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Abstract

We study a geometric version of the Red-Blue Set
Cover problem originally proposed by Carr, Doddi,
Konjevod, and Marathe (SODA 2000): given a red point
set, a blue point set, and a set of objects, we want to
use objects to cover all the blue points, while minimiz-
ing the number of red points covered. We prove that
the problem is NP-hard even when the objects are unit
squares in 2D, and we give the first PTAS for this case.
The technique we use simplifies and unifies previous
PTASes for the weighted geometric set cover problem
and the unique maximum coverage problem for 2D unit
squares.

1 Introduction

Given a red set R and a blue set B of total size m, and
a family S of n subsets of R ∪ B, the Red-Blue Set
Cover problem is to find a subfamily of S which covers
all the elements in B, but covers the minimum number
of elements in R.

The problem was first introduced by Carr, Doddi,
Konjevod and Marathe [1], who proved that even in the
restricted case where every set in S contains only one
blue and two red elements, the problem cannot be ap-

proximated to within 2log
1−δ n factor for δ = 1/ logc log n

and for any constant c < 1/2, unless P = NP. Carr et al.
also gave a 2

√
n-approximation algorithm for the case

where every set in S contains only one blue element.
We study a geometric version of Red-Blue Set

Cover where the elements of R and B are points, and
the sets of S are geometric objects. Specifically, we
focus on the case where the objects are unit squares1

in 2D; we call the resulting problem Red-Blue Unit-
Square Cover. We prove that Red-Blue Unit-
Square Cover remains NP-hard, and we present a
PTAS (i.e., a polynomial-time (1+ε)-approximation al-
gorithm for any constant ε > 0) for this problem.

Previous work on PTASes. There have already been
a number of PTASes for problems related to geometric
set cover and hitting set in the literature. To put our
new PTAS into context, we note that most of the known
techniques can be classified into a few categories:
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1All squares in this paper are assumed to be axis-aligned.

1. Hochbaum and Maass’ original shifted grid tech-
nique [8]. This is among the earliest PTAS tech-
niques developed, and is usually applicable only to
“continuous” versions of geometric set cover and
hitting set problems. For example, in the con-
tinuous version of the standard (monochromatic)
Unit-Square Cover problem, we want the small-
est number of unit squares to cover a given point
set, where the allowed unit squares can be located
anywhere rather than from a given (“discrete”) set.
When applicable, the technique is general enough
to handle other types of similar-sized fat objects,
such as unit disks in 2D, or unit balls in higher fixed
dimensions. Extensions of the technique based on
shifted quadtrees have also been explored for some
related problems [2].

2. Mustafa and Ray’s local search technique [10]. This
yields the first PTAS for the general discrete ver-
sion of the Unit-Square Cover and the analo-
gous Unit-Disk Cover problem in 2D. However,
the technique inherently does not work for weighted
problems. For example, in the Weighted Unit-
Square Cover problem, given a point set and a
set of unit squares each with a positive weight, we
want a subset of unit squares of the smallest total
weight to cover the given point set.

3. Sophisticated dynamic programming combined
with Hochbaum and Maass’ shifting technique. Er-
lebach and van Leeuwen [5] used this approach
to obtain the first PTAS for Weighted Unit-
Square Cover. Recently, Ito et al. [9] have also
applied a similar approach to obtain a PTAS for
the following variant of unit-square cover called
Unique Unit-Square Coverage: given a point
set and a set of unit squares, we want a subset
of unit squares to maximize the number of points
that are covered exactly once. (Erlebach and van
Leeuwen introduced the general unique coverage
problem for sets in 2008 [4].) At the moment, these
PTASes are limited to the special case of 2D unit
squares and do not seem generalizable to unit disks
or to higher dimensions.

Our PTAS belongs to the third category and is similar
to Erlebach and van Leeuwen’s and Ito et al.’s PTASes.
For example, our approach can easily handle a weighted
version of Red-Blue Unit-Square Cover, where the
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red points have weights and we want to minimize the
total weight of the red points covered. However, our
approach works only for unit squares and not for other
types of objects.

Arguably the most interesting aspect of this paper
lies not so much in the specific result about red-blue
set cover, but in our technique, which we feel is con-
ceptually simpler than Erlebach and van Leeuwen’s and
Ito et al.’s PTASes [5, 9] for Weighted Unit-Square
Cover and Unique Unit-Square Coverage. In
fact, our technique leads to alternative PTASes for these
two problems as well, and can potentially be more easily
applied to other variants of set cover problems for unit
squares.

