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Unfolding Face-Neighborhood Convex Patches:
Counterexamples and Positive Results

Joseph O’Rourke∗

Abstract

We address unsolved problems of unfolding polyhedra in
a new context, focusing on special convex patches—disk-
like polyhedral subsets of the surface of a convex poly-
hedron. One long-unsolved problem is edge-unfolding
prismatoids. We show that several natural strategies
for unfolding a prismatoid can fail, but obtain a pos-
itive result for “petal unfolding” topless prismatoids,
which can be viewed as particular convex patches. We
also show that the natural extension of an earlier result
on face-neighborhood convex patches fails, but we ob-
tain a positive result for nonobtusely triangulated face-
neighborhoods.

1 Introduction

Define a convex patch as a connected subset of faces of
a convex polyhedron P, homeomorphic to a disk. A
convex patch is convexly curved in 3D, but its bound-
ary need not be convex: it could be quite “jagged.” I
propose studying edge-unfolding of convex patches to
simple (non-overlapping) polygons in the plane, as pre-
sumably easier versions of the many unsolved convex-
polyhedron unfolding problems. (Here, edge-unfolding
cuts only edges of P; we leave that understood until the
final discussion.) Toward this end, I study here special
convex patches, various face-neighborhoods, and obtain
several positive and negative results.

Face Neighborhoods. Let F be a face of a con-
vex polyhedron P. There are two natural “face-
neighborhoods” of F : the edge-neighborhood Ne(F ),
F together with every face of P that shares an edge
with F , and the vertex-neighborhood Nv(F ), F together
with every face incident to a vertex of F .1 Clearly,
Nv(F ) ⊇ Ne(F ). A “dome” polyhedron P is one with a
“base face” B such that Ne(B) = P. Domes were earlier
proved to unfold without overlap [6, p. 323ff]. Pincu [12]
subsequently proved that Ne(F ) unfolds without over-
lap for any F , generalizing the dome result. Both the
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1This is my own terminology. Ne(F ) is called the “face-
neighborhood” in [7].

dome and the edge-neighborhood unfoldings are what
I am now calling “petal unfoldings,” described next in
the context of prismatoids.

Prismatoids and Prismoids. A prismatoid is the con-
vex hull of two convex polygons A (above) and B (base),
that lie in parallel planes. Despite its simple structure,
it remains unknown whether or not every prismatoid
has a non-overlapping edge-unfolding, a narrow special
case of what has become known as Dürer’s Problem:
whether every convex polyhedron has a non-overlapping
edge-unfolding [6, Prob. 21.1] [11].

If A and B are angularly similar with their edges par-
allel, then all lateral faces are trapezoids. Such a poly-
hedron is called a prismoid. These special prismatoids
are known to edge-unfold without overlap [6, p. 322].

Band and Petal Unfoldings. There are two natural
unfoldings of a prismatoid. A band unfolding cuts one
lateral edge and unfolds all lateral faces connected in
band, leaving A and B attached each by one uncut edge
to opposite sides of the band (see, e.g., [2]). Aloupis
showed that the lateral cut-edge can be chosen so that
the band alone unfolds [1], but I showed that, neverthe-
less, there are prismoids such that every band unfolding
overlaps [8]. The example, Fig. 1, is repeated here, as
it plays a role in the closing discussion (Sec. 4). Note
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Figure 1: A convex patch with no band unfolding.

that this example also establishes that not every edge-
neighborhood patch of a face of P has a band unfolding:
Ne(A) has no band unfolding.

The second natural unfolding of a prismatoid is a
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petal unfolding.2 The three positive results mentioned
above are all via petal unfoldings: the dome unfolding,
the prismoid unfolding, and Pincu’s edge-neighborhood
patch unfolding. Thus Fig. 1 without its base, which
is a edge-neighborhood patch, can be petal-unfolded:
simply cut each lateral edge aibi. We henceforth con-
centrate on petal unfoldings (until the final Sec. 4).

New Results. Given the collection of partial results
and unsolved problems reviewed above, it is natu-
ral to explore petal unfoldings of vertex-neighborhood
patches. Our results are as follows:

1. Define a topless prismatoid as one with A removed;
so it is a special (non-jagged) vertex-neighborhood
Nv(B). We prove that every topless prismatoid
whose lateral faces are triangles has a petal unfold-
ing without overlap (Thm. 7). This shows that, in
some sense, placing the top A is an obstruction to
unfolding prismatoids.

2. Via a counterexample polyhedron P (Fig. 8), we
show that not every vertex-neighborhood patch
Nv(F ) has a non-overlapping petal unfolding.

3. However, if P is non-obtusely triangulated, Nv(F )
does have a non-overlapping petal unfolding for ev-
ery face of P (Thm. 8).

