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Counting Triangulations Approximately
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Abstract

We consider the problem of counting straight-edge tri-
angulations of a given set P of n points in the plane.
Until very recently it was not known whether the exact
number of triangulations of P can be computed asymp-
totically faster than by enumerating all triangulations.
We now know that the number of triangulations of P
can be computed in O∗(2n) time [2], which is less than
the lower bound of Ω(2.43n) on the number of triangu-
lations of any point set [11]. In this paper we address
the question of whether one can approximately count
triangulations in sub-exponential time. We present an
algorithm with sub-exponential running time and sub-
exponential approximation ratio, that is, if we denote
by Λ the output of our algorithm, and by cn the exact
number of triangulations of P , for some positive con-
stant c, we prove that cn ≤ Λ ≤ cn · 2o(n). This is the
first algorithm that in sub-exponential time computes a
(1 + o(1))-approximation of the base of the number of

triangulations, more precisely, c ≤ Λ
1
n ≤ (1 + o(1))c.

Our algorithm can be adapted to approximately count
other crossing-free structures on P , keeping the quality
of approximation and running time intact. The algo-
rithm may be useful in guessing, through experiments,
the right constants c1 and c2 such that the number of tri-
angulations of any set of n points is between cn1 and cn2 .
Currently there is a large gap between c1 and c2, we
know that c1 ≥ 2.43 and c2 ≤ 30.

1 Introduction

Let P be a set of n points on the plane. A crossing-free
structure on P is a straight-line plane graph with ver-
tex set P . Examples of crossing-free structures include
triangulations and spanning cycles, also known as poly-
gonizations, among others. Let C denote a certain class
of crossing-free structures, and let FC(P ) denote the set
of all crossing-free structures on P belonging to class C.
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Recently, there has been a significant amount of work
regarding the question: “Can the cardinality of FC(P )
be computed faster than by enumerating FC(P )?”.

In this paper we focus on the particular class C of all
straight-edge triangulations. To the best of our knowl-
edge the first result regarding this question was by O.
Aichholzer in ’99 [1], where he introduced a geomet-
ric structure called “the path of a triangulation”, or T-
path for short. Using T-paths he showed a divide-and-
conquer algorithm that experimentally indicated that
triangulations could be counted in time sub-linear in
the number of triangulations, that is, the algorithm was
apparently faster than enumeration. However, a formal
proof of this - or even a good analysis of its running time
- seems hard to obtain, since it is not clear how to bound
the number of triangulations containing a single T-path.
Later, in ’05, S. Ray and R. Seidel [8] presented a new
algorithm for counting triangulations that, in practice,
appeared to be substantially faster than Aichholzer’s al-
gorithm. This algorithm is also very hard to analyze,
and thus no good analysis of its running time has been
presented so far. It took until ’12 for new counting al-
gorithms to come up that could be analyzed properly.
The first such algorithm is also based on T-paths but
uses the sweep-line paradigm [4]. This algorithm was
proven to count triangulations in time O∗(9n). The
second algorithm, based on the onion layers of P and
the divide-and-conquer paradigm, was proven to count
triangulations in time O∗(3.1414n) [3]. From the ex-
perimental point of view, the second algorithm turned
out to be significantly faster, for certain configurations
of points, than the one shown in [8]. These experi-
ments can be found in the full version of [3] available
on the authors’ websites. The third, and so far the lat-
est, algorithm for counting triangulations runs in time
O∗(2n) [2]. This last algorithm finally shows that enu-
meration algorithms for triangulations can indeed al-
ways be beaten, as all point sets with n points have at
least Ω(2.43n) triangulations [11]. From an experimen-
tal point of view it was also shown to be significantly
faster than all previous algorithms on a variety of in-
puts [2].

1.1 Our Contribution

The O∗(2n) algorithm of [2] for counting triangulations
exactly seems hard to beat at this point. However, it
would be very interesting to see whether the number
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of triangulations of P can be approximated. The result
presented in this paper is, to the best of our knowledge,
the first result in this new line of research.

Note that since for all sets of n points the num-
ber of triangulations is Ω(2.43n) [11] and O(30n) [10],

the quantity Θ
(√

30× 2.43
n
)

approximates the ex-

act number of triangulations within a factor of

O
(√

30/2.43
n
)

. Thus, one can trade the exponential

time of an exact algorithm for a polynomial time al-
gorithm with exponential approximation ratio. In this
paper we bridge the gap between these two solutions by
presenting an algorithm with sub-exponential running
time and sub-exponential approximation ratio.