The descriptions of the dynamic programming algo-
rithm in both papers [5, 9] are lengthy. For example, the
algorithm by Erlebach and van Leeuwen is obtained by
simulating a plane sweep that involves multiple sweep
lines moving at different speeds. We get around most of
the complications by one very simple idea: a “mod-one
trick”.

In section 2, we give the NP-hardness proof of Red-
Blue Unit-Square Cover. We introduce the mod-
one trick and give a PTAS in section 3, followed by a
brief discussion on how to apply our technique to other
problems in section 4.

2 NP-Hardness

Theorem 1 Red-Blue Unit-Square Cover is NP-
hard.

Proof. We reduce from the vertex cover problem on
degree-3 planar graphs, which is well known to be NP-
hard [7].

Lemma 2 [3] Every planar graph G = (V,E) of maxi-
mum degree at most 4 has an orthogonal planar drawing
on an O(|V |) × O(|V |) grid (i.e., vertices are placed at
grid points and edges are drawn as a rectilinear polygo-
nal chain with corners at grid points, with no crossings).

Lemma 3 (Folklore) Given a graph G and an edge e
in G, define a new graph G′ obtained from G by sub-
dividing e through the addition of two new “dummy”
vertices. Then the size of a minimum vertex cover of
G′ is precisely the size of a minimum vertex cover of G
plus 1.

Given a degree-3 planar graph G with n vertices, we
create an orthogonal drawing by Lemma 2. We define
a new graph G′ by subdividing each edge e through
the addition of new dummy vertices at each grid point
along e. Each edge in G′ is now a horizontal or vertical
line segment of length 1 in the drawing. If e contains
an odd number of dummy vertices, we insert an extra

new dummy vertex at the midpoint of a line segment.
Then all edge lengths in G′ are 1/2 or 1. By rescaling
by a factor slightly less than 2, we can ensure that all
edge lengths in G′ are strictly between 2/3 and 2. Now,
each edge in the original graph G has an even num-
ber of dummy vertices, and by repeated applications of
Lemma 3, finding the size of the minimum vertex cover
of G is equivalent to finding the size of the minimum
vertex cover of G′.

To construct an instance of Red-Blue Unit-
Square Cover from G′, we replace each vertex in G′

by a red point ri. For each edge rirj in G′, we create a
blue point bij in the middle of the edge and add a unit
square containing precisely bij and ri and a unit square
containing precisely bij and rj . See Figure 1. Such
squares exist since the distance between two adjacent
blue and red points is strictly between 1/3 and 1.

Figure 1: The reduction from vertex cover. (Red points
are drawn as dots, and blue points are drawn as dia-
monds.)

Correctness of the reduction is easy to see: Given a
vertex cover of G′ of size k, we can select all the squares
that cover the corresponding k red points; these squares
would cover all blue points. Conversely, given a subset
of squares covering all blue points, the red points cov-
ered by these squares form a vertex cover of G′. �

3 PTAS

We now present a PTAS for Red-Blue Unit-Square
Cover. We begin with a definition:

Definition 4 Let S = {s1, . . . , st} be a set of unit
squares, where s1, . . . , st are arranged in increasing x-
order of their centers. We say that S forms a monotone
set, if the centers of s1, . . . , st are in increasing or de-
creasing y-order.

Note that the boundary of the union of the squares
in a monotone set S consists of two monotone chains
(“staircases”), as as shown in figure 2. We say that
these two chains are complementary.
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Figure 2: A monotone set may be “increasing” (left) or
“decreasing” (right).

Lemma 5 Let OPT be an optimal solution for an in-
stance where the blue point set B is inside a k×k square.
Then OPT can be decomposed into O(k2) monotone
sets.

Proof. We may assume that all squares in OPT inter-
sect the k×k square. Draw a grid with unit side length
over the k×k square. Consider a grid point p. Let S(p)
be the set of squares in OPT containing p; every square
in OPT belongs to one of the S(p)’s. Let U(p) denote
the boundary of the union of the squares of S(p). We
may assume that each square in S(p) appears on U(p),
for otherwise we could remove the square from OPT and
the resulting solution is no worse than OPT.

