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One-Round Discrete Voronoi Game in R2 in Presence of Existing Facilities
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Abstract

In this paper we consider a simplified variant of the dis-
crete Voronoi Game in R2, which is also of independent
interest in competitive facility location. The game con-
sists of two players P1 and P2, and a finite set U of
users in the plane. The players have already placed two
sets of facilities F and S, respectively in the plane. The
game begins by P1 placing a new facility followed by P2
placing another facility, and the objective of both the
players is to maximize their own total payoffs. When
|F | = |S| = m, this corresponds to the last round of
the (m + 1)-round discrete Voronoi Game in R2. In
this paper we propose polynomial time algorithms for
obtaining optimal strategies of both the players under
arbitrary locations of the existing facilities F and S. We
show that the optimal strategy of P2, given any place-
ment of P1, can be found in O(n2) time, and the optimal
strategy of P1 can be found in O(n8) time.

1 Introduction

The main objective in any facility location problem is
to judiciously place a set of facilities serving a set of
users such that certain optimality criteria are satisfied.
Facilities and users are generally modeled as points in
the plane. The set of users (demands) is either discrete,
consisting of finitely many points, or continuous, that
is, a region where every point is considered to be a user.
We assume that the facilities are equally equipped in
all respects, and a user always avails the service from
its nearest facility. Consequently, each facility has its
service zone, consisting of the set of users that are served
by it. For a set U of users, finite or infinite, and a set F
of facilities, define for every f ∈ F , U(f, F ) as the set
of users in U that are served by the facility f . In such
a scenario, when the users choose the facilities based on
the nearest-neighbor rule, the optimization criteria is to
maximize the cardinality or the area of the service zone
depending on whether the demand region is discrete or
continuous, respectively.
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The game-theoretic analogue of such competitive
problems for continuous demand regions is a situation
where two players place two disjoint sets of facilities in
the demand region. A player p is said to own a part of
the demand region that is closer to the facilities owned
by p than to the other player, and the player which fi-
nally owns the larger area is the winner of the game.
The area a player owns at the end of the game is called
the payoff of the player. In the one-round game the
first player places m facilities following which the sec-
ond player places another m facilities in the demand
region. In the m-round game the two players place one
facility each alternately for m rounds in the demand
region.

Ahn et al. [1] studied a one-dimensional Voronoi
Game, where the demand region is a line segment. They
showed that when the game takes m rounds, the second
player always has a winning strategy that guarantees
a payoff of 1/2 + ε, with ε > 0. However, the first
player can force ε to be arbitrarily small. On the other
hand, in the one-round game with m facilities, the first
player always has a winning strategy. The one-round
Voronoi Game in R2 was studied by Cheong et al. [7],
for a square-shaped demand region. They proved that
for any placement W of the first player, with |W | = m,
there is a placement B of the second player |B| = m
such that the payoff of the second player is at least
1/2 + α, where α > 0 is an absolute constant and m
large enough. Fekete and Meijer [9] studied the two-
dimensional one-round game played on a rectangular
demand region with aspect ratio ρ. The Voronoi Game,
for which the underlying space is a graph, was consid-
ered by Bandyapadhyay et al. [3].

In the discrete regime, the possible demand set is gen-
erally modeled as a finite graph, and users and facilities
are restricted to lie on the nodes of the graph. As before,
the players alternately chose nodes (facilities) from the
graph, and all vertices (customers) are then assigned
to closest facilities based on the graph distance. The
payoff of a player is the number of customers assigned
to it. Dürr and Thang [8] showed that deciding the
existence of a Nash equilibrium for a given graph is NP-
hard. Recently, Teramoto et al. [13] studied the same
problem and considered following very restricted case:
the game arena is an arbitrary graph, the first player
occupies just one vertex which is predetermined, and
the second player occupies m vertices in any way. They
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proved that in this strongly restricted discrete Voronoi
Game it is NP-hard to decide whether the second player
has a winning strategy. They also proved that for a
given graph G and the number r of rounds determining
whether the first player has a winning strategy on G
is PSPACE-complete. The discrete Voronoi Game for
path graphs was studied by Kiyomi et al. [10].