4. This leads to a non-overlapping unfolding of a re-
stricted class of prismatoids (Cor. 9).

I am hopeful that the main proof technique—obtaining
a result for flat patches and then lifting into z > 0—will
lead to further results.

We conclude in Section 4 with a conjecture that not
every edge-neighborhood has a non-overlapping “zipper
unfolding.”

2 Topless Prismatoid Petal Unfolding

Let P be a prismatoid, and assume all lateral faces are
triangles, the generic and seemingly most difficult case.
Let A = (a1, a2, . . .) and B = (b1, b2, . . .). Call a lateral
face that shares an edge with B a base or B-triangle,
and a lateral face that shares an edge with A a top or
A-triangle. A petal unfolding cuts no edge of B, and
unfolds every base triangle by rotating it around its B-
edge into the base plane. The collection of A-triangles
incident to the same bi vertex—the A-fan AFi—must
be partitioned into two groups, one of which rotates
clockwise (cw) to join with the unfolded base triangle
to its left, and the other group rotating counterclock-
wise (ccw) to join with the unfolded base triangle to its
right. Either group could be empty. Finally, the top A
is attached to one A-triangle. So a petal unfolding has

2Called a “volcano unfolding” in [6, p. 321].

choices for how to arrange the A-triangles, and which
A-triangle connects to the top.

It remains possible that every prismatoid has a petal
unfolding: so far I have not been able to find a coun-
terexample. Now we turn to our main result: every
topless prismatoid has a petal unfolding. An example
of a petal unfolding of a topless prismatoid is shown in
Fig. 2.

Figure 2: Unfolding of a topless prismatoid. A-fans are
lightly shaded.

Even topless prismatoids present challenges. For ex-
ample, consider the special case when there is only one
A-triangle between every two B-triangles. Then the
only choice for placement of the A-triangles is whether
to turn each ccw or cw. It is natural to hope that ro-
tating all A-triangles consistently ccw or cw suffices to
avoid overlap, but this can fail. A more nuanced ap-
proach would turn each A-triangle so that its (at most
one) obtuse angle is not joined to a B-triangle, but this
can fail also.

The proof that topless prismatoids have petal unfold-
ings follows this outline:

1. An “altitudes partition” of the plane exterior to the
base unfolding (petal unfolding of Ne(B)) is defined
and proved to be a partition.

2. It is shown that both P and this partition vary in
a consistent manner with respect to the separation
z between the A- and B-planes.

3. An algorithm is detailed for petal unfolding the A-
triangles for the “flat prismatoid” P(0), the limit
of P(z) as z → 0, such that these A-triangles fit
inside the regions of the altitude partition.

4. It is proved that nesting within the partition re-
gions remains true for all z.

2.1 Altitude Partition

We use ai and bj to represent the vertices of P, and
primes to indicate unfolded images on the base plane.

Let Bi = 4bibi+1a
′
j be the i-th base triangle. Say

that B∪ = B ∪ (
⋃

iBi) is the base unfolding, the petal
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unfolding of Ne(B) without any A-triangles. The alti-
tude partition partitions the plane exterior to B∪.

Let ri be the altitude ray from a′j along the altitude
of Bi. Finally, define Ri to be the region of the plane
incident to bi, including the edges of the Bi−1 and Bi

triangles incident to bi, and bounded by ri−1 and ri.
See Fig. 3.
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Figure 3: Partition exterior to B∪ by altitude rays ri.
Here both A and B are pentagons; in general there
would not be synchronization between the bi and ai in-
dices. The A-triangles are not shown.

Lemma 1 No pair of altitude rays cross in the base
plane, and so they define a partition of that plane exte-
rior to the base unfolding B∪.

Our goal is to show that the A-fan AFi incident to bi
can be partitioned into two groups, one rotated cw, one
ccw, so that both fit inside Ri.

2.2 Behavior of P(z)

We will use “(z)” to indicate that a quantity varies with
respect to the height z separating the A- and B-planes.

Lemma 2 Let P(z) be a prismatoid with height z.
Then the combinatorial structure of P(z) is indepen-
dent of z, i.e., raising or lowering A above B retains
the convex hull structure.

We will call P(0) = limz→0 P(z) a flat prismatoid.
Each lateral face of P(0) is either an up-face or a down-
face, and the faces of P(z) retain this classification in
that their outward normals either have a positive or a
negative vertical component.

Lemma 3 Let P(z) be a prismatoid with height z, and
B∪(z) its base unfolding. Then the apex a′j(z) of each
B′i(z) triangle 4bibi+1a

′
j(z) in B∪(z) lies on the fixed

line containing the altitude of B′i(z).

Thus the vertices a′j(z) of the base unfolding “ride
out” along the altitude rays ri as z increases (see ahead
to Fig. 6 for an illustration). Therefore the combina-
torial structure of the altitude partition is fixed, and
Ri only changes geometrically by the lengthening of the
edges bia

′
j and bi+1a

′
j and the change in the angle gap

κbi(z) at bi.

