
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Theta-3 is connected
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André van Renssen ‡ Perouz Taslakian ‖ Sander Verdonschot ‡

Abstract

In this paper, we show that the θ-graph with three cones
is connected. We also provide an alternative proof of the
connectivity of the Yao-graph with three cones.

1 Introduction

Introduced independently by Clarkson [6] in 1987 and
Keil [9] in 1988, the θ-graph of a set P of points in the
plane is constructed as follows. We consider each point
p ∈ P and partition the plane into m ≥ 2 cones (regions
in the plane between two rays originating from the same
point) with apex p, each defined by two rays at consecu-
tive multiples of 2π/m radians from the negative y-axis.
We label the cones C0 through Cm−1, in clockwise order
around p, starting from the cone containing the positive
y-axis from p if m is odd, or having this axis as its left
boundary if m is even; see Figure 1. If the apex is not
clear from the context, we use Cp

i to denote the cone Ci

with apex p. We sometimes referred to Cp
i as the i-cone

of p. To build the θ-graph, we consider each point p
and connect it by an edge with the closest point in each
of its cones. We measure distance by projecting each
point onto the bisector of that cone instead of using the
Euclidean distance. We use this definition of distance in
the remainder of the paper, except for Section 4, which
deals with Yao graphs. For simplicity, we assume that
no two points of P lie on a line parallel to either the
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boundary or the angle bisector of a cone, guaranteeing
that each point connects to at most one point in each
cone. We call the θ-graph with m cones the θm-graph.

For θ-graphs with an even number of cones, proving
connectedness is easy. As the first m/2 cones cover ex-
actly the right half-plane, each point will have an edge
to a point to its right, if such a point exists. Thus, we
can find a path from any point to the rightmost point
and, by concatenating these, a path between any pair
of points. Unfortunately, if m is odd this property does
not hold, as no set of cones covers exactly the right half-
plane. Therefore, a point is not guaranteed to have an
edge to a point to its right, even if such point exists.

The fact that θ-graphs with more than 6 cones are
connected has been known for a long time. In fact, they
even guarantee the existence of a short path between
every pair of points. The length of this path is bounded
by a constant times the straight-line Euclidean distance
between the two points [3, 5, 6, 9, 11]. Graphs that have
this property are called geometric t-spanners for some
constant t > 0. For more information on geometric
t-spanners, see the book by Narasimhan and Smid [10].

For a long time, very little was known about θ-graphs
with fewer than 7 cones. Bonichon et al. [2] broke
ground in this area in 2010, by showing that the θ6-
graph is a geometric spanner. Subsequently, both the
θ4- and θ5-graphs have been shown to be constant span-
ners [1, 4]. El Molla [8] already showed that the θ2- and
θ3-graphs are not constant spanners. The θ3-graph is
the last θ-graph for which connectedness has not been
proven. In this paper, we settle this question by proving
that the θ3-graph is always connected.
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Figure 1: Left: A point p and its three cones in the θ3-
graph. Right: Point p adds an edge to the closest point in
each of its cones, where distance is measured by projecting
points onto the bisector of the cone.
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Figure 2: Left: A point set for which θ-routing does not
find a path from a to c, as it keeps cycling between a and
b. Right: The directed version of the graph is not strongly
connected, as there is no path from either a or b to c.

The question of connectedness about the θ3 graph is
interesting because the θ3-graph has some unique prop-
erties that cause standard proof techniques for θ-graphs
to fail. As such, we hope that the techniques we de-
velop here will lead to more insight into the structure
of other θ-graphs. As an example, most proofs for a
larger number of cones show that the θ-routing algo-
rithm (always follow the edge in the cone that contains
the destination) returns a short path between any two
points. But in the θ3-graph, θ-routing is not guaran-
teed to ever reach the destination. The smallest point
set that exhibits this behavior has three points, such
that for each point, both other points lie in the same
cone; see Figure 2. In fact, this example shows not only
that this exact routing strategy fails; it shows that if we
consider the edges to be directed (from the point that
added them, to the closest point in its cone), the graph is
not strongly connected. Our proof requires more global
methods than previous proofs on θ-graphs.