Recently, Banik et al. [4] considered the discrete
Voronoi Game where the universe is modeled as R, and
the distance between the users and the facilities are mea-
sured by their Euclidean distance. The problem consists
of a finite user set U ⊂ R, with |U | = n, and two players
Player 1 (P1) and Player 2 (P2) each having m = O(1)
facilities. At first, P1 chooses a set F1 ⊂ R of k facilities
following which P2 chooses another set F2 ⊂ R of m fa-
cilities, disjoint from F1. The payoff of P2 is defined as
the cardinality of the set of points in U which are closer
to a facility owned by P2 than to every facility owned by
P1. The payoff of P1 is the number of users in U minus
the payoff of P2. The objective of both the players is to
maximize their respective payoffs. The authors showed
that if the sorted order of the points in U along the line
is known, then the optimal strategy of P2, given any
placement of facilities by P1, can be computed in O(n)
time. Also, for m ≥ 2 the optimal strategy of P1 can
be computed in O(nm−λm) time, where 0 < λm < 1, is
a constant depending only on m. The discrete Voronoi
Game for polygonal domains were considered by Banik
et al. [5].

The discrete Voronoi Game when the user set consists
of a finite set of points in R2 poses a major challenge. To
the best of our knowledge, this problem has never been
addressed before, and answering rather simple questions
about this game is rather difficult. In this paper we con-
sider a simplified variant of the discrete Voronoi Game
in R2, which is also of independent interest in competi-
tive facility location. The game consists of two players
P1 and P2 and a finite set U of users in the plane.
Moreover, the two players have already placed a set of
facilities F and S, respectively, in the plane. The game
begins by P1 placing a new facility followed by P2 plac-
ing another facility. The objective of both the players
is to maximize their respective payoffs.

For any placement of facilities A by P1 and B by P2,
the payoff of P2, P2(A,B) is defined as the cardinality
of the set of points in U which are closer to a facility
owned by P2 than to every facility owned by P1, that is,
P2(A,B) = |⋃f∈B U(f,A ∪ B)|. Similarly, the payoff
of P1, P1(A,B) is |⋃f∈A U(f,A ∪ B)|, |U\P2(A,B)|.
Now, the One Round Discrete Voronoi Game in R2 in
Presence of Existing Facilities can be formally stated as
follows:

One Round Discrete Voronoi Game in R2 in Presence of
Existing Facilities: Given a set U of n users, and two
sets of facilities F and S owned by two competing

players P1 and P2, respectively, at first P1 chooses
a facility f1 following which P2 chooses another fa-
cility f2 such that

(a) maxf ′
2∈R2 |P2(F ∪{f1}, S∪{f ′2})| is attained at

the point f2.

(b) maxf∈R2 ν(f) is attained at the point f1, where
ν(f) = n−maxf ′

2∈R |P2(F ∪ {f}, S ∪ {f2})|.

The quantity ν(f1) is called the optimal payoff of P1
and f1 is the optimal strategy of P1.

In this paper we develop algorithms for the optimal
strategies of the two players in the above game. Here-
after, we shall refer to this version of the Voronoi Game
as Gn(F, S). Note that when |F | = |S| = m the sit-
uation described in the Gn(F, S) game is identical to
the last round of the (m + 1)-round discrete Voronoi
Game in R2. Therefore, this problem takes the first non-
trivial step towards solving the discrete Voronoi Game
problem in R2. Moreover, as mentioned before, this
problem is of independent interest in competitive facil-
ity location. In any growing economy the expansion
of the service zone is of utmost importance. However,
because of some implied constraint it is never possible
to place all your facilities at once. So it is of utmost
importance to find a strategy which will guide how to
place a set of facilities in a sequential manner, as the
market grows. The Gn(F, S) game is an instance of
such a problem. Imagine there are 2 competing compa-
nies are providing a service to a set of users in a city.
Suppose both these companies already have their re-
spective service centers located in different parts of the
city. Now, if both of them wish to open a new service
center with the individual goal to maximize their total
payoff, then the problem is an instance of the Voronoi
Game described above. Though the Gn(F, S) game, as
described above, has never been studied before, if both
F and S are empty, then it is a well-known fact that
optimal strategy of P1 in the Gn(F, S) game is at the
halfspace median of U [12], which can be computed in
O(n log3 n) time [11]. However when the sets F and S
are non-empty the problem becomes immensely more
complicated. In this paper we propose polynomial time
algorithms for obtaining optimal strategies of both the
players in the Gn(F, S) game.

