
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Optimal Data Structures for Farthest-Point Queries in Cactus Networks∗

Prosenjit Bose† Jean-Lou De Carufel† Carsten Grimm†‡ Anil Maheshwari† Michiel Smid†

Abstract

Consider the continuum of points on the edges of a net-
work, i.e., a connected, undirected graph with positive
edge weights. We measure the distance between these
points in terms of the weighted shortest path distance,
called the network distance. Within this metric space,
we study farthest points and farthest distances. We in-
troduce optimal data structures supporting queries for
the farthest distance and the farthest points on trees,
cycles, uni-cyclic networks and cactus networks.

1 Introduction

1.1 Problem Definition

We call a simple, finite, undirected graph with positive
edge weights a network. Unless stated otherwise, we
consider only connected networks. Let G = (V,E) be a
network with n vertices and m edges, where V is the set
of vertices and E is the set of edges. We write uv to de-
note an edge with endpoints u, v ∈ V and we write wuv

to denote its weight. A point p on edge uv subdivides
uv into two sub-edges up and pv with wup = λwuv and
wpv = (1 − λ)wuv, where λ is the real number in [0, 1]
for which p = λu+ (1−λ)v. We write p ∈ uv when p is
on edge uv and p ∈ G when p is on some edge of G.

As shown in Fig. 1, we measure the distance between
points p, q ∈ G in terms of the weighted length of a
shortest path from p to q in G, denoted by dG(p, q).
We say that p and q have network distance dG(p, q).
The points on G and the network distance form a met-
ric space. Within this metric space, we study far-
thest points and farthest distances. We call the largest
network distance from some point p on G the eccen-
tricity of p and denote it by eccG(p), i.e., eccG(p) =
maxq∈G dG(p, q). A point p̄ on G is farthest from p if
and only if dG(p, p̄) = eccG(p). We omit the subscript
G whenever the underlying network is understood.

We aim to construct data structures for a fixed net-
work G supporting the following queries. Given a point
p on G, what is the eccentricity of p? What is the set
of farthest points from p in G? We refer to the former
as an eccentricity query and to the latter as a farthest-

∗Research supported in part by FQRNT and NSERC.
†School of Computer Science, Carleton University
‡Institut für Simulation und Graphik, Fakultät für Informatik,

Otto-von-Guericke-Universität Magdeburg

2

8

93

4

4
u v

s

t

x

2

8

93

q

3 1

2

2

p

1

8

11
126

3

10

p

Figure 1: From left to right: (a) a network G (b) the
network distance from p = 1

4u + 3
4v to q = 1

2s + 1
2 t

is dG(p, q) = 10 (c) a shortest path tree rooted at p
(orange1) and its extension (orange + purple). We have
ecc(p) = 12 and the farthest point from p is on xs.

point query. Both queries consist of the query point p
represented by the edge uv containing p and the value
λ ∈ [0, 1] such that p = λu + (1 − λ)v. We study
trees, cycles, uni-cyclic networks and cactus networks.
A uni-cyclic network is a network with exactly one sim-
ple cycle and a cactus network is a network where no
two simple cycles share an edge.

1.2 Related Work

The problem of determining farthest points has been
encountered [1, 2] when studying farthest-point Voronoi
diagrams on networks. Specifically, when all of the in-
finitely many points on a network are considered sites.
This point of view leads to a data structure with con-
struction time O(m2 log n) and size O(m2) supporting
eccentricity queries and farthest point queries on arbi-
trary networks in optimal time [1, 2].

This work has connections to center problems [12, 11].
In a tree network, the set of farthest points changes
only at its absolute center [4]. An absolute center is a
point c on a network G = (V,E) whose farthest ver-
tices are as close as possible, i.e., maxv∈V d(c, v) =
minq∈G maxv∈V d(q, v). There are linear time algo-
rithms for finding an absolute center in trees [6], uni-
cyclic networks [5], and cactus networks [10]. The algo-
rithm by Hämäläinen [5] plays an important role when
we study uni-cyclic networks. We use the decomposi-
tion of a network into its tree structure like many works
about center problems [9]. Tansel [12] and Kincaid [9]
provide comprehensive surveys about center problems.

