm of square la-
bels does not work directly because the disks obtained
by sweeping the rectangular labels around their anchor
points can intersect when the scale factor is maximized.
However, Formann’s idea [7] used in weighted closest
pair problem can be modified to MSR and MSBR for
rectangular labels. Our modified algorithm overesti-
mates the maximum scale factor, and then fixes the
maximum value using the intersection graph of disks
drawn by fully rotation of the labels. In the algorithm,
we use the Delaunay triangulation [5, 12] of P , DT(P ),
which is a triangulation with the empty circle property :
for any triangle T in DT(P ), the circumcircle of T con-
tains no points of P in its interior. We call a triangle of
DT(P ) a Delaunay triangle. When points p and q are

vertices of a Delaunay triangle in DT(P ), q is called a
neighbor of p.
Our algorithm can be described as Algorithm 1.

Algorithm 1 Algorithm for MSR.

1: Compute DT(P ) for P .
2: For each point p, calculate the maximum scale fac-

tor σp with all the neighbors in DT(P ). Take the
minimum scale factor σpre = minp∈P σp of all the
scale factors.

3: For each point p ∈ P , draw a closed disk with cen-

ter p and radius
σpre

2

√
w2

p + h2
p. Enumerate all in-

tersections of disks using the standard intersection
detecting algorithm of Bentley and Ottmann [4].

4: Calculate the maximum scale factor for all intersec-
tions of disks, and take the minimum value among
them as σ∗.

The following theorem shows the correctness of Algo-
rithm 1 and its complexity. In the following, let Dp be
the disk centered at p in Step 3 of Algorithm 1, and let

Rp be its radius
σpre

2

√
w2

p + h2
p.

Theorem 6 MSR can be computed in O(n log n) time
and O(n) space.

In order to prove Theorem 6, we present some lem-
mas.

Lemma 7 Each disk obtained after Step 3 of Algo-
rithm 1 contains no points in P other than its center
point.

Proof. For each p ∈ P , let Dp be the disk with center

p and radius Rp =
σpre

2

√
w2

p + h2
p. From the definition

of σpre, the labels of p and q do not intersect during
rotation for a neighbor q. Therefore, Dp cannot con-
tain neighbors of p. In the Delaunay triangulation, the
nearest point q of p is a neighbor of p in DT(P ). There-
fore, the radius of Dp is less than |pq|. From this, Dp

cannot contain points that are not the neighbors of p in
DT (P ). □

Lemma 8 The number of intersecting pairs in the set
of disks obtained at Step 3 of Algorithm 1 is at most
3n− 6.

Proof. First, we draw straight line segments between
the points whose closed disks intersect at Step 3 of Al-
gorithm 1. We will show that the straight line graph G
having the line segments as edges is planar. We consider
the case that two closed disks Dp and Dp′ intersect. In
G, p and p′ are connected by a straight line edge. If
there is no other disk Dq centered at a point q ̸= p, p′
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Figure 6: Case 1.

which intersects the line segment pp′, no two line seg-
ments in G intersect without endpoints. This shows
that the graph G is planar.
Without loss of generality, we assume that p and p′

lie on a horizontal line and the x-coordinate of p′ is
greater than that of p (Figure 5). We denote the x-
and y-coordinates of p and p′ by xp, yp, xp′ , and yp′ ,
respectively. We denote the x- and y-coordinates of the
other points in the same way. Let s be the intersection
of the boundary of Dp and pp′. In the following, we
assume 0 = xp ≤ xq ≤ xs and 0 = yp = yp′ ≤ yq. q is in
the shaded area in Figure 5. When xq < 0 or xp′ < xq,
Dp cannot intersect pp′, by Lemma 7. Moreover, when
yq < 0 = yp = yp′ or xs < xq ≤ xp′ , these cases can be
proved in the same way.
We consider separately the cases that q is or is not a

neighbor of p in DT(P ).
Case 1: q is a neighbor of p in DT(P ).

We denote
σpre

2

√
(wp + wq)2 + (hp + hq)2 by R̃pq. In

this case, by the definition of σpre, we have |pq| ≥ R̃pq.

Moreover, since wq, hq > 0, R̃pq is greater than Rp. Let

C̃pq be a circle centered at p with radius R̃pq. C̃pq is
shown as a dotted circle in Figure 6. Note that the
vertical distance between q and pp′ is greater than or
equal to the length of a vertical straight segment from
s to C̃pq. Then, we consider the case that xq = xs.

Because |pq| ≥ R̃pq and |ps| = Rp =
σpre

2

√
w2

p + h2
p, we

have that

|sq|2 = |pq|2 − |ps|2

≥
(σpre

2

)2

((wp + wq)
2 + (hp + hq)

2)

−
(σpre

2

)2

(w2
p + h2

p)

=
(σpre

2

)2

(w2
q + h2

q + 2wpwq + 2hphq).

Since Rq =
σpre

2

√
w2

q + h2
q and wp, hp, wq, hq > 0, we

have that |sq|2 − R2
q ≥

(σpre

2

)2
(2wpwq + 2hphq) > 0.