The optimal strategy of P2, given any placement of
P1, is identical to the solution of the MaxCov problem
studied by Cabello et al. [6]. Suppose we are given
a set of users U , existing facilities F and S, and any
placement of a new facility f by P1. Let U1 ⊆ U denote
the subset of users that are served by P1, in presence
of F , S, and f . For every point u ∈ U1, consider the
nearest facility disk Cu centered at u and passes through
the facility in F ∪ {f} which is closet to u. Note that a
new facility s placed by P2 will serve any user u ∈ U1
if and only if s ∈ Cu. If C = {Cu|u ∈ U1}, the optimal
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strategy for P2, given any placement f of P1, is to place
the new facility at a point where maximum number of
disks in C overlap. This is the problem of finding the
maximum depth in an arrangement of n disks, and can
be computed in O(n2) time [2].

Therefore, the main challenge in the Gn(F, S) game
lies in finding the optimal strategy of P1. In this pa-
per, we provide a complete characterization of the event
points and obtain a polynomial time algorithm for ob-
taining an optimal placement of P1:

Theorem 1 Given a set U of n users, two sets of fa-
cilities F and S owned by two competing players P1
and P2, respectively, the optimal strategy of P1 in the
Gn(F, S) game can be found in O(n8) time.

2 Understanding the Optimal Strategy of P1

In the Gn(F, S) game, we are given a set U of n users,
two sets of facilities F and S owned by two competing
players P1 and P2 respectively. Observe that the set of
facilities F and S will divide the set of users U into two
groups UF and US where UF is the set of users served
by the facilities placed by P1 and US is the set of users
served by the facilities placed by P2.

Let f be any new placement by P1. Denote the set
of users served by f , by UFS(f). More formally,

UFS(f) = {ui|d(ui, f) < d(ui, f
′),∀f ′ ∈ F ∪ S)}

Further let the users served by the set of facilities F and
S after placement of f be UF\f and US\f , that is,

UF\f =
⋃
f ′∈F

U(f ′, F ∪ S ∪ {f})

and
US\f =

⋃
f ′∈S

U(f ′, F ∪ S ∪ {f}).

Hence, any facility f by P1 will divide the set of users
into three disjoint sets UFS(f), UF\f and US\f . Now
any new placement s by P2 can serve a subset of users
from all these three sets. For any placement of facility
s by P2, let Uf (s) ⊂ UFS(f) be the set of users such
that for all ui ∈ Uf (s), d(ui, s) < d(ui, f). Similarly
define the set of users UF\f (s) ⊂ UF\f such that for all
uj ∈ UF\f (s), d(uj , s) < d(uj , fk) for all fk ∈ F .

Observe that for any placement f and s by P1 and
P2 respectively the payoff of P2 will be equal to

P2(F ∪ {f}, S ∪ {s}) = |US\f |+ |Uf (s)|+ |UF\f (s)|

For any placement of facility f by P1 define the effective
depth of f , δ(f) as

δ(f) = |US\f |+ max
s∈R2

(|Uf (s)|+ |UF\f (s)|)

The optimal strategy of P1 is to find a point f1 such that
δ(f1) = arg minf∈R2 δ(f), that is the point of minimum
effective depth. In order to do that we will subdivide
R2 into a polynomial many cells such that the effective
depth of all points in each cell is the same.

Figure 1: Arrangement of the set of circles CFS

Consider the set of circles CFS where each circle C ∈
CFS is centered at some user ui and passing through the
facility closest to ui among the set of facilities F ∪S (see
Figure 1 where facilities placed by P1 are shown in red
and the facilities placed by P2 shown in blue). Denote
the arrangement of the set of circles CFS by A(CFS).
We also include the lines joining any pair of users into
CFS .

For any placement of facility x by P1 and for any user
ui, let Ci(x) be the circle centered on ui and passing
though the facility closest to ui from the set of facilities
F ∪ S ∪ {x}. Consider all such circles C(x).

Let x and y be two points that belong to the same
cell of A(CFS) but δ(x) 6= δ(y). Now as x and y
belong to the same cell of A(CFS) therefore US\x =
US\y. That means for the placement of facilities x and
y, maxs∈R2(|Ux(s)| + |UF\x(s)|) 6= maxs∈R2(|Uy(s)| +
|UF\y(s)|).