1Due to the limitations of the printed proceedings, please refer
to the online version for colors in figures.



25th Canadian Conference on Computational Geometry, 2013

1.3 Our Contributions

We introduce optimal data structures supporting ec-
centricity queries and farthest-points queries for trees,
cycles, uni-cyclic networks and cactus networks. The
query times are summarized in Tab. 1. All of the pre-
sented data structures have linear construction time
and, thus, require only linear space.

Type Eccentricity Farthest-Points

Tree O(1) O(k)
Cycle O(log n) O(log n)

Uni-Cyclic O(log n) O(k + log n)
Cactus O(log n) O(k + log n)

Table 1: The query times for different types of networks,
where k is the number of reported farthest points.

In Section 2, we introduce data structures for trees,
cycles and uni-cyclic networks. In Section 3, we con-
struct data structures supporting eccentricity queries
and farthest-point queries on cactus networks. Our ap-
proach is to reduce a cactus network to smaller net-
works having a sufficiently simple structure such that
the query algorithms of Section 2 can be applied.

2 Trees, Cycles, and Uni-Cyclic Networks

2.1 Trees

Let T be a tree network. We call a point c on T whose
farthest points are closest, a center of T , i.e, ecc(c) =
minx∈T ecc(x). A tree has exactly one center and we
can find this center in linear time [6].

Lemma 1 Let T be a tree, and let p be a point on T .
All farthest points from p are leaves and any path from
p to a farthest leaf contains the center of T .

Corollary 2 Let T be a tree with center c. For all
points p on T we have ecc(p) = d(p, c) + ecc(c).

Splitting a tree T at its center c yields sub-trees with
common farthest points, as shown in Fig. 2. When c is
on edge uv with u 6= c 6= v, we split T into two sub-
trees: the sub-tree Tu, containing the sub-edge uc, and
the sub-tree Tv containing the sub-edge cv. The points
on Tu (except for c) have all farthest points in Tv. The
farthest points in c are those points that are farthest
from Tu in Tv and those farthest from Tv in Tu.

Lemma 3 Let T be a tree with center c, and let T ′ be
one of the sub-trees obtained by splitting T at c. Leaf l ∈
T ′ is farthest from p ∈ T \ T ′ if and only if l is farthest
from c, i.e., eccT (p) = dT (l, p) ⇐⇒ eccT (c) = dT (l, c).

c

c̄1

c̄2
c̄3

Figure 2: A tree T with geometric edge weights. The
center c splits T into two sub-trees. For every point on
the left sub-tree (orange) c̄3 is farthest and for every
point on the right sub-tree (blue) c̄1 and c̄2 are farthest.

Using Corollary 2 and Lemma 3, we support eccen-
tricity queries and farthest point queries in tree net-
works: Let T be a tree network with center c. We
compute the position of c and the distances d(c, v) for
each vertex v of T . The maximum encountered dis-
tance is the eccentricity of c. Let T1, T2, . . . , Tr be the
sub-trees obtained by splitting T at c. For each sub-
tree, we store the set of farthest leaves from c in Ti,
denoted by Li, i.e., Li = {l ∈ Ti | d(l, c) = ecc(c)}. For
an eccentricity query from point p on edge uv of T with
d(u, c) < d(v, c), we have ecc(p) = wup+d(u, c)+ecc(c).
For a farthest-point query from p with p 6= c and p ∈ Ti,
we report all leaves in each Lj with j 6= i; for a farthest-
point query from c we report the union of all Li.

Theorem 4 Let T be a tree network with n vertices.
There is a data structure with construction time O(n)
supporting eccentricity queries on T in constant time
and farthest-point queries on T in O(k) time, where k
is the number of reported farthest points.