Most proofs for a larger number of cones use induc-
tion on the distance between points or on the size of the
empty triangle between a point and its closest point.
In the θ3-graph however, both of these measures can
increase when we follow an edge. Thus, applying in-
duction on these distances seems a difficult task. An
induction on the number of points similarly fails, as in-
serting a new point may remove edges that were present
before, and it is not obvious that the endpoints of those
edges are still connected in the new graph.

The θ3-graph is strongly related to the Yao-3-graph,
where each point also connects to the closest point in
each cone, but the distance measure is the standard
Euclidean distance. This graph was shown to be con-
nected by Damian and Kumbhar [7]. Their proof uses
induction on a rhomboid distance-measure that was tai-
lored specifically for the Yao-3-graph. Since the ‘closest’
point for the θ3-graph can be much further away than
in the Yao-3-graph, this method of induction does not
translate to the θ3-graph either. Conversely, we show
that our proof extends to the Yao-3-graph, providing
an alternative proof for its connectivity.

2 Properties of the θ3-graph

For i ∈ {0, 1, 2}, the edge connecting a point with its
closest point in cone Ci is called an i-edge. Note that
an edge can have one or two roles depending on the
position of its endpoints. An example is depicted in
Figure 2, where edge ab is both the 0-edge of a and the
1-edge of b.

Lemma 1 For all i ∈ {0, 1, 2}, no two i-edges of the
θ3-graph can cross.

Proof. We consider only 0-edges of P ; the proof is anal-
ogous for 1- and 2-edges. For a contradiction, assume
that there are two 0-edges that cross at a point s. Call
these edges u1v1 and u2v2, such that v1 is in the 0-cone
of u1 and v2 in the 0-cone of u2. Assume without loss
of generality that the y-coordinate of v1 is smaller than
that of v2; see Figure 3 for an illustration. Because s
lies on segments u1v1 and u2v2, s lies in the 0-cones of
both u1 and u2. Therefore, the 0-cone of s is contained
in the intersection of the 0-cones of u1 and u2. As v1
lies in cone C0 of s, point v1 lies in cone C0 of u2 as
well. Because we assumed that the y-coordinate of v1 is
less than that of v2, we conclude that v1 is closer to u2
than v2. Thus, the edge u2v2 is not a 0-edge yielding a
contradiction. �
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Figure 3: Two 0-edges u1v1 and u2v2 such that v1 ∈ Cu1
0

and v2 ∈ v1 ∈ Cu2
0 cannot cross because the lowest point

among v1 and v2 will be adjacent to both u1 and u2.

We say that a cone is empty if it contains no point
of P in its interior. A point having an empty i-cone is
called an i-sink.

Given a point p of P , the i-path from p is defined
recursively as follows: If the i-cone of p is empty, the
i-path from p consists of the single point p. Otherwise,
let q be the closest point to p in its i-cone. The i-path
from p is defined as the union of edge pq with the i-path
from q.

Lemma 2 Every i-path of the θ3-graph is well-defined
and has an i-sink as one of its endpoints.

Proof. We consider only 0-paths; the proof is analo-
gous for the other paths. A 0-path from a point p is
well defined because the closest point in the 0-cone of p
always lies above p. Therefore, the sequence of points
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Figure 4: The last case in the proof of Lemma 3 where it is
shown that empty i-cones cannot be crossed by edges of the
θ3-graph.

in the 0-path from p is monotonically increasing in the
y-coordinate. Because P is a finite set, the depth of the
recursion is finite and must end at a point having an
empty 0-cone. �

Lemma 3 If a cone of a point is empty, then no edge
of the θ3-graph can cross this cone.

Proof. We consider only 0-cones for this proof; anal-
ogous arguments hold for the other cones. Let u be a
point of P with an empty 0-cone. We prove the lemma
by contradiction, so assume that there exists an edge xy
that crosses Cu

0 . Since no edge between two points in
the same cone can cross another cone, assume without
loss of generality that x ∈ Cu

2 and y ∈ Cu
1 .

Note that y cannot lie in Cx
0 , since either Cx

0 does not
intersect Cu

1 (if u /∈ Cx
0 ) or the line segment between x

and y does not intersect Cu
0 (if u ∈ Cx

0 ). Therefore, y
lies in Cx

1 .