Let FT (P ) denote the set of all triangulations of P .
The main result of this paper, whose proof is shown
in § 4, is the following:

Theorem 1 Let P be a set of n points on the plane.
Then a number Λ can be computed in time 2o(n) such
that |FT (P )| ≤ Λ ≤ |FT (P )|1+o(1) = 2o(n)|FT (P )|.

The precise o(n) terms mentioned in Theorem 1 are

O (
√
n log(n)) for the running time and O

(
n

3
4

√
log(n)

)
for the approximation factor. At the end of § 4 we
mention a trade-off between these two, running time
and approximation factor.

While the approximation factor of Λ is rather big,
the computed value is of the same order of magnitude
as the correct value of |FT (P )|, that is, we compute a
(1+o(1))-approximation of the base of the exponentially
large value |FT (P )|. More precisely, for |FT (P )| = cn

we have c ≤ Λ
1
n ≤ c1+o(1) ≤ (1 + o(1))c. Also, this ap-

proximation can be computed in sub-exponential time,
which, at least theoretically, is asymptotically faster
than the worst-case running times of the algorithms pre-
sented in [4, 3, 2]. This is certainly very appealing.

2 Preliminaries

Our algorithm uses simple cycle separators as the main
ingredient, originally presented in [7] by G. L. Miller,
and improved in [5] by H. N. Djidjev and S. M. Venkate-
san. The following theorem accounts for both results:

Theorem 2 (Separator Theorem) Let T be a trian-
gulation of a set of n points in the plane such that the
unbounded face is a triangle. Then there exists a simple
cycle C of size at most

√
4n, that separates the set A of

vertices of T in its interior from the set B of vertices of
T in its exterior, such that the number of elements of
each one of A and B is always at most 2n

3 .

Observe that the Separator Theorem does not imply
that every triangulation of a set of points contains a
unique simple cycle separator. One can easily come up

with examples in which a triangulation contains more
than one simple cycle separator. The important part
here is that every triangulation contains at least one
simple cycle separator.

3 The Algorithm

The idea for an approximate counting algorithm is sug-
gested by the Separator Theorem: We enumerate all
possible simple cycle separators C of size at most

√
4n

that we can find in the given set P . We then recur-
sively compute the number of triangulations of each of
the parts A and B, specified by the Separator Theorem,
that are delimited by CI. We then multiply the number
we obtain for the sub-problem A∪C by the number we
obtain for sub-problem B ∪ C, and we add these prod-
ucts over all cycle separators C. With this algorithm
we clearly over-count the triangulations of P , and it re-
mains to show that we do not over-count by too much.
We will later see that in order to keep over-counting
small, we have to solve small recursive sub-problems ex-
actly. Note that problems of size smaller than a thresh-
old ∆ can be solved exactly in time O∗

(
2∆
)

[2].
However, there are some technicalities that we have

to overcome first. For starters, the Separator Theorem
holds only if the unbounded face of T is also a triangle.
Thus, if we add a dummy vertex v∞ outside Conv(P ),
along with the adjacencies between v∞ and the vertices
of Conv(P ), to make the unbounded face a triangle, we
can apply the Separator Theorem. Once a simple cycle
with the dividing properties of a separator is found,
by the deletion of v∞ we are left with a separator that
is either the original cycle that we found, if v∞ does
not appear as a vertex of the separator, or a path
otherwise. Thus, when guessing a separator we have
to consider that it might be a path instead of a cycle.
This brings us to the second technical issue. As we
go deeper in the recursion we might create “holes” in
P whose boundaries are the separators that we have
considered thus far. That is, the recursive problems
are polygonal regions, possibly with holes, containing
points of P . Therefore, when guessing a separator,
cycle or path, we have to arbitrarily triangulate the
holes first. This does not modify the size of the sets we
guess for a separator in a sub-problem.

We can now prove the first lemma:

Lemma 3 Let FT (P ) be the set of triangulations of a
set P of n points. Then all separators, simple cycles or
paths, among all the elements of FT (P ) can be enumer-

ated in time 2O(
√
n log(n)).

Proof. We know by the Separator Theorem and the
discussion beneath that every element of FT (P ), a tri-

IThus separator C also forms part of the two sub-problems.
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angulation, contains at least one separator C, simple
cycle or path. Moreover, the size of C is at most

√
4n.

Thus, searching by brute-force will do the job. We can
enumerate all the subsets of P of size at most

√
4n along

with their permutations. A permutation tells us how
to connect the points of the guessed subset, after also
guessing whether we have a path or cycle. We can then
verify if the constructed simple cycle, or path, fulfils
the dividing properties of a separator, as specified in
the Separator Theorem.

It is not hard to check that the total number of
guessed subsets and their permutations is 2O(

√
n log(n)).