2.2 Cycles

Let C be a cycle network and let wC be the sum of
all edge weights of C. Each point p on C has exactly
one farthest point p̄ located on the opposite side of C
with ecc(p) = d(p, p̄) = wC/2. Supporting eccentricity
queries on C amounts to calculating and storing wC/2.

To support farthest-point queries, we compute the
farthest-point v̄ of each vertex v, subdivide the edge st
containing v̄ at v̄, and introduce pointers between v and
v̄. We perform this computation as illustrated in Fig. 3:
First, we compute the farthest point v̄ for some initial
vertex v by walking a distance of wC/2 from v along C.
Then, we sweep a point p from position p = v to position
p = v̄ along C while maintaining the farthest point p̄.
During this sweep we subdivide C at p whenever p̄ hits
a vertex and at p̄ whenever p hits a vertex. We store
the distance from v to any other vertex, which enables
us to compute the distance of any pair of vertices in
constant time. The entire sweep takes linear time, thus,
the resulting data structure occupies linear space.



CCCG 2013, Waterloo, Ontario, August 8–10, 2013

v1

v2

v3 v4

v5

v6

v7

v̄1

v̄2

v̄3

p

p̄

v̄5

v̄6

v1

v2

v3 v4

v5

v6

v7

v̄1

v̄2

v̄3

v̄5

v̄6

v̄7

v̄4

Figure 3: From left to right: (a) a sweep along cycle C
starting from p = v1 and (b) the resulting subdivision
of C. The farthest point from any point on sub-edge
v5v̄2 is located on the sub-edge v̄5v2.

With the subdivided network, we can answer farthest-
point queries in constant time, provided we know the
sub-edge containing the query point p: When p is lo-
cated on sub-edge x̄ȳ with p = µx̄ + (1 − µ)ȳ for some
µ ∈ [0, 1] then p̄ is located on xy with p̄ = µx+(1−µ)y.
The query point p is represented by the edge uv contain-
ing p and the value λ ∈ [0, 1] such that p = λu+(1−λ)v.
Using a binary search, we determine the sub-edge con-
taining p and the value µ. This takes O(log n) time,
since we subdivide each edge at most n times.

Lemma 5 Given a cycle network C with n vertices.
There is a data structure with construction time O(n)
supporting eccentricity queries on C in constant time
and farthest-point queries on C in O(log n) time.

2.3 Uni-cyclic Networks

As shown in Fig. 4, a uni-cyclic network U consists of
a cycle C and trees T1, T2, . . . , Tr, called the branches,
attached to C at vertices v1, v2, . . . , vr, respectively.

v3
v2

v1

v4

v3

t2

v2

t3

t1

t4
v1

v4

7

v̄2

v̄4

v̄1

v̄3

6

29

Figure 4: From left to right: (a) A unicyclic network
with four branches (coloured) attached to its cycle.
(b) The same network with compressed branches. The
colouring of the cycle indicates the farthest branch.

Our data structure for uni-cyclic networks consists of
three components: a data structure for queries on the
cycle C that yields the farthest point among the points
on C, a data structure for queries on C that yields the
branches containing farthest points, and data structures
for queries on the branches. The first component is the
data structure from Section 2.2 supporting queries on
C. The second component is a data structure support-
ing farthest-branch queries, i.e., queries for the branches
containing farthest points from a query point on C. The
second component uses the following simplification of U .

We replace each branch Ti of U with a vertex ti and
an edge tivi, where vi is the vertex connecting Ti to
C. The weight of tivi is the farthest distance from vi
in Ti, i.e., wtivi = eccTi(vi). In the resulting network
S, vertex ti is farthest from p if and only if Ti contains
farthest points from p with respect to U , i.e.,

dS(p, ti) = eccS(p) ⇐⇒ ∃q ∈ Ti : dU (p, q) = eccU (p) .

