
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

An Optimal Algorithm Computing Edge-to-Edge Visibility in a Simple
Polygon

Mikkel Abrahamsen∗†

Abstract

Let P be a simple polygon with n vertices. We present
a new O(n)-time algorithm to compute the visible part
of one edge from another edge of P . The algorithm
does not alter the input and only uses O(1) variables
and is therefore a constant-workspace algorithm. The
algorithm can be used to make a constant-workspace al-
gorithm for computing the weak visibility polygon from
an edge in O(mn) time, where m is the number of ver-
tices of the resulting polygon, and a constant-workspace
algorithm for computing a minimum link path between
two points inside a simple polygon in O(n2) time.

1 Introduction

Much research has been done on visibility problems in
the plane. See the book by Ghosh [8] for an overview of
the most important problems and results.

Let P be a simple polygon with vertices v0v1 . . . vn−1
in counterclockwise (CCW) order, and let vn = v0. A
point q ∈ P is said to be visible from vjvj+1 if there
exists a point p ∈ vjvj+1 such that the segment pq is
contained in P. In this paper we show how to compute
the visible part of an edge vivi+1 from the edge vjvj+1.
Without loss of generality, we assume that j = 0 for
the rest of this paper. The algorithm uses O(n) time is
therefore optimal. The input is given in read-only mem-
ory and onlyO(1) variables are needed in the workspace,
each consisting of O(log n) bits. Therefore, the algo-
rithm is a constant-workspace algorithm.

The problem of computing visibility between two
edges was first addressed by Toussaint [13], who gave
a linear-time query algorithm deciding if two edges are
visible to each other if a triangulation of P is pro-
vided. Later, Avis et al. [4] described an O(n)-time
algorithm to compute the visible part of one edge from
another which does not require a triangulation or other
involved data structures, but uses Ω(n) variables in the
workspace. De et al. [7] claimed to present an O(n)-time
algorithm using constant workspace. However, their al-
gorithm has a fault, as we shall see.

∗Department of Computer Science, University of Copenhagen,
mikkel.abrahamsen@gmail.com
†Autodesk ApS, Havnegade 39, DK-1058 Copenhagen K, Den-

mark

One of the best-known constant-workspace algo-
rithms for a geometric problem is Jarvis’ march [10] for
the computation of the convex hull of n points in the
plane in O(hn) time, where h is the number of points
on the hull. Recently, Asano et al. [2], Asano et al. [3],
and Barba et al. [5] gave constant-workspace algorithms
solving many elementary tasks in planar computational
geometry. The research presented in this paper is part
of a master’s thesis [1], which contains more details and
space-efficient solutions to some other planar visibility
problems.

1.1 Notation and definitions

Given two points a and b in the plane, the line segment
with endpoints a and b is written ab. Both endpoints
are included in segment ab. If s is a line segment, the
line containing s which is inifinite in both directions is

written ←→s . The half-line
−→
ab is a line infinite in one

direction, starting at a and passing through b. The
right half-plane RHP(ab) is the closed half plane with

boundary
←→
ab lying to the right of ab. The left half-plane

LHP(ab) is just RHP(ba).

If P is a simple polygon, the boundary of P is written
∂P. Let P(p, q) for two points p, q ∈ ∂P be the set of
points on ∂P we meet when traversing ∂P CCW from
p to q, both included. A chain of P is such a set P(p, q)
for some points p, q ∈ ∂P. We use the general position
assumption that no three vertices of P are collinear.

Consider the edge v0v1 of a simple polygon P. A beam
emanating from v0v1 is a segment pq where p ∈ v0v1
and pq is contained in P. Thus, a point q is visible from
v0v1 if and only if there exists a beam pq emanating
from v0v1. A right support of the beam pq is a reflex
vertex v of P such that v ∈ pq and the edges meeting
at v are both contained in RHP(pq). A left support is
defined analogously. Since no beam emanates from a
point to the left of v0, we use the convention that v0 is
a left support of any beam v0q. Likewise, v1 is a right
support of any beam v1q. A support is a right support
or a left support.