Divide the plane into 4 quadrants at p. For each
i ∈ {1, 2, 3, 4}, let Si(p) be the subset of squares in
OPT containing p that contributes to the portion of
U(p) inside the i-th quadrant. Then each Si(p) is a
monotone set. Thus, we have decomposed OPT into
4(k+1)2 monotone sets. (These sets may not be disjoint,
but can be made disjoint by deleting elements from sets,
since a subset of a monotone set is still monotone.) �

The heart of our PTAS is an exact dynamic program-
ming solution for the special case of the problem where
all points are inside a k × k grid for a constant k. The
idea is to use a sweep-line algorithm to guess the O(k2)
monotone sets at the same time. We can “remember” a
constant number (O(k2)) of intersections of the mono-
tone chains with a vertical sweep line as we sweep from
left to right. However, each monotone set defines two
complementary monotone chains, and the guess of one
chain should be consistent with the guess of its comple-
mentary chain; but by the time the sweep line gets to
the second chain, we would have forgotten information
about the first chain. This is why Erlebach and van
Leeuwen [5] needed a more complicated approach in-
volving multiple sweep lines moving at different speeds.

To avoid this difficulty, we overlay all the monotone
sets into one grid cell by introducing a “mod-one” trans-
formation:

Definition 6 We define the mod-one mapping
(x, y) 7→ (x mod 1, y mod 1), where z mod 1 denotes
the fractional part of a real number z.

With this transformation, a unit square is rearranged
into four pieces covering the unit grid cell, as shown in
figure 3.

Figure 3: Applying the mod-one transformation to a
unit square.

Furthermore, the union of the squares in a mono-
tone set is rearranged as shown in figure 4. Notice that
the two complementary monotone chains are mapped to
two monotone chains that are connected at the corner
points. This is the key property we need about the mod-
one transformation. By redesigning the sweep-line algo-
rithm to sweep over the unit grid cell in the transformed
space, we can guess the two complementary monotone
chains of each monotone set at the same time. The re-
maining pieces of the union consists of two rectangles
defined by the start and end square of the monotone
set; we can guess these two squares in advance.

Figure 4: Applying the mod-one transformation to a
monotone set.

Theorem 7 For any instance of Red-Blue Unit-
Square Cover where B is inside a k × k square
for a constant k, we can find the optimal solution in
O(mnO(k2)) time.



25th Canadian Conference on Computational Geometry, 2013

Proof. We find it best to describe our dynamic pro-
gramming algorithm in terms of a state-transition dia-
gram. We define a state to consist of

• a vertical sweep line ` that passes through a corner
of an input square, after taking mod 1;

• O(k2) 4-tuples of the form (sstart, sprev, scurr, send),
subject to the conditions that sstart, sprev, scurr, send
are in increasing x-order and form a monotone set,
and that ` lies between the corners of sprev and
scurr, mod 1.

Intuitively, a state represents current information about
a decomposition of a solution into monotone sets at the
sweep line (the monotone sets are not required to be dis-
joint). Specifically, each 4-tuple corresponds to a mono-
tone set S; sstart and send represent the start and end
square of S; and sprev and scurr represent the squares
that define intersections of the sweep line with the two
complementary monotone chains of S, after taking mod
1. These two squares sprev and scurr are adjacent in the
monotone set S.

Given this state, we create a transition into
a new state as follows: We pick the 4-tuple
(sstart, sprev, scurr, send) such that the corner point of
scurr has the smallest x-coordinate, mod 1. The new
sweep line `′ will be at the corner of scurr. This 4-tuple
is replaced by a new 4-tuple (sstart, scurr, s

′, send) satis-
fying the stated conditions for some square s′. All other
4-tuples are unchanged. Let jr (resp. jb) be the number
of red (resp. blue) points that lie between ` and `′, after
taking mod 1, and are covered (resp. not covered) by the
squares in the O(k2) 4-tuples (before taking mod 1). If
jb > 0, we remove this transition. Otherwise, we set the
cost of this transition to jr.

The problem is thus reduced to finding the shortest
path in this state-transition diagram (a directed acyclic
graph), after adding suitable transitions involving start

and end states. There are at most O(mnO(k2)) states,
and each state has at most O(n) outgoing transitions
(since there are O(n) choices for s′). Thus, we can con-
struct the graph and find the shortest path by dynamic
programming in O(mnO(k2)) time. �

We can now apply Hochbaum and Maass’ grid shifting
technique [8] to obtain our final result:

Theorem 8 There is a PTAS for Red-Blue Unit-
Square Cover.