We call a vertex ti relevant if there exists a point p on
C who has ti as a farthest vertex among t1, t2, . . . , tr,
i.e., dS(ti, p) = maxr

j=1 dS(tj , p). Recall that v̄i denotes
the farthest point from vi among all points on C.

Lemma 6 Vertex ti is relevant if and only if ti is far-
thest from v̄i among t1, t2, . . . , tr.

Lemma 6 yields a certificate for irrelevance. We say
that tj dominates ti, and write ti ≺ tj , if dS(ti, v̄i) <
dS(tj , v̄i). When tj dominates ti, all points on C are
closer to ti than to tj and, thus, ti cannot be relevant.
Conversely, a vertex is relevant if and only if there is no
other vertex dominating it. For the following, assume
we have a circular list storing t1, t2, . . . , tr ordered as
v1, v2, . . . , vr appear along the cycle.

Lemma 7 Let ta be the first relevant vertex after ti and
let tb be the first relevant vertex before ti. Vertex ti is
relevant if and only if neither ta nor tb dominate ti, i.e.,
if and only if ti ⊀ ta and ti ⊀ tb.

Algorithm 1 computes the relevant vertices in O(r) time
using Lemma 7. We begin with a circular list containing
all vertices t1, t2, . . . , tr. We remove irrelevant vertices
from this list until no vertex in the list is dominated
by its predecessor or successor. In each iteration of the
while-loop we either delete some vertex or we mark the
current t as processed ensuring that it will never as-
sume the role of t again. Thus, the claim about the
running time follows. Hämäläinen [5] uses a variant of
Algorithm 1 in his linear time algorithm for finding the
absolute center of a uni-cyclic network.

Algorithm 1: Determining the relevant vertices

input : A circular list L containing t1, t2, . . . , tr.
output: A sub-list of L containing only the relevant

vertices among t1, t2, . . . , tr.
1 Mark each t1, t2, . . . , tr as unprocessed;
2 t← t1;
3 while t is unprocessed do
4 if t ≺ pred(t) or t ≺ succ(t) then
5 t← succ(t);
6 delete(pred(t));

7 else if pred(t) ≺ t then delete(pred(t));
8 else if succ(t) ≺ t then delete(succ(t));
9 else (t ⊀ pred(t) ⊀ t ⊀ succ(t) ⊀ t)

10 Mark t as processed;
11 t← succ(t);

12 end

13 end



25th Canadian Conference on Computational Geometry, 2013

The relevant vertices induce a subdivision of C
into regions with a common farthest vertex among
t1, t2, . . . , tr. When walking along C, we encounter these
regions in the same order as the corresponding relevant
points. Given the relevant vertices, we can compute the
subdivision in linear time. Storing the relevant vertex
with each sub-edge reduces a query for the farthest ver-
tices among t1, t2, . . . , tr to a binary search. We query
for branches containing farthest points using the subdi-
vision and our data structure for the cycle C.

Lemma 8 Let U be a uni-cyclic network with n vertices
and cycle C. There is a data structure with construction
time O(n) supporting farthest-branch queries in U from
points on the cycle C in time O(b + log n), where b is
the number of reported branches.

Lemma 8 concludes the description of the second com-
ponent of our data structure for uni-cyclic networks.

The third component is a data structure support-
ing queries on branches. Consider a branch T that is
attached to the cycle C at vertex v. We extend T
by a vertex v′ and an edge vv′ whose weight is the
farthest distance from v to any point outside of T ,
i.e., wvv′ = eccU\T (v). The resulting tree T ′, pre-
serves farthest distances with respect to U , i.e., we have
eccU (p) = eccT ′(p) for all p ∈ T . Thus, we can use the
data structure from Section 2.1 to support eccentricity
queries in U from points on T . Furthermore, if a point
q outside of T has a farthest point q̄ on T , then q̄ is also
farthest from v′ in T ′. When a farthest-branch query
from q returns T , we report the farthest points from q
in T with a farthest-point query from v′ in T ′.