The edge vivi+1 is totally facing the edge vjvj+1 if
both of the points vj and vj+1 are in LHP(vivi+1). No-
tice that vivi+1 can be totally facing vjvj+1 even though
no point on vjvj+1 is visible from vivi+1. Edge vivi+1

is partially facing vjvj+1 if excactly one of the points vj



25th Canadian Conference on Computational Geometry, 2013

and vj+1 is in LHP(vivi+1) and not facing vjvj+1 if none
of the points are in LHP(vivi+1). We say that vivi+1

is facing vjvj+1 if vivi+1 is partially or totally facing
vjvj+1. It follows from the definitions that vivi+1 is ei-
ther totally facing, partially facing or not facing vjvj+1.
That gives 9 different combinations of how vivi+1 is fac-
ing vjvj+1 and how vjvj+1 is facing vivi+1. However,
only 8 of the cases are possible when vivi+1 and vjvj+1

are edges of a simple polygon, since they cannot both
partially face each other. That would imply that they
intersect each other properly. All of the remaining 8
cases are possible. See for instance the paper of Avis et
al. [4].

2 Visibility Between Two Edges of a Polygon

2.1 Point-to-point and point-to-edge visibility

If the edge vivi+1 is not facing edge v0v1, the only point
on vivi+1 that can be visible from v0v1 is one of the end-
points vi or vi+1. Likewise, if v0v1 is not facing vivi+1,
the only point on v0v1 that can possibly see vivi+1 is one
of the endpoints v0 or v1 by means of beams contained
in RHP(v0v1). In such cases, the problem of computing
the visible part of vivi+1 is reduced to point-to-point
and point-to-edge visibility.

Point-to-point visibility is the problem of determining
if ab is contained in P for two given points a and b.
That can easily be tested in O(n) time using constant
workspace by traversing all edges of ∂P, seeing if ∂P
crosses ab somewhere.

Point-to-edge visibility is the slightly more compli-
cated task of computing the visible part of an edge
from a point p. This can also be done using constant
workspace and O(n) time by traversing all edges of ∂P
once while keeping track of the vertices shadowing the
largest part of the edge in each of the ends [1].

We now turn our attention to the more interesting
case of computing the visible part of vivi+1 from v0v1 if
the edges are facing each other. We motivate the devel-
opment of a new algorithm by giving a counterexample
to the constant-workspace algorithm of De et al. [7].
The authors are aware of the error [11]. The reader
who has not consulted their paper can skip this section.

2.2 Counterexample to the algorithm proposed by
De et al. [7]

The textual description and the pseudocode in [7] do not
agree. Figure 1 is an example of a polygon where the
algorithm computes a wrong result in both cases. After
PASS1 (), the line segment L is still pi+1pj+1. After
PASS2 (), L is θpj+1. The text says that PASS3 () is
to check if a vertex on P(pj+1, pi) is to the right of L.
All the vertices are to the left, so the algorithm returns
that the rightmost visible point on pjpj+1 from pipi+1

pi pi+1

pjpj+1

θ

v

Figure 1: The algorithm from [7] reports the wrong vis-
ible part of pjpj+1 from pipi+1 in this polygon.

is pj+1, which is wrong. The pseudocode gives another
definition of PASS3 (), according to which we also check
if a vertex on P(pi+1, pj) is to the left of L. Vertex v
is, so the algorithm reports that nothing of pjpj+1 is
visible. That is clearly also wrong.

2.3 Computing visibility between edges facing each
other

Assume for the rest of this section that the edges v0v1
and vivi+1 are facing each other. We want to compute
the part of vivi+1 containing vi+1 that is not visible from
v0v1. The main idea is to consider the edges in the right
side chain P(v1, vi) and the left side chain P(vi+1, v0)
alternately, changing side after each edge. When an
edge in one side is found that causes more of vivi+1 to
be invisible from v0v1, we retract the search in the other
chain to the last interfering edge in that chain. This will
be made more precise in the following.