2.3 Structure of A-fans

Henceforth we concentrate on one A-fan, which we al-
ways take to be incident to b2, and so between B1 =
4b1b2a1 and B2 = 4b2b3ak. The a-chain is the chain
of vertices a1, . . . , ak. Note that the plane in R3 con-
taining face B1 of P supports A at a1, and the plane
containing B2 supports A at ak. Let β = β2 be the base
angle at b2: β = ∠b1b2b3. We state here a few facts true
of every A-fan.

1. An a-chain spans at most “half” of A, i.e., a portion
between parallel supporting lines to A (because β >
0).

2. If an A-fan is unfolded as a unit to the base plane,
the a-chain consists of convex, reflex, and convex
portions, any of which may be empty. So, excluding
the first and last vertices, the interior vertices of the
chain have convex angles, then reflex, then convex.

3. Correspondingly, an A-fan consists of down-faces
followed by up-faces followed by down-faces, where
again any (or all) of these three portions could be
empty.

4. All four possible combinations of up/down are pos-
sible for the B1 and B2 triangles.

The second fact above is not so easy to see. The in-
tuition is that there is a limited amount of variation
possible in an a-chain. It is the third fact that we will
use essentially; it will become clear shortly.

2.4 Flat Prismatoid Case Analysis

How the A-fan is proved to sit inside its altitude re-
gion R for P(0) depends primarily on where b2 sits with
respect to A, and secondarily on the three B-vertices
(b1, b2, b3). Fig. 4 illustrates one of the easiest cases,
when b2 is in C, the convex region bounded by the a-
chain and extensions of its extreme edges. Then all the
A-faces are down-faces, the a-chain is convex, one of the
two B-faces is a down-face (B2 in the illustration), and
we simply leave the A-fan attached to that B down-face.

A second case occurs when b2 is on the reflex side of
A. An instance when both B-triangles are down-faces
is illustrated in Fig. 5. Now the A-fan consists of down-
faces and up-faces, the up-faces incident to the reflex
side of the a-chain. These up-faces must be flipped in
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Figure 4: Case 1b. Here we have illustrated b1 = b3 to
allow for the maximum a-chain extent.

the unfolding, reflected across one of the two tangents
from b2 to A. A key point is that not always will both
flips be “safe” in the sense that they stay inside the al-
titude region. Fortunately, one of the two flips is always
safe:
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Figure 5: Case 2a. The A-triangles between the tan-
gents b2 to a3 and b2 to a6 are up-faces. (a) shows the
up-faces flipped over the left tangent b2a6, and (b) when
flipped over the right tangent b2a3.

Lemma 4 Let b2 have tangents touching as and at of
A. Then either reflecting the enclosed up-faces across
the left tangent, or across the right tangent, is “safe” in
the sense that no points of a flipped triangle falls outside
the rays r1 or rk.

The remaining cases are minor variations on those illus-
trated, and will not be further detailed.

2.5 Nesting in P(z) regions

The most difficult part of the proof is showing that the
nesting established above for P(0) holds for P(z). A
key technical lemma is this:

Lemma 5 Let 4b, a1(z), a2(z) be an A-triangle, with
angles α1(z) and α2(z) at a1(z) and a2(z) respectively.
Then α1(z) and α2(z) are monotonic from their z = 0
values toward π/2 as z →∞.
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Figure 6: (a) z = 0. 4ataxak encloses the convex sec-
tion, and 4a1b2at encloses the reflex section. (b) z > 0.
Reflex angle αt(z) decreases as z increases.

I should note that it is not true, as one might
hope, that the apex angle at b of that A-triangle,
∠a1(z), b, a2(z), shrinks monotonically with increasing
z, even though its limit as z → ∞ is zero. Nor is the
angle gap κb(z) necessarily monotonic. These nonmono-
tonic angle variations complicate the proof.

Another important observation is that the sorting of
bai edges by length in P(0) remains the same for all
P(z), z > 0. More precisely, let |bai| > |baj | for two
lateral edges connecting vertex b ∈ B to vertices ai, aj ∈
A in P(0). Then |bai(z)| > |baj(z)| remains true for all
P(z), z > 0.

For the nesting proof, I will rely on a high-level de-
scription, and one difficult instance. At a high level,
each of the convex or reflex sections of the a-chain are
enclosed in a triangle, which continues to enclose that
portion of the a-chain for any z > 0 (by Fact 1, Sec. ??).
The reflex enclosure is determined by the tangents from
b2 to A: 4asb2at. So then the task is to prove these (at
most three) triangles remain within R(z). Fig. 6 shows
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a case where there is both a convex and a reflex sec-
tion. Were there an additional convex section, it would
remain attached to B1(z) and would not increase the
challenge.