A farthest point query in T ′ from a point p ∈ T yields
the farthest points from p on T and the vertex v′ when
p has farthest points outside of T . If v′ is reported
as a farthest point, we check whether v̄, the farthest
point from v on C is farthest from p. We determine
the branches containing farthest points from p with a
farthest-branch query at v and then report the farthest
points from p in these branches as described above.

The above procedure for farthest point queries from
T works correctly, unless the farthest branch query from
v returns only T itself. This situation occurs for at most
one branch of U , because it implies that all points on
C have T as their only farthest branch. We resolve this
issue by removing T from U and computing the farthest
branches from v in the resulting network.

Theorem 9 Let U be a uni-cyclic network with n ver-
tices. There is a data structure with construction time
O(n) supporting eccentricity queries on U in O(log n)
time and farthest-point queries on U in O(k + log n)
time, where k is the number of reported farthest points.

3 Cactus Networks

In this section, we construct a data structure supporting
eccentricity queries and farthest-point queries on cactus
networks. Recall that a cactus networks is a network
where no two simple cycles share an edge. A cut-vertex
is a vertex whose removal increases the number of con-
nected components and a bi-connected component is a
maximal connected sub-network without cut-vertices.

In linear time [8], we can decompose any network G
into connected sub-networks B1, B2, . . . , Bb such that

• each edge of G is contained in exactly one Bi

• each Bi is a bi-connected component of G or the
union of bi-connected components of G,

• and each vertex contained in more than one sub-
network is a cut-vertex of G.

We call this a block decomposition of G into blocks
B1, B2, . . . , Bb. We call a cut-vertex contained in more
than one block a hinge vertex [3]. For cactus networks,
we consider the block decomposition where each block
is a simple cycle or one of the (non-trivial) trees that
remain when removing all cycles, as shown in Fig. 5.

Figure 5: A cactus network decomposed into six blocks
(coloured) with four hinge vertices (empty discs).

The following terms describe how we subdivide a net-
work G with respect to a block decomposition; examples
are shown in Fig. 6. For a sub-network S of G, we write
G−S to denote the network resulting from removing all
edges of S from G (without removing any vertices). For
a block B and a hinge vertex h ∈ B, we call the con-
nected component of G − B containing h the block-cut
of B at h, denoted by bcut(B, h). We call the connected
component of G−bcut(B, h) containing h the co-block-
cut of B at h, denoted by co-bcut(B, h).

h
h

Figure 6: For the network from Fig. 5, from left to right:
(a) the block-cut of the brown block at hinge vertex h
and (b) the corresponding co-block-cut.



CCCG 2013, Waterloo, Ontario, August 8–10, 2013

3.1 Eccentricity Queries

Consider a block B of a network G. To support ec-
centricity queries on B, we compress the (non-trivial)
connected components of G − B like we compress the
branches of uni-cyclic networks. For each hinge vertex
h ∈ B we replace bcut(B, h) with a vertex ĥ and an

edge hĥ whose weight is the largest distance from h to
any point in bcut(B, h), i.e., whĥ = eccbcut(B,h)(h). We
refer to the resulting network as the locus of B, denoted
by loc(B). The locus of block B preserves farthest dis-
tances of G, i.e., eccloc(B)(p) = eccG(p) for all p on B.

We begin at some block B∗ of a cactus network. For
each hinge h∗ ∈ B∗, we compute eccbcut(B∗,h∗)(h

∗) with
a modified breadth-first-search in linear time. This
breadth-first-search also yields the farthest distances
along paths leading away from B∗, i.e., we obtain
eccbcut(B,h)(h) for any bcut(B, h) ⊆ bcut(B∗, h∗).