Now observe that for any placement of facility x,
maxs∈R2(|Ux(s)| + |UF\x(s)|) denotes the maximum
number of circles among the set of circles C(x) that
can be pierced by a single point. Hence for each cell
λ ∈ A(CFS) if we can subdivide λ further such that in
each sub-cell of λ for all points x maximum number of
circles among the set of circles C(x) that can be pierced
by a single point remains fixed, then we are done.

Lemma 2 If x, y belong to some cell of A(CFS) with
δ(x) 6= δ(y), then there exist three users ui, uj , uk ∈
UFS(x)∪UF\x such that Ci(x)∩Cj(x)∩Ck(x) 6= ∅ and
Ci(y) ∩ Cj(y) ∩ Ck(y) = ∅ or vice versa.

Proof. Without loss of generality assume δ(x) > δ(y).
For any placement of facility f by P1, Uf be the max-
imum cardinality set of users served by P2. As x and
y belong to the same cell of A(CFS), Ux * UFS(x).
Also we can assume that the cardinality of Ux and Uy
is at least three. We shall prove this result by contra-
diction. Suppose that for every three users ui, uj , uk ∈
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UFS(x)∪UF\x, such that Ci(x)∩Cj(x)∩Ck(x) 6= ∅ we
also have Ci(y) ∩ Cj(y) ∩ Ck(y) 6= ∅.

Therefore, for any three users ui, uj , uk ∈ Ux, Ci(x)∩
Cj(x) ∩ Ck(x) 6= ∅. By assumption, this implies
Ci(y) ∩ Cj(y) ∩ Ck(y) 6= ∅. Therefore, by Helly’s theo-
rem,

⋂
ui∈Ux

Ci(y) 6= ∅, which means that the number
of users that can be served by P2 by placing one facil-
ity from the set of users UFS(y) ∪ UF\y is at least |Ux|.
Therefore, δ(y) ≥ |Ux|+ |US\y| = |Ux|+ |US\x| = δ(x),
which is a contradiction and the result holds. �

In light of lemma 2 we define, for each triplet of users
ui, uj , uk ∈ U , and any placement of facility x ∈ R2 by
P1, the indicator variable,

βijk(x) =

{
1 if Ci(x) ∩ Cj(x) ∩ Ck(x) 6= ∅
0 otherwise

Let β(x) be the 3-dimensional array with cardinality
|U |×|U |×|U | where each cell βijk(x) is defined as above.
From Lemma 2 and the above definition, the following
observation is immediate.

Observation 1 If x, y belong to the same cell of
A(CFS) and the two arrays β(x) and β(y) are equal in
every coordinate, then δ(x) = δ(y).

Our next goal is to tessellate A(CFS) into a finer set
of cells such that for any two points x and y on the
same cell β(x) = β(y). This implies that for any three
users ui, uj , uk ∈ U , either Ci(x)∩Cj(x)∩Ck(x) 6= ∅ or
Ci(x)∩Cj(x)∩Ck(x) = ∅, for all points x in a fixed finer
cell of the tessellation. Observation 1 would then imply
that for all points in a cell the effective depth remains
constant. Hence, by checking each cell once we can find
the point with minimum effective depth.

Therefore, for each cell of A(CFS), we want a further
subdivision such that for every point x in the fixed sub-
divided cell Ci(x)∩Cj(x)∩Ck(x) 6= ∅, for every triplet
of users ui, uj , uk ∈ U . Note that for any placement x
by P1 and a user u ∈ U\US\x, either u is served by x or
by some existing facility in F . The following definition
distinguishes these two cases:

Definition 2.1 Given any placement x by P1 and a
user u ∈ U\US\x, the circle C(x) is called an old circle
if it is centered at u and passes through some facility
fj ∈ F , where fj be the facility closest to u among the
set of facilities F ∪ {x}, that is, u ∈ UF\x. The circle
C(x) is called a new circle if it is centered at u and
passes through x, that is u ∈ UFS(x).

For every three fixed users ui, uj , uk ∈ U and a fixed
point x ∈ R2, denote by Nijk(x) the subset of the
circles in {Ci(x), Cj(x), Ck(x)}, which are new. For
S ⊆ {ui, uj , uk}, define the following sets:

Γijk(S) = {x ∈ R2 : Ci(x) ∩ Cj(x) ∩ Ck(x) = ∅ and

Ca(x) ∈ Nijk(x) if ua ∈ S}

Moreover, for z ∈ {0, 1, 2, 3}, let Γzijk =⋃
S:|S|=z Γijk(S), where the union is taken over all

sets S ⊆ {ui, uj , uk} such that |S| = z.