Lemma 6 If the a-chain consists of a convex and a
reflex section, and the safe flip (by Lemma 4) is to a
side with a down-face (B2 in the figure), then AF ′(z) ⊂
R(z): the A-fan unfolds within the altitude region for
all z.

I have been unsuccessful in unifying the cases in the
analysis, despite their similarity. Nevertheless, the con-
clusion is this theorem:

Theorem 7 Every triangulated topless prismatoid has
a petal unfolding.

It is natural to hope that further analysis will lead to
a safe placement of the top A (which, alas, might not
fit into any altitude-ray region).

3 Unfolding Vertex-Neighborhoods

We now return to arbitrary face-neighborhoods. As
mentioned previously, Pincu proved that the petal un-
folding of Ne(B) avoids overlap for any face B of a
convex polyhedron. Here we show that the vertex-
neighborhood Nv(B) does not always have a non-
overlapping petal unfolding, even when all faces in the
neighborhood are triangles.

A portion of the a 9-vertex example P that estab-
lishes this negative result is shown in Fig. 7. The b1b3
edge of B lies on the horizontal xy-plane. The vertices
{b2, a1, a2, c1, c2} all lie on a parallel plane at height z,
with b2 directly above the origin: b2 = (0, 0, z).

All of Nv(B) is shown in Fig. 8. The structure in
Fig. 7 is surrounded by more faces designed to minimize
curvatures at the vertices bi of B. Finally, P is the
convex hull of the illustrated vertices, which just adds
a quadrilateral “back” face (p1, c1, c2, p3) (not shown).

The design is such that there is so little rotation possi-
ble in the cw and ccw options for the triangles incident
to vertex b2 of B, that overlap is forced: see Figs. 9,
10, and 11. The thin 4b2a1a2 overlaps in the vicin-
ity of a1 if rotated ccw, and in the vicinity of a2 is cw
(illustrated).

One can identify two features of the polyhedron just
described that lead to overlap: low curvature vertices
(to restrict freedom) and obtuse face angles (at a1 and
a2) (to create “overhang”). Both seem necessary ingre-
dients. Here I pursue excluding obtuse angles:

Theorem 8 If P is nonobtusely triangulated, then for
every face B, Nv(B) has a petal unfolding.
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A nonobtuse triangle is one whose angles are each
≤ π/2. It is known that any polygon of n vertices has
a nonobtuse triangulation by O(n) triangles, which can
be found in O(n log2 n) time [3]. Open Problem 22.6 [6,
p. 332] asked whether every nonobtusely triangulated
convex polyhedron has an edge-unfolding. One can view
Theorem 8 as a (very small) advance on this problem.3

A little more analysis leads to a petal unfolding of a
(very special) class of prismatoids (including their tops):

Corollary 9 Let P be a triangular prismatoid all of
whose faces, except possibly the base B, are nonobtuse
triangles, and the base is a (possibly obtuse) triangle.
Then every petal unfolding of P avoids overlap.

It seems quite possible that this corollary still holds with
B an arbitrary convex polygon, but the proof would
need significant extension.

4 Discussion

I believe that unfolding convex patches may be a fruitful
line of investigation. For example, notice that the edges
cut in a petal unfolding of a vertex-neighborhood of a
face form a disconnected spanning forest rather than a
single spanning tree. One might ask: Does every convex
patch have an edge-unfolding via a single spanning cut
tree? The answer is no, already provided by the banded
hexagon example in Fig. 1. For such a tree can only
touch the boundary at one vertex (otherwise it would
lead to more than one piece), and then it is easy to run
through the few possible spanning trees and show they
all overlap.

The term zipper unfolding was introduced in [5] for
a non-overlapping unfolding of a convex polyhedron
achieved via Hamiltonian cut path. They studied zip-
per edge-paths, following edges of the polyhedron, but
raised the interesting question of whether or not every
convex polyhedron has a zipper path, not constrained
to follow edges, that leads to a non-overlapping unfold-
ing. This is a special case of Open Problem 22.3 in [6,
p. 321] and still seems difficult to resolve.

Given the focus of this work, it is natural to specialize
this question further, to ask if every convex patch has
a zipper unfolding, using arbitrary cuts (not restricted
to edges). I believe the answer is negative: a version
of the banded hexagon shown in Fig. 12, a bottomless
prismoid, has no zipper unfolding. My argument for
this is long and seems difficult to formalize, so I leave the
claim as a conjecture. It would constitute an interesting
contrast to the recent result that all “nested” prismoids
have a zipper edge-unfolding [4].

3It can also be used to slightly improve Pincu’s “fewest nets”
result for this class of polyhedra.

Figure 12: The banded hexagon with a thin band.
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