Let B′ be a block neighboring B∗ at hinge vertex h, as
shown in Fig. 7. To construct loc(B′), we only lack the
farthest distance from h in co-bcut(B∗, h). We obtain
this value with an eccentricity query in loc(B∗) via

eccco-bcut(B∗,h)(h) = eccloc(B∗)(ĥ)− whĥ,

where ĥ represents bcut(B∗, h) in loc(B∗). This way we
obtain the loci of all neighbors of B∗, then all loci of the
neighbors of all neighbors of B∗ and so forth.

B∗

B′

h

B′

h ?

B∗

ĥ

eccbcut(h,B′)(h)

h

Figure 7: Top down and left to right: (a) An abstraction
of the block structure of a network. The arrows indicate
shortest path trees emanating from block B∗. (b) When
constructing the locus of block B′ we lack the distance
from bcut(B′, h) (green) whereas the distances from all
other block cuts (blue) are known. (c) We obtain the
missing distance with an eccentricity query in loc(B∗).

Constructing a data structure supporting eccentricity
queries on a locus takes linear time in the size of the lo-
cus. Recall that each locus of a cactus network is either
a tree or a uni-cyclic network. The eccentricity queries
in a neighboring block take constant time, due to The-
orem 9. Therefore, our data structure for eccentricity
queries in cactus networks has construction time O(n)
and inherits the query times from uni-cyclic networks.

Lemma 10 Let G be a cactus network with n vertices.
There is a data structure with construction time O(n)
supporting eccentricity queries on G in O(log n) time.

3.2 Farthest-Point Queries

To answer a farthest-point query from a point p in block
B, we perform a farthest-point query in the locus loc(B)
and then cascade the query into the neighboring blocks.
If the query from p in loc(B) returns vertex ĥ represent-
ing bcut(B, h), then bcut(B, h) contains farthest points
from p. From the construction of loc(B), we know which
blocks neighboring B at h lie on a path to from p to one
of its farthest points. We continue with a farthest-point
query from ĥ in the loci of these blocks. This takes O(n)
time, since we might cascade through O(n) blocks un-
til we reach one containing farthest points from p. We
improve the query time by using shortcuts to skip long
chains of blocks without farthest points.

We define the tree structure [7] of a block decompo-
sition of a network G, denoted by TG, as the following
graph. The set of vertices of TG consists of the blocks of
G and the hinge vertices of G. The edges of TG connect
a hinge vertex h and a block B whenever h ∈ B. Since
the tree structure is indeed a tree [7] and since there
are at most n blocks and at most n cut-vertices in a
network with n vertices, TG has at most 2n− 1 edges.

The blocks and the hinge vertices visited during a
cascading farthest-point query form a sub-tree Tquery
of the tree structure TG. All farthest points from the
query point are located in blocks that occur as vertices
of Tquery. Next, we use path compression to obtain a
version of Tquery whose size is linear in the number of
blocks containing farthest points from the query point.

Consider an edge {h,B} in TG and the paths from h
to blocks containing farthest points from h with respect
to co-bcut(B, h). We store a shortcut from {h,B} to the
first edge {h′, B′} along these paths, where B′ contains
farthest points or two paths split at B′. Fig. 8 shows a
farthest-point query using one of these shortcuts. There
are O(n) shortcuts in total, since we add at most one
shortcut per edge of TG and since TG has O(n) edges.

We obtain the shortcuts leading away from B∗ as a
byproduct of the breadth-first-search used in the con-
struction of the locus of B∗. For the remaining short-
cuts, we rely on a similar strategy as used to obtain
the loci of all blocks B with B 6= B∗. Let B be a
block neighboring B∗ at h. We introduce no shortcut



25th Canadian Conference on Computational Geometry, 2013

B′

B∗

h

Figure 8: A farthest point query (blue) from block B′ re-
porting the farthest points in bcut(B′, h) (green) using
a shortcut (dashed). Blocks containing farthest points
are indicated in red. An arc from a block B to a hinge
vertex h indicates that we continue reporting farthest
points in bcut(B, h). An arc from h to B indicates that
we continue reporting farthest points in co-bcut(B, h).