Therefore, Dq cannot intersect pp′.
Case 2: q is not a neighbor of p in DT(P ).
In this case, we can show that there is a Delaunay tri-

angle with p whose circumcircle contains pp′∩Dp in the
following way. If p′ is a neighbor of p, the circumcircle

p p′s

Dp
Dp′

t

v
q

r

D△

v′

p p′
s

Dp

Dp′

t

v

q

r

v′

u u′

D△

D△′

Figure 7: Case 2-1. Figure 8: Case 2-2a.

of a Delaunay triangle that has the edge pp′ completely
contains pp′ ∩Dp. If p′ is not a neighbor of p, there is
a Delaunay triangle △pvv′ that has an edge that inter-
sects the inside of pp′. Since v, v′ ̸∈ Dp by Lemma 7,
the circumcircle of △pvv′ completely contains pp′ ∩Dp.
Therefore, we consider such a Delaunay triangle △pvv′.
In this case, v′ might be p′. Let v and v′ be points such
that yv > 0 and yv′ ≤ 0, respectively. Further, let t be
the intersection point of the circumcircle of △pvv′ and
pp′. Since the circumcircle contains pp′ ∩Dp regardless
of whether p′ is a neighbor of p, we have xq ≤ xs < xt.
In the case that xv = xq, since yv < yq and by Lemma 7,
Dq cannot intersect pp′. Therefore, we consider two
cases: xv < xq ≤ xs and xq < xv < xs. In the follow-
ing, we denote the closed disk whose boundary is the
circumcircle of △pvv′ by D△.

Case 2-1: xv < xq ≤ xs.

Let t be the intersection of pp′ and the boundary of
D△, and r be the intersection of pp′ and a perpendicular
from q to pp′ (Figure 7). Since D△ completely contains
pp′ ∩ Dp, xr ≤ xs < xt. Because ∠prq = π/2 and
xt − xs > 0, ∠ptq < π/2. Moreover, since q ̸∈ D△ by
the empty circle property, ∠pvq+∠ptq ≥ π. Therefore,
we have ∠pvq ≥ π − ∠ptq > π/2. Because r ∈ Dp and
v ̸∈ Dp, |pr| < |pv| and ∠pvr ≤ ∠prv. Then, we have
∠qvr = ∠pvq−∠pvr > π/2−∠prv = ∠qrv. Therefore,
we have |qv| < |qr|. Since Rq < |qv| by Lemma 7, Dq

cannot contain r. Therefore, Dq cannot intersect pp′.

Case 2-2: xq < xv < xs.

First, we show that there is a Delaunay triangle
△puu′ such that xu ≤ xq ≤ xu′ . Since q is not a
neighbor of p in DT(P ), there is a Delaunay triangle
△pzz′ that has an edge zz′ that intersects pq at an
interior point of pq. Moreover, v is a vertex of a Delau-
nay triangle that has p as its vertex. Since p is in the
polygon consisting of Delaunay triangles that have p as
their vertex, when we visit the Delaunay triangles clock-
wise from △pzz′ to △pvv′, there is a Delaunay triangle
△puu′ that satisfies the condition. In the following, we
denote the closed disk whose boundary is the circum-
circle of △puu′ by D△′ , and the boundary of D△′ by
C△′ . We consider the cases that r ∈ D△′ \ C△′ and
r ̸∈ D△′ \ C△′ .

Case 2-2a: r ∈ D△′ \ C△′ .

Let t be the intersection of C△′ and the inside of pp′

(Figure 8). Since r ∈ D△′ \ C△′ , we have xr < xt.
Therefore, we can use the same proof as for Case 2-1 by
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replacing u with v. It is shown that Dq cannot intersect
pp′.
Case 2-2b: r ̸∈ D△′ \ C△′ .
In this case, we consider the quadrilateral uqu′r (Fig-

ure 9). By Lemma 7, u is not contained inside Dq.
Therefore, if Dq intersects pp′, |qr| ≤ Rq < |qu| or
|qr| ≤ Rq < |qu′|. First, we consider the case |qr| ≤
Rq < |qu|. Since ∠qur < ∠qru in △qur, we have
∠qur < π/2. Since q and r are outside D△′ , we have
∠qu′r + ∠qur ≥ π. Therefore, we have ∠qu′r > π/2
and ∠qru′ < π/2. This means that |qu′| < |qr| ≤ Rq

and u′ is inside Dq. This contradicts Lemma 7. The
case |qr| ≤ Rq < |qu′| can be proven in the same way.
Therefore, Dq cannot intersect pp′. □

Proof of Theorem 6. First, we show the correctness.
From the definition of σpre in Step 2 of Algorithm 1,
two labels whose corresponding points are neighbors in
DT(P ) do not intersect. In Step 4, the disks can be
drawn by fully rotating the labels from 0 to 2π. Each
label has the anchor point at its center, and is scaled by
σpre. Moreover, since σpre ≥ σ∗, we can obtain σ∗ by
checking intersecting disks.
Next, we show the complexity. Step 1 can be com-

puted in O(n log n) time and O(n) space [5, 12]. Step 2
calculates the maximum scale factor between neighbors.
Since the number of edges in Delaunay triangulation
is O(n), Step 2 can be computed in O(n) time and
O(1) space. In Step 3, the algorithm of Bentley and
Ottmann [4] can be computed in O((n+K) log n) time
and O(n+K) space where K is the number of intersect-
ing pairs. Moreover, Step 4 can be computed in O(K)
time and O(1) space. Since K ≤ 3n − 6 by Lemma 8,
this completes the proof. □

Corollary 9 MSBR for unit-height (or unit-width)
rectangular labels can be computed in O(n log n) time
and O(n) space.

From Theorem 4, MSR and MSBR are generalizations
of the closest pair problem. The time complexity of this
problem is lower-bounded by Ω(n log n) [12], which may
also apply to our problems.

5 Conclusion

We considered the label size maximization problem for
rotating maps. In general, label size maximization

problems for static maps are APX-hard. However, we
showed that the problem for rotating maps can be solved
in polynomial time, and we presented efficient algo-
rithms for finding the maximum scale factor.
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