Let � = �v0v1vivi+1 be the quadrilateral with ver-
tices v0v1vivi+1 in that order. The possible beams from
v0v1 to vivi+1 are all contained in �, so when computing
the visible part of vivi+1, we are only concerned about
the edges of P that are (partially) in �. A beam pq is a
proper beam if pq ⊂ LHP(v0v1) and pq ⊂ LHP(vivi+1).
An improper beam is a beam that is not proper. Each
beam pq where p is an interior point on v0v1 and q is an
interior point on vivi+1 is necessarily proper. Therefore,
if pq is improper, p = v0, p = v1, q = vi, or q = vi+1.
The visibility due to improper beams can be computed
using point-to-edge visibility, so in this section, we focus
on the visibility due to proper beams only. We leave out
the proof of the following lemma due to limited space
[1].

Lemma 1 Let vR ∈ P(v1, vi) ∩ � and vL ∈
P(vi+1, v0) ∩ �. Every proper beam pq from v0v1 to
vivi+1 satisfies p ∈ LHP(vRvL) and q ∈ RHP(vRvL).
In particular, if v0v1 ∩ LHP(vRvL) = ∅ or vivi+1 ∩
RHP(vRvL) = ∅, then no proper beam from v0v1 to
vivi+1 exists.

Assume that there are some proper beams from v0v1



CCCG 2013, Waterloo, Ontario, August 8–10, 2013

to vivi+1. We say that the beam pq is the rightmost
beam from v0v1 to vivi+1 if p is as close to v1 as possible
and q is as close to vi+1 as possible among all proper
beams. Similarly, pq is the leftmost beam from v0v1
to vivi+1 if p is as close to v0 as possible and q is as
close to vi as possible. If v0v1 and vivi+1 are totally
facing each other, all beams from v0v1 to vivi+1 are
proper, so the visible part of vivi+1 is the points between
the endpoints of the leftmost and rightmost beams. If
one of the edges is only partially facing the other, the
visible part of vivi+1 can be computed using the leftmost
and rightmost beams in combination with point-to-edge
visibility.

If pq is a beam from v0v1 to vivi+1, a generalized left
support of pq is vi+1 if q = vi+1 or a left support of pq
otherwise. The following lemma characterizes rightmost
beams by means of their supports. The proof is given
in [1].

Lemma 2 Let pq be a proper beam from v0v1 to vivi+1.
The beam pq is a rightmost beam if and only if pq has
a right support vR and a generalized left support vL and
vL ∈ vRq.

If the edges v0v1 and vivi+1 are totally facing each
other and no edge obstructs the visibility between the
edges, then the rightmost beam is pq = v1vi+1 and it
has supports vR = v1 and vL = vi+1.

Algorithm 1 returns the indices (R,L) of the supports
of the rightmost beam if it exists. The algorithm iter-
atively computes the correct value of R and L, taking
the edges into consideration one by one. Initially, R is
set to 1 and L is set to i + 1, as if no edges obstructs
the visibility between the edges. The points p and q on
v0v1 and vivi+1, respectively, are always defined such
that the segment pq contains vR and vL. The algorithm
alternately traverses P(v1, vi) and P(vi+1, vn) one edge
at a time using the index variables r and l. The vari-
able side is 1 when an edge in P(v1, vi) is traversed and
−1 when an edge in P(vi+1, vn) is traversed. Each time
an edge vr−1vr or vl−1vl is found that crosses pq, the
value of R or L is updated to r or l, respectively. If
the value of R is updated, we reset l to L, since it is
possible that there are some edges on P(vL, vn) that
did not intersect the old segment pq, but intersect the
updated one. Likewise, when L is updated, we reset r
to R. Although segment pq is changed when R or L is
updated, P(v1, vR) or P(vi+1, vL) does not cross pq af-
ter the update. That is because pq is rotated clockwise
(CW) away from the chains.