when B∗ contains farthest points from ĥ or when two
paths to farthest points from h in co-bcut(B∗, h) split
in B∗ or at some hinge vertex of B∗. Otherwise, B∗

has one neighboring block B′ at hinge vertex h′ such
that co-bcut(B′, h′) contains all farthest points from h
in co-bcut(B∗, h). In this case, we add a shortcut from
co-bcut(B∗, h) to the destination of the shortcut from
co-bcut(B′, h′). Since we conduct farthest point queries
only on pendant edges of the loci, it takes constant time
to determine which case applies and the overall con-
struction time for cactus networks is O(n).

Let p be a point in block B with k farthest points.
During a farthest-point query from p, we report all far-
thest points from p in B and all block-cuts contain-
ing farthest points with a query in loc(B). This takes
O(k + log n) time due to Theorem 9. We follow the
shortcuts associated to the reported block-cuts and ob-
tain all other blocks containing farthest points in O(k)
time. For each reported block B′ we perform a farthest-
point query from a pendant vertex of loc(B′). By The-
orem 4, this takes linear time in the number of farthest
points in B′. The overall query time is O(k + log n).

Theorem 11 Let G be a cactus network with n ver-
tices. There is a data structure with construction time
O(n) supporting eccentricity queries on G in O(log n)
time and farthest-point queries in O(k + log n) time,
where k is the the number of reported farthest points.

4 Conclusions and Future Work

In previous work [1, 2], we introduce a data structure
with optimal query times for eccentricity and farthest-
point queries and construction time O(m2 log n) for any
network with n vertices and m edges. In this work,
we improve the construction time to O(n) for certain
classes of networks without sacrificing query time. In
future work, we aim to achieve o(m2 log n) construction
time for more classes of networks.

References

[1] P. Bose, J.-L. D. Carufel, C. Grimm, A. Maheshwari,
and M. Smid. On farthest-point information in net-
works. In Proceedings of the 24th Canadian Conference
on Computational Geometry, pages 199–204, 2012.

[2] P. Bose, K. Dannies, J.-L. De Carufel, C. Doell,
C. Grimm, A. Maheshwari, S. Schirra, and M. Smid.
Network Farthest-Point Diagrams. ArXiv, Apr. 2013.

[3] R. E. Burkard and J. Krarup. A linear algorithm for
the pos/neg-weighted 1-median problem on a cactus.
Computing, 60(3):193–215, 1998.

[4] S. L. Hakimi. Optimum locations of switching centers
and the absolute centers and medians of a graph. Op-
erations Research, 12(3):450–459, 1964.

[5] P. Hämäläinen. The absolute center of a unicyclic net-
work. Discrete Appl Math, 25(3):311 – 315, 1989.

[6] G. Y. Handler. Minimax location of a facility in an
undirected tree graph. Trans. Sci., 7(3):287–293, 1973.

[7] F. Harary and G. Prins. The block-cutpoint-tree of a
graph. Publ. Math. Debrecen, 13:103–107, 1966.

[8] J. Hopcroft and R. Tarjan. Algorithm 447: efficient
algorithms for graph manipulation. Communications
of the ACM, 16:372–378, 6 1973.

[9] R. K. Kincaid. Exploiting structure: Location problems
on trees and treelike graphs. In Foundations of Location
Analysis, pages 315–334. Springer US, 2011.

[10] Y.-F. Lan, Y.-L. Wang, and H. Suzuki. A linear-time
algorithm for solving the center problem on weighted
cactus graphs. IPL, 71(5–6):205–212, 1999.

[11] Q. Shi. Efficient algorithms for network center/covering
location optimization problems. PhD thesis, School of
Computing Science-Simon Fraser University, 2008.

[12] B. Ç. Tansel. Discrete center problems. In Foundations
of Location Analysis, pages 79–106. Springer US, 2011.