If u ∈ Cx
0 , then Cx

1 does not intersect Cu
0 and hence,

the line segment between x and y cannot intersect Cu
0

either. Therefore, both u and y lie in Cx
1 . Let ` be the

perpendicular to the bisector of Cx
1 that passes through

u. For the edge xy to exist, the projection of y on the
bisector of Cx

1 must be closer to x than that of u, i.e.,
y must lie to the left of `. However, all points lying
to the left of ` are contained in Cu

0 ∪ Cu
2 yielding a

contradiction as y ∈ Cu
1 ; see Figure 4 for an illustration

of this case. �

As a consequence of Lemmas 1 and 3, two sinks con-
nected by an i-path partition the remaining points into
two sets such that no i-path can connect a point in one
set to a point in the other set, as any such path would
cross either the i-path between the sinks, or the empty
cone of one of the sinks. Such a construction is called
an i-barrier ; see Figure 5 for an illustration.

1

a′

1

a

Figure 5: A 1-barrier, defined by the 1-path joining a with
a′, splits the remaining points into two sets such that no two
points in different sets can be joined by a 1-path.

3 Proving connectedness

In this section we prove that the θ3-graph of any given
point set is connected. We start by proving that three
given 0-sinks in a specific configuration are always con-
nected. We then prove that if the θ3-graph has at
least two disjoint connected components, then there ex-
ist three 0-sinks that are in this configuration and are
not all in the same component.

Although the edges of the θ3-graph are not directed,
by Lemma 2 we can think of an i-path as oriented to-
wards the i-sink it reaches. An i-path oriented from
point a to point b is denoted by a → b. The following
lemma is depicted in Figure 6.

Lemma 4 Given three 0-sinks a, b, and c, such that
(i) a lies to the left of b and b lies to the left of c, and
(ii) the 1-path from a ends at a 1-sink a′, whose 0-path
ends at c, then a, b, and c belong to the same connected
component.

Proof. Since there is a path from a to c via a′, a and c
must be in the same component. We show that b belongs
to this same connected component. The proof proceeds
by induction on the number of 0-sinks to the right of c.

In the base case, there are no 0-sinks to the right of c.
Consider the 1-sink b′ at the end of the 1-path from b;
see Figure 6 (right). If b′ and a′ are the same point,

b

1 0
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a c
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b′
1
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Figure 6: Left: The configuration of three 0-sinks described
in Lemma 4. Right: The configuration in the base case of
the induction where no 0-sink lies to the right of c.
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Figure 7: The configuration of the inductive step where the
induction hypothesis can be applied on 0-sinks b, c and d.

then b is in the same connected component as a and
we are done, so assume that this is not the case. Since
the 1-path a → a′ forms a 1-barrier, b′ must lie to the
right of a′. The 1-path b → b′ also has to cross the 0-
path a′ → c, as otherwise a′ → c would cross the empty
cone of b′, which is impossible by Lemma 3. Because
the 0-path a′ → c forms a 0-barrier, the 0-path from b′

cannot end up to the left of c. Moreover, since there are
no 0-sinks to the right of c, the 0-path from b′ must end
at c. Thus, there is a path connecting b and c, which
proves the lemma in the base case.

For the inductive step, let k be the number of 0-sinks
to the right of c and assume that the lemma holds for
any triple of 0-sinks with fewer than k 0-sinks to their
right. By the same argument as in the base case, we
have a 1-path from b to a 1-sink b′ that lies to the right
of a′. Now consider the 0-sink d at the end of the 0-path
from b′; see Figure 7. Since the 0-path a′ → c forms a
0-barrier, d cannot lie to the left of c. If d and c are the
same point, we have a path connecting b and c as in the
base case, so assume that this is not the case. Thus d
lies to the right of c. Now b, c, and d form a triple of
0-sinks that satisfy criteria (i) and (ii). And since d is
a 0-sink to the right of c, there are fewer than k 0-sinks
to the right of d. Thus, by induction, we have that b
is in the same connected component as c, which proves
the lemma. �

Theorem 5 The θ3-graph is connected.

Proof. Assume for sake of a contradiction that there
exists a point set P whose θ3-graph G is not connected.
From each point, we can follow its 0-path to end up at
a 0-sink. Therefore, G must contain at least one 0-sink
for each connected component. Let a be the leftmost
0-sink, and let A be the connected component of G that
contains a. Now let b be the leftmost 0-sink that does
not belong to A.