All our figures illustrate the case where v0v1 and
vivi+1 are totally facing each other, but that assumption
is not used in any of the proofs. If vivi+1 is partially
facing v0v1 such that v0 ∈ LHP(vivi+1), then vi might
be the right support of the rightmost beam from v0v1 to
vivi+1. Likewise, if v0v1 is partially facing vivi+1 such

that vi ∈ LHP(v0v1), v0 can be the left support of the
rightmost beam.

Algorithm 1: FindRightmostBeam(i)

Input: A polygon P defined by its vertices
v0, v1, . . . , vn−1 in CCW order and an
index i such that v0v1 and vivi+1 are facing
each other.

Output: If no proper beam from v0v1 to vivi+1

exists, NULL is returned. Otherwise, a
pair of indices (R,L) is returned such
that the rightmost beam from v0v1 to
vivi+1 has right support vR and
generalized left support vL.

1 R← 1, L← i+ 1
2 r ← R, l← L
3 p← v1, q ← vi+1

4 side← 1 (∗ 1 is right side, −1 is left side ∗)
5 while r < i or l < n
6 if side = 1
7 if r < i
8 r ← r + 1
9 if vr−1vr enters LHP(pq) ∩�

10 if vr−1vr intersects vLq
11 return NULL

12 R← r, l← L

13 else (∗ side = −1 ∗)
14 if l < n
15 l← l + 1
16 if vl−1vl enters RHP(pq) ∩�
17 if vl−1vl intersects vRp
18 return NULL

19 L← l, r ← R

20 Let p be the intersection point between −−−→vLvR
and v0v1

21 Let q be the intersection point between −−−→vRvL
and vivi+1

22 if p or q does not exist
23 return NULL

24 side← −side
25 if pq ⊂ LHP(v0v1) ∩ LHP(vivi+1)
26 return (R,L)

27 else
28 return NULL

Lemma 3 Assume that Algorithm 1 terminates after
k iterations of the loop at line 5. Let Rj, Lj, pj,
and qj be the values of R, L, p, and q, respectively,
in the beginning of iteration j, j = 1, 2, . . . , k + 1,
where the values when the algorithm terminates have
index k + 1. Then Rj = Rj+1 or Lj = Lj+1 for



25th Canadian Conference on Computational Geometry, 2013

j = 1, . . . , k. p1, p2, . . . , pk+1 is a sequence of points
moving monotonically along v0v1 from v1 towards v0.
Likewise, q1, q2, . . . , qk+1 is a sequence of points moving
monotonically along vivi+1 from vi+1 towards vi. Let
aj be the CW angle from ←−−−−−−→vRj−1

vLj−1
to ←−−−→vRj

vLj
. Then∑k+1

j=2 aj < 180◦. In particular, aj < 180◦ for each
2 = 1, . . . , k + 1.

Proof. See Figure 2. It is clear that at most one of
R and L changes in iteration j, since the lines 12 and
19 cannot both be executed. Therefore, Rj = Rj+1 or
Lj = Lj+1. If R is redefined in iteration j, then ←−→vRvL
is rotating around vL and the new value of R, namely
Rj+1, satisfies vRj+1

∈ LHP(vRj
vLj

). Therefore, pj+1

is on the segment v0pj and qj+1 is on the segment qjvi.
The same is true if L is updated. Hence, p1, . . . , pk+1

is monotinically moving along v0v1 from v1 towards v0
and q1, . . . , qk+1 is monotonically moving along vivi+1

from vi+1 towards vi. Because of the monotonicity, the
angles are additive, so that the CW angle from ←−−−→vR1

vL1

to←−−−−−−→vRk+1
vLk+1

is
∑k+1

j=2 aj . If v0v1 is totally facing vivi+1,
every qj is contained in LHP(v0v1). Otherwise vivi+1

is totally facing v0v1 so that every pj is contained in

LHP(vivi+1). In either case,
∑k+1

j=2 aj is bounded by
180◦. That bound cannot be reached, since it would
require that v0v1 or vivi+1 was infinitely long in both
directions. �

Lemma 4 Algorithm 1 correctly computes the right-
most beam from v0v1 to vivi+1 as specified. The al-
gorithm is a constant-workspace algorithm.