Proof. For each shift a, b ∈ {0, . . . , k − 1}, let Sa,b be
the union of the solutions found by Theorem 7 for the
blue points inside every k × k square [ik + a, (i+ 1)k +
a] × [jk + b, (j + 1)k + b], with i, j ∈ Z. We return the
S(a,b) with the smallest c(S(a,b)), where c(S) denotes
the number of red points covered by S.

To analyze the approximation factor, let OPT be the
optimal solution. Let OPTa,∗ (resp. OPT∗,b) be the
subset of squares in OPT intersecting the lines x = ik+a
with i ∈ Z (resp. the lines y = jk + b with j ∈ Z).
Since the algorithm in Theorem 2 covers the minimum
number of red points for the subproblem for each k× k
square, we have

c(Sa,b) ≤ c(OPT) + 2 c(OPTa,∗) + 2 c(OPT∗,b).

Since
∑

0≤a<k c(OPTa,∗) and
∑

0≤b<k c(OPT∗,b) are
both at most 2 c(OPT),∑

0≤a,b<k

c(Sa,b) ≤ (k2 + 8k) c(OPT),

implying that

min
0≤a,b<k

c(Sa,b) ≤ (1 + 8/k) c(OPT).

Setting k = d8/εe gives a (1 + ε)-approximation algo-
rithm. �

4 Related Problems

Weighted Unit-Square Cover. Erlebach and van
Leeuwen [5] studied the following related problem:
Given a set P of points and a set S of unit squares
in 2D where each square has a positive weight, we want
to find a smallest-weight subset of S to cover all the
points in P .

Our algorithm can easily be modified to solve this
problem. Specifically, in the proof of Theorem 7, if there
are any points that lie between ` and `′, after taking
mod 1, and are not covered by any of the squares in the
O(k2) 4-tuples, then we remove the transition. Other-
wise, we set the cost of the transition to the weight of
the square s′.

Budgeted Maximum Coverage for Unit Squares. Er-
lebach and van Leeuwen [5] also considered the following
problem: Given a set P of points where each point has
a positive profit value, and given a set S of unit squares
where each square has a positive cost, and given a bud-
get B, we want to find a subset of S with total cost at
most B, maximizing the total profit of all points in P
that are covered by the subset.

Erlebach and van Leeuwen [5] described how a modi-
fication of their dynamic programming algorithm com-
bined with additional ideas can yield a PTAS for this
problem. Our approach can be used to simplify the dy-
namic programming part of their PTAS.

Partial Unit-Square Cover. Gandhi et al. [6] studied
the partial set cover problem. A geometric version can
be stated as follows: Given a set P of points and a set S
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of unit squares in 2D, and given an integer K, we want
to find a smallest subset of squares in S to cover at least
K points in P .

Gandhi et al. gave a PTAS for a continuous version
of the problem based on Hochbaum and Maass’ shifted
grid technique [8]. For the discrete version, we can ob-
tain a PTAS by using an appropriate modification of our
dynamic programming algorithm, in conjunction with
shifted grids as in Gandhi et al.’s paper.

Unique Unit-Square Coverage. Ito et al. [9] studied
the following problem: Given a set P of points and a set
S of unit squares in 2D, find a subset of S to maximize
the number of points in P that are covered exactly once
by the subset.

Again our algorithm can be modified to solve this
problem. In the proof of Theorem 7, we use 6-tuples
(sstart, sprev2, sprev, scurr, scurr2, send) instead of 4-tuples,
where intuitively sprev2 represents the predecessor of
sprev and scurr2 represents the successor of scurr in a
monotone set. We set the cost of the transition to be
the number of points that lie between ` and `′, after tak-
ing mod 1, and are uniquely covered by the squares in
the O(k2) 6-tuples. This works because squares that are
not part of these 6-tuples are irrelevant as to whether a
point is uniquely covered.

5 Conclusion

We have shown that Red-Blue Unit-Square Cover
is NP-hard, and have given a PTAS using a “mod-one”
transformation. The main advantage of our PTAS is
that it is simpler to describe than previous PTASes by
Erlebach and van Leeuwen and Ito et al. for related
problems [5, 9]. To be fair, we should mention that our

nO(1/ε2) running time is slower than the nO(1/ε) running
time of the previous PTASes.
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