We use Lemma 4 to show that, in fact, b must belong
to A as well. Before we can do this, we need to define
two barriers. The first barrier is formed by the 2-path
from b, ending at a 2-sink b′. Because a lies in Cb

2,

a b

b′

2
c

0

a′

1

d

0

Figure 8: Two 0-sinks a and b are assumed to lie in different
components such that both a and b are the leftmost 0-sinks
in their component. The 1-path from a ends at a 1-sink a′

whose 0-path ends at a 0-sink d lying to the right of b. The
0-sinks a, b and d jointly satisfy the criteria of Lemma 4.

point b does not have an empty 2-cone and hence, b′

differs from b. The second barrier is formed by the 0-
path from b′, which ends at a 0-sink c; see Figure 8.
Since b is the leftmost 0-sink that does not belong to A,
either c and b are the same point, or c lies to the right
of b.

Now consider the 1-sink a′ at the end of the 1-path
from a. This point has to lie to the right of both barriers
b → b′ and b′ → c, as otherwise these paths would
cross the empty cone C1 of a′, which is not allowed by
Lemma 3. Because the path a → a′ is a 1-path and
the barriers in question consist of 0- and 2-edges, these
crossings are possible. Now let d be the 0-sink at the
end of the 0-path from a′. Since this path cannot cross
the 0-barrier b′ → c, d cannot lie to the left of c.

Because d belongs to component A, if c and d are
the same point, c belongs to component A. Otherwise,
if c and d are distinct points, then a, b, and d jointly
satisfy the criteria of Lemma 4, which gives us that b
belongs to component A as well—a contradiction since b
is the leftmost 0-sink that does not belong to A. This
contradiction comes from our assumption that G is not
connected. Therefore, the θ3-graph of any point set is
connected. �

4 The Yao-3-graph

The construction of the Yao-3-graph is very similar to
that of the θ3-graph. The only difference is in the way
distance is measured: the θ-graph uses the length of
the projection onto the bisector, whereas the Yao-graph
uses the Euclidean distance. Therefore, in every cone
a point is connected to its closest Euclidean neighbor.
We denote by |pq| the Euclidean distance between two
points p and q.

We show that like the θ3-graph, the Yao-3-graph is
also connected. To this end, we re-introduce the three
basic lemmas we had for the θ3-graph and show that
the same properties hold for the Yao-3-graph.
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Figure 9: Point x lies to the left of point u and the arcs vr′

and r′z are enclosed by circle C centered at u, having radius
|uv|.

We first prove a geometric auxiliary lemma depicted
in Figure 9.

Lemma 6 Given a non-vertical line b and a circle C
centered at a point u on b, let v and z be two points on
C such b bisects the segment vz. Let x be a point on b
and let D be the circle centered at x having radius |xv|.
If x lies to the left of u, then the right-side arc of D
between v and z is enclosed by C; otherwise, the left-
side arc of D between v and z is enclosed by C.

Proof. Assume that x lies to the left of u; the proof of
the other case is analogous. Let r and r′ respectively
be the right intersections of C and D with line b; see
Figure 9. Hence, arcs vr′ and r′z lie either entirely
inside C or entirely outside C. Therefore, it suffices to
show that r′ is enclosed by C, i.e., |ur′| ≤ |ur|. Since x
lies to the left of u, we can rewrite |ur′| as |xr′| − |xu|.
Since |xr′| = |xv| and |ur| = |uv|, we thus need to show
that |xv| ≤ |xu| + |uv|. This follows from the triangle
inequality. �

The proof of the following lemma is similar to that of
Lemma 1.

Lemma 7 For all i ∈ {0, 1, 2}, no two i-edges of the
Yao-3-graph can cross.

Proof. We look at the 0-edges. The cases for the other
edges are analogous. Let uv be a 0-edge such that
v ∈ Cu

0 and assume without loss of generality that v
lies to the right of u. We prove the lemma by contradic-
tion, so assume that some 0-edge xy crosses uv and let
y ∈ Cx

0 . Note that for xy to cross uv, Cx
0 must contain

some part of uv. Hence v lies in Cx
0 .

Let k be the line through the right boundary of Cu
0

and let l be the line through u such that the angle be-
tween l and the vertical line through u is π/6. We con-
sider four cases, depending on the location of x with
respect to u; see