Proof. First, consider the cases where the algorithm
returns NULL. In line 11, we have found an intersection
point x between P(vR, vi) and vLq. That means that
P(v1, vi) intersects pq properly at x, since no three ver-
tices are collinear. Lemma 1 establishes that the only
possible proper beams from v0v1 to vivi+1 are of the
form p′q′, where p′ ∈ v0p and q′ ∈ qvi. At the same
time, if we use Lemma 1 with v0v1 and vivi+1 inter-
changed by each other and using x as ‘vL’ and vL as
‘vR’, we get that p′q′ satisfies p′ ∈ pv1 and q′ ∈ vi+1q.
Therefore, p′ = p and q′ = q, but pq is not a beam.
Hence, there are no proper beams from v0v1 to vivi+1.
The case in line 18 is analogous.

Due to Lemma 3, we know that p is moving mono-
tonically from v1 towards v0 and q is moving mono-
tonically from vi+1 towards vi. The case of line 23
happens if p has moved outside v0v1, so that v0v1 ∩
LHP(vRvL) = ∅, or q has moved outside vivi+1, so that
vivi+1 ∩ RHP(vRvL) = ∅. In each of these cases, it
follows from Lemma 1 that there are no proper beams
from v0v1 to vivi+1.

The test at line 25 is to ensure that pq is a proper
beam, which is not always the case if v0v1 is only par-
tially facing vivi+1.

v0
v1

vivi+1

vR

vL

p

q

x

y

Figure 3: Case 2 in the proof of Theorem 4.

Now, assume that the algorithm returns (R,L), but
that pq is not a beam since some edge obstructs the
visibility from p to q. Assume that P(v1, vi) intersects
pq properly, and let x be the intersection point closest
to p. P(v1, vi) enters LHP(pq) ∩ � at x. Let y be the
first point where P(x, vi) crosses pq from left to right.
Then y ∈ xq. We have two cases: x ∈ P(v1, vR) (case
1) and x ∈ P(vR, vi) (case 2). Assume that we are in
case 2, see Figure 3. Assume that the final value of R is
defined in a later iteration of the loop at line 5 than the
final value of L. After R is defined in line 12, every edge
vr−1vr in P(vR, vi) is traversed and it is checked in line
10 if some edge intersects pq. In particular the edges in
P(x, y) are traversed, in which case the algorithm either
returns NULL or updates R, which is a contradiction. If
R is defined in an earlier iteration than L, then r is
reset to R in line 19 when L is defined, and it is checked
if some edge in P(vR, vi) intersects pq, so that cannot
happen either.

Assume that we are in case 1, i.e. x ∈ P(v1, vR). Con-
sider the first iteration, say iteration j, at the beginning
of which P(v1, vR) intersects pq properly, and let x′ be
the intersection point closest to p. Let y′ be the first
point where P(x′, vi) crosses pq from left to right. Then
y′ ∈ x′q (x′ and y′ might not be the same as x and y,
since R and L can change before the algorithm termi-
nates). We must have vR ∈ P(y′, vi). There are three
possible cases to consider: vR ∈ px′ (case 1.1), vR ∈ x′y′
(case 1.2), and vR ∈ y′q (case 1.3).

Assume case 1.3. Let Rk, Lk, pk, and qk be de-
fined as in Lemma 3 for each iteration k. Either R
or L is redefined in iteration j − 1 due to the minimal-
ity of j. Therefore, Rj−1 6= Rj or Lj−1 6= Lj (case
1.3.1 and 1.3.2, respectively). First, assume Rj−1 6= Rj

but Lj−1 = Lj . Again, there are three cases to con-
sider: vRj−1 ∈ P(v1, x

′) (case 1.3.1.1), vRj−1 ∈ P(x′, y′)
(case 1.3.1.2), and vRj−1 ∈ P(y′, vRj ) (case 1.3.1.3). As-