Verifying whether a cycle, or a path, is indeed a sepa-
rator can be done in polynomial time. Thus, the total

time spent remains being 2O(
√
n log(n)). �

We can now proceed with the proof of Theorem 1.

4 Proof of Theorem 1

We will first prove that the approximation ratio is sub-
exponential and then prove that the algorithm has sub-
exponential running time.

4.1 Quality of approximation

By the proof of Lemma 3 we also obtain that the num-
ber of simple cycle separators cannot be larger than

2O(
√
n log(n)). Since at every stage of the recursion of the

counting algorithm no triangulation of P can contain
more than the total number of simple cycle separators
found at that stage, we can express the over-counting
factor of the algorithm by the following recurrence:

S(P,∆) ≤
∑
C

S(A ∪ C,∆) · S(B ∪ C,∆)

≤ 2O(
√
n log(n)) · S(A ∪ C∗,∆) · S(B ∪ C∗,∆),

where the summation is over all separators C available
at the level of recursion, A ∪ C, B ∪ C are the sub-
problems as explained before, C∗ is the cycle that max-
imizes S(A ∪ C,∆) · S(B ∪ C,∆) over all C, and ∆ is
a stopping size. Specifically, whenever the current re-
cursive sub-problem contains ≤ ∆ points we stop the
recursion and compute the number of triangulations of
the sub-problem exactly. Hence, we have S(P ′,∆) = 1
whenever |P ′| ≤ ∆. We can now write

S′(P,∆) := log(S(P,∆)) ≤ O
(√
n log(n)

)
+

S′(A ∪ C∗,∆) +

S′(B ∪ C∗,∆).

Our goal now is to prove the following lemma:

Lemma 4 Let P be a set of n points on the plane and
assume ∆ = nΩ(1), n > ∆, and ∆ is at least a suffi-
ciently large constant. Then we have

S′(P,∆) = O

((
n√
∆/3

−
√
n

)
log ∆

)
.

Proof. We use induction over the size of P . Let P ′ ⊆ P
of size m ≤ n. We have,

S′(P ′,∆) ≤ O
(√
m log(m)

)
+ S′(A ∪ C∗,∆) +

S′(B ∪ C∗,∆)

≤ O
(√
m log(m)

)
+

c

 m1√
∆
3

−
√
m1 +

m2√
∆
3

−
√
m2

 log ∆, (1)

where m1,m2 are the sizes of the sub-problems A ∪ C∗
and B∪C∗ of P ′, respectively, and c is some sufficiently
large positive constant. By the Separator Theorem, we
can express m1 ≤ αm +

√
4m and m2 ≤ βm +

√
4m,

such that: () α, β are constants that depend on the
instance, so α = α (A ∪ C∗) and β = β (B ∪ C∗), ()
0 < β ≤ α ≤ 2

3 , and () α+ β = 1.
Now let us for the moment focus on the term m1√

∆/3
−

√
m1 + m2√

∆/3
−√m2 of equation (1) above:

m1√
∆
3

−
√
m1 +

m2√
∆
3

−
√
m2

=
m1 +m2√

∆
3

−
√
m1 −

√
m2

≤ αm+
√

4m+ βm+
√

4m√
∆
3

−
√
m1 −

√
m2

≤ m+ 4
√
m√

∆
3

−
√
αm−

√
βm

=
m+ 4

√
m√

∆
3

−
√
m
(√

α+
√
β
)

≤ m+ 4
√
m√

∆
3

−
√
m (1 + ε)

The last inequality is obtained by minimizing
√
α +√

β. Since we mentioned before that 0 ≤ β ≤ α ≤ 2
3

and α + β = 1, the minimum of
√
α +
√
β is attained

at (α, β) =
(

2
3 ,

1
3

)
, and is strictly larger than one, so

we can choose ε > 0. Now, since ∆ is sufficiently large,

we have 4
√
m√

∆/3
� ε
√
m, so 4

√
m√

∆/3
− ε
√
m ≤ −ε′

√
m,

for some positive constant ε′. Thus we can continue as
follows:

m1√
∆
3

−
√
m1 +

m2√
∆
3

−
√
m2 ≤

m+ 4
√
m√

∆
3

−
√
m (1 + ε)

≤ m√
∆
3

− (1 + ε′)
√
m. (2)
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Combining equations (1) and (2) we obtain

S′(P ′,∆) ≤ O
(√
m log(m)

)
+ c

 m√
∆
3

− (1 + ε′)
√
m

 log ∆

≤ c

 m√
∆
3

−
√
m

 log ∆

+O
(√
m log(m)