Lemma 3 Let Da be the circle centered at ua pass-
ing through the facility in F ∪ S closest to ua, for
a ∈ 1, 2, . . . n. Then for three fixed users ui, uj , uk ∈ U ,
we have

(a) Γijk(∅) = (Di ∪Dj ∪Dk)c.

(b) For S = {ui, uj , uk}, Γijk(S) is the interior of the
triangle formed by ui, uj and uk.

(c) For S = {uk}, Γijk(S) is the interior of the circle
centered at uk and passing through the point in Di∩
Dj closest to uk.

Proof. It is easy to show (a) and (b) from the defini-
tions.

For proving (c), let pc be the point in Di∩Dj which is
closer to uk. Hence, for all points p in the open disk D,
centered at uk and passing through pc, Ci(x) ∩Cj(x) ∩
D = ∅, and for all points p outside the open disk D,
pc ∈ Ci(x) ∩ Cj(x) ∩ D. Therefore, if S = {uk}, then
Γijk(S) = D. �

As it turns out, when S consists of 2 elements then the
sets Γijk(S) has a complicated geometric structure. The
following lemma provides a complete characterization of
the set Γijk(S) where |S| = 2.

Lemma 4 For S = {ui, uj}, Γijk(S) is an open set
bounded by O(1) circular arcs and line segments. As a
consequence, the boundary of Γijk(S) can be computed
in constant time.

We prove this lemma in the next section. Then using
Lemma 3 and Lemma 4 we show how the proof of The-
orem 1 can be completed.

3 Proof of Lemma 4 and Theorem 1

In this section we prove Lemma 4. The proof is rather
technical, and requires careful analysis of the geometry
of the points. Using this lemma, we then complete the
proof of Theorem 1.

3.1 Proof of Lemma 4

In this section we will characterize Γijk(S) for S =
{ui, uj} and will complete the proof of Lemma 4. Hence
given three users, say ui, uj and uk we want to charac-
terize the set of points Γijk(S) for S = {ui, uj} such
that for any point x in Γijk(S) if P1 places a facility
at x, two circles Ci(x) and Cj(x) will pass through x
and Ck(x) will pass through some other facility and
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Ci(x) ∩ Cj(x) ∩ Ck(x) = ∅. For notational simplic-
ity, throughout this section we shall denote the region
Γijk(S) as X and Ck(x) as C. It can be shown that
X is bounded and open. In the following lemma, we
characterize the boundary of X. The proof is involves
standard geometric arguments, and can be found in the
full version of the paper.

Lemma 5 Any point p belongs to the boundary of X,
∂(X) if and only if Ci(p)∩Cj(p)∩C is a singleton set.

�

From Lemma 5 we know that ∂(X) is the set of points
p such that Ci(p) ∩ Cj(p) ∩ C is a singleton set. Next
we will find all such points. Observe that there can be
two cases.

Case 1: Suppose the intersection of any two of the three
circles, Ci(p), Cj(p) and C is single point, say x,
and the third circle contains x. Now suppose we
want to find the set of points p such that Ci(p) ∩
C is a single point and Cj(p) contains that point.
Let the point closest to ui in C be pi. Now the
set of points for which Ci(p) ∩ C is a single point
is the circle Ci(pi) and for all point p ∈ Ci(pi),
Ci(p)∩C = {pi}. But the circle Cj(p) must contain
pi. Hence the set of points p such that Ci(p) ∩
C is a single point and Cj(p) contains that point,
is Ci(pi)\Cj(pi) (see Figure 2). Similarly we can
find the points p such that Cj(p) ∩ C is a single
point and Ci(p) contains that point. Set of points
p for which Ci(p) ∩ Cj(p) is a single point is the
set of points on the line segment joining ui and uj ,
[ui, uj ]. But C must contain the point p. Hence the
set of points for which Ci(p)∩Cj(p) is a single point
and C contains that point, is equal to [ui, uj ] ∩ C
(see Figure 3).