CCCG 2013, Waterloo, Ontario, August 8–10, 2013

v0
v1, p1, p7

p16p18p25

vi+1, q1
vi

q7 q16 q18 q25

a7
a18a16

a25

Figure 2: Illustration for Lemma 3. The points pj , qj are shown with the number j of the first iteration where they
occur. The segments pjqj are drawn dashed. The angles aj > 0 are indicated with grey arcs.

sume case 1.3.1.3, see Figure 4(a). According to Lemma
3, the CW angle between ←−−−−−−→vRj−1

vLj−1
and ←−−−→vRj

vLj
is

less than 180◦. Therefore, a subset of P(x′, y′) would
also be contained in LHP(vRj−1vLj−1) ∩ �. That im-
plies that P(v1, vRj−1

) intersects pj−1qj−1, a contradic-
tion because of the choice of j. vRj−1

cannot be in
P(x′, y′) (case 1.3.1.2), because then vRj

would be in
RHP(vRj−1vLj−1), so R would not have been redefined
to Rj in iteration j − 1. Finally, if vRj−1 was a vertex
in P(v1, x

′) (case 1.3.1.1), P(x′, y′) would be contained
in LHP(vRj−1

vLj−1
)∩�, and therefore vR would be re-

defined to a vertex in P(x′y′) when the edges of that
chain was traversed. Hence, vR would not be redefined
to vRj in iteration j − 1, which is a contradiction.

Now, assume Lj−1 6= Lj (case 1.3.2), see Figure 4(b).
The CW angle between ←−−−−−−→vRj−1vLj−1 and ←−−−→vRjvLj is less
than 180◦. Therefore, a part of P(x′, y′) is also in
LHP(vRj−1

vLj−1
). That implies that P(v1, vRj−1

) in-
tersects pj−1qj−1, which contradicts the choice of j.

The case where vR ∈ x′y′ (case 1.2) can be elimi-
nated in a similar way. Consider case 1.1, i.e. vR ∈ px′.
The chain P(p, x′) and the segment x′p forms a simple,
closed curve, because x′ is the intersection point be-
tween P(v1, vi) and pq closest to p. The curve can, for
instance, be seen in Figure 4(a). Consider the region of
P enclosed by the curve. In order to get to vR, P(y′, vi)
has to cross x′p to get into the region. That contradicts
that x′ was the intersection point closest to p.

If we assume that P(vi+1, vn) intersects pq, we get a
contradiction in an analogous way.

The conclusion is that if (R,L) is returned, vR and
vL defines a proper beam pq with right support vR and
generalized left support vL in that order. Therefore, pq
must be the rightmost beam from v0v1 to vivi+1 accord-
ing to Lemma 2.

v0
v1

vivi+1

vRj

vLj
, vLj−1

pj

qj

x′

y′

vRj−1

pj−1

qj−1

(a)

v0 v1

vivi+1

vRj , vRj−1

vLj

pj

qj

x′

y′

vLj−1

pj−1

qj−1

(b)

Figure 4: Cases in the proof of Theorem 4. (a) Case
1.3.1.3. (b) Case 1.3.2.



25th Canadian Conference on Computational Geometry, 2013

Observe that the vertices of P are not altered. Hence
the input is read only. In addition to that, we only use
the variables R, L, r, l, p, q, and side. The computa-
tions of intersections and containment at lines 9, 10, 16,
17, 20, 21, and 25 are easily implemented using constant
workspace. �

Even though we reset l to L in line 12 or r to R in line
19, the running time is linear since the other variable
is not reset, so half of the traversed edges are never
traversed again, as the following lemma explains.

Lemma 5 There are at most 2n − 6 iterations of the
loop at line 5 of Algorithm 1.