)
− c · ε′

√
m log ∆

If we choose ∆ to be sufficiently large, say ∆ ≥ nδ,
for some constant δ > 0, then we have ∆ ≥ nδ ≥
mδ, and the negative term −c · ε′

√
m log ∆ is larger,

for appropriately large c, than the O (
√
m log(m))

term. Hence, we can conclude that S′(P ′,∆) ≤

O

((
m√
∆/3
−
√
m

)
log ∆

)
, which proves the induction

step.
It still remains to prove that the inductive claim

holds for the boundary condition, so let Q be a re-
cursive sub-problem of size ≤ ∆. As Q stems from
an application of the Separator Theorem, it is easy to
see that |Q| ≥ ∆

3 . Thus, we have S′(Q,∆) = 0 ≤

c

(
|Q|√
∆/3
−
√
|Q|
)

log ∆. Lemma 4 follows. �

Now, let Λ be the number computed by our algo-
rithm. Recall that |FT (P )| is the exact number of tri-
angulations of P . By setting ∆ =

√
n log(n) we obtain

an over-counting factor of the algorithm of:

S(P,∆) = 2S
′(P,∆) = 2

O
(

n log ∆√
∆

)
= 2

O
(
n

3
4
√

log(n)
)

Hence |FT (P )| ≤ Λ ≤ |FT (P )| · 2
O
(
n

3
4
√

log(n)
)

=
|FT (P )|1+o(1). This completes the qualitative part of
Theorem 1. It remains to discuss the running time of
our algorithm.

4.2 Running time

The running time of the algorithm can be expressed
with the following recurrence:

T (n) < 2O(
√
n log(n)) · T

(
2n

3
+
√

4n

)
.

Taking again T ′(n) = log(T (n)) yields T ′(n) :=
T ′
(

2n
3 +
√

4n
)

+ O (
√
n log(n)), which can then be

solved using the well-known Akra-Bazzi Theorem for
recurrences, see [6]. This yields T ′(n) = O (

√
n log(n)).

There is, however, one detail missing, the stopping
condition ∆. In order to use the Akra-Bazzi Theo-
rem we need a boundary condition of T (n) = 1 for
1 ≤ n ≤ n0 (for some constant n0), but in the algo-
rithm we stop the recursion whenever a sub-problem
Q is of size ≤ ∆ (which is dependent on the size n
of the original point set). At that point we compute

the exact number of triangulations of Q, which gives
T (|Q|) = O∗(2|Q|) = O∗(2∆). Hence the exponent in
the running time of the algorithm is upper-bounded by
the solution of T ′(n), as given by the Akra-Bazzi The-

orem, plus O (∆), i.e., T (n) = 2O(
√
n log(n)+∆). If as

before we assume that ∆ =
√
n log(n) then we end up

with T (n) = 2O(
√
n log(n)) = 2o(n), which concludes the

proof of Theorem 1.

As a final remark observe that we could have used
other values for ∆, rather than

√
n log(n), without vio-

lating any argument in the proofs. This yields a trade-
off with running time 2O(∆) and approximation ratio

2
O( n log ∆√

∆
)

for any
√
n log(n) ≤ ∆ ≤ n. Although the

quality of the approximation improves with larger ∆,
the running time increases. Since we see no way of
not having over-counting with this algorithm, we re-
gard ∆ =

√
n log(n) as the most reasonable setting.

It remains an open problem to find an algorithm with
sub-exponential approximation ratio and running time
2o(
√
n log(n)), e.g., polynomial.

5 Extensions and Conclusions

With the techniques of [3] one can generalize our algo-
rithm for approximately counting triangulations to ap-
proximately counting other crossing-free structures. See
[9] for other related results. In the following we sketch
this for spanning cycles. We embed a spanning cycle in
its contrained Delauney triangulation, annotating the
edges by whether they belong to the spanning cycle. To
approximate the number of spanning cycles of a given
set of points, we enumerate all possible cycle separators
together with all incident triangles (similar to sn-paths
versus triangular paths in [3]). Moreover, we enumerate
all annotations of this structure by which edges belong
to the spanning cycle and the topology of the seen parts
of the spanning cycle. This gives an algorithm with the
same asymptotic running time and approximation ratio
as for triangulations. The full details of this, along with
the details of how to approximately count crossing-free
matchings and spanning trees, will appear in the full
version of this paper.

In summary, in this paper we presented an approx-
imation algorithm for the number of triangulations of
a given point set. This algorithm has sub-exponential
running time and sub-exponential approximation ratio.
Although its approximation ratio is rather large, the al-
gorithm computes a (1+o(1))-approximation of the base
c of the number of triangulations cn, and it does so in
sub-exponential time. No algorithm with this property
was known before.
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