ui uj

pi pj

C

Figure 2: ∂(X) when Ci(p) ∩ C is a single point

Case 2: The intersection of any two of the three cir-
cles is not a singleton, but Ci(p) ∩ Cj(p) ∩ C is
a singleton set. For any point p, define pr to be
the reflection of p on the line joining ui and uj .
Observe that for any point p, the circle Ci(p) and
Cj(p) intersects at points p and pr. Hence, if for
any point p, Ci(p) ∩ Cj(p) ∩ C is a singleton, then
Ci(pr)∩Cj(pr)∩C is also a singleton. Now, we want

ui uj

C

Figure 3: ∂(X) when Ci(p)∩Cj(p) is a single point and
C contains that point

to find the set of points p such that none of the pair-
wise intersections of the three circles Ci(p), Cj(p)
and C are singletons, but Ci(p) ∩ Cj(p) ∩ C is a
singleton set. Observe that p or pr must belong to
the boundary of C. Without loss of generality we
will find the set of points p on the boundary of C
such that Ci(p)∩Cj(p)∩C is a singleton set. Now
consider the line `i, joining ui and the center of C
(see Figure 4). Observe that for any point p on the
boundary of C, C and Ci(p) will intersect at p and
p−1 where p−1 is the reflection of p with respect to
the line `i. Suppose that among p and p−1, p−1 is
closer to uj . In that case Ci(p)∩Cj(p)∩C is not a
singleton because p−1 belongs to Ci(p)∩Cj(p)∩C.
Hence all the points on one side of `i are not in
∂(X). Similarly consider the line `j , joining uj and
the center of C. All the points in one side of `j is
also not in ∂(X). Remaining points are shown in
bold in Figure 4. It can be also shown that any
point p on on the region shown in Figure 4 is in
∂(X).

ui uj

pi
pj

C

Cr

ℓi lj

p

p−1

Figure 4: ∂(X) when the intersections of none of the
two circles are singletons, but Ci(p) ∩ Cj(p) ∩ C is a
singleton set.

This completes the proof of Lemma 4. The structure
of X in the cases where the line joining ui and uj does
not intersects C, and intersects C, are shown in Figure
5 and Figure 6, respectively.

3.2 Proof of Theorem 1

In this section using Lemma 3 and Lemma 4 we com-
plete the proof of Theorem 1. Recall, from Section 2,
the definition of Γzijk, for S ⊆ {ui, uj , uk}, and z ∈
{0, 1, 2, 3}. We now define Γz = {Γzijk : ui, uj , uk ∈ U}.
Consider the tessellation of the plane induced by the
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ui uj

pi
pj

C

Cr

Figure 5: X when the line joining ui and uj does not
intersect C.

ui uj

pi
pj

C

Cr

Figure 6: X when the line joining ui and uj intersects
C.

collection of the sets Γz, for z ∈ {0, 1, 2, 3} and CFS .
From Lemma 3 we know that CFS and Γ0 consists of
O(n) circles, and Γ3 consists O(n2) lines (set of lines
passing through each pair of users in U). Lemma 3 also
shows that Γ1 consists of O(n3) circles. From Lemma
4 we know for S ⊆ {ui, uj , uk}, with |S| = 2, Γijk(S)
is an open set bounded by O(1) circular arcs and line
segments. Therefore, Γ2 also consists of O(n3) circles
and line segments. Hence, the arrangement generated
by Γz, for z ∈ {0, 1, 2, 3} and CFS consists of O(n3) cir-
cles and line segments. The effective depth of any cell
in this tessellation is constant. Moreover, the effective
depth of a cell is the maximum depth in an arrange-
ment of a set of O(n) circles, which can be computed in
O(n2) time [2]. Hence, by checking the effective depth
of all the O(n6) cells, the minimum effective depth can
be obtained in O(n8) time. Thus, the optimal strategy
of P1 in the Gn(F, S) game can be found in O(n8) time.
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[8] Christoph Dürr and Nguyen Kim Thang. Nash
equilibria in voronoi games on graphs. In Lars
Arge, Michael Hoffmann, and Emo Welzl, editors,
ESA, volume 4698 of Lecture Notes in Computer
Science, pages 17–28. Springer, 2007.

[9] Sándor P. Fekete and Henk Meijer. The one-round
Voronoi game replayed. Comput. Geom., 30(2):81–
94, 2005.

[10] Masashi Kiyomi, Toshiki Saitoh, and Ryuhei Ue-
hara. Voronoi game on a path. IEICE Transac-
tions, 94-D(6):1185–1189, 2011.

[11] S. Langerman and W. Steiger. Optimization in ar-
rangements. Proc. 20th International Symposium
on Theoretical Aspects of Computer Science, pages
50–61, 2003.
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