Proof. Let N(n) be the maximal number of edge visits
for a polygon with n vertices. Consider the first time
line 12 or 19 is executed. Assume it is line 12. There
have been made 2(r−1)−1 < 2(r−1) iterations, because
P(v1, vi) is traversed every second time, beginning with
the first. The r−1 edges in P(v1, vr) are never traversed
again. Therefore, N satisifies the recurrence N(n) ≤
2k+N(n− k), where k = r− 1. A similar bound holds
for some k ≥ 1 if line 19 is executed first. We know that
N(4) = 2, so induction yields that N(n) ≤ 2n− 6 is an
upper bound. �

It is clear that an algorithm to compute a leftmost
beam from v0v1 to vivi+1 can be constructed symmet-
rically. That gives us the following theorem:

Theorem 6 The visible part of an edge vivi+1 from
v0v1 in a simple polygon can be computed in O(n) time
using constant workspace.

3 Weak Visibility Polygons and Minimum Link
Paths

The weak visibility polygon of the polygon P from the
edge v0v1 consists of all the points in P visible from
v0v1. Guibas et al. [9] presented an O(n)-time algorithm
to compute the weak visibility polygon if a triangula-
tion of P is provided, where n is the number of vertices
of P. Later, Chazelle [6] described an O(n)-time de-
terministic triangulation algorithm, implying that the
weak visibility polygon can be computed in O(n) time
using O(n) space. Using Algorithm 1, one can make a
O(mn)-time algorithm using constant workspace, where
m is the number of edges of the weak visibility polygon
[1]. It is well-known that m = O(n).

A minimum link path between two points s and t
in a simple polygon is a polygonal path from s to t
which is contained in P and which consists of as few
segments as possible. Suri [12] showed how to compute
a minimum link path using O(n) time if a triangulation
of P is provided. Using the algorithm to compute
the weak visibility polygon, it is possible to devise

an O(n2)-time algorithm to compute a minimum link
path using constant workspace. The algorithm does
not use a triangulation of P. The details are given in [1].

Acknowledgements

We would like to thank Jyrki Katajainen, Ashwini Joshi,
Kristian Mortensen, and the anonymous reviewers for
suggesting many improvements to the present paper.

References

[1] M. Abrahamsen. Constant-workspace algorithms for
visibility problems in the plane. Master’s thesis. Univer-
sity of Copenhagen, Department of Computer Science,
2013. Available at http://www.diku.dk/forskning/

performance-engineering/Mikkel/thesis.pdf.

[2] T. Asano, K. Buchin, M. Buchin, M. Korman,
W. Mulzer, G. Rote, and A. Schulz. Memory-
constrained algorithms for simple polygons. Computa-
tional Geometry: Theory and Applications, to appear.

[3] T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-
work-space algorithms for geometric problems. Journal
of Computational Geometry, 2(1):46–68, 2011.

[4] D. Avis, T. Gum, and G. Toussaint. Visibility between
two edges of a simple polygon. The Visual Computer,
2(6):342–357, 1986.

[5] L. Barba, M. Korman, S. Langerman, and R. Silveira.
Computing the visibility polygon using few variables.
In Proceedings of the 22nd International Symposium
on Algorithms and Computation, volume 7014 of Lec-
ture Notes in Computer Science, pages 70–79. Springer,
2011.

[6] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete & Computational Geometry, 6(1):485–
524, 1991.

[7] M. De, A. Maheshwari, and S. Nandy. Space-efficient
algorithms for visibility problems in simple polygon. E-
print arXiv:1204.2634, 2012.

[8] S. Ghosh. Visibility Algorithms in the Plane. Cam-
bridge University Press, 2007.

[9] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and
R. Tarjan. Linear-time algorithms for visibility and
shortest path problems inside triangulated simple poly-
gons. Algorithmica, 2(1):209–233, 1987.

[10] R. Jarvis. On the identification of the convex hull of a
finite set of points in the plane. Information Processing
Letters, 2(1):18–21, 1973.

[11] A. Maheshwari. Private communication.

[12] S. Suri. A linear time algorithm for minimum link paths
inside a simple polygon. Computer Vision, Graphics,
and Image Processing, 35(1):99–110, 1986.

[13] G. Toussaint. Shortest path solves edge-to-edge visibil-
ity in a polygon. Pattern Recognition Letters, 4(3):165–
170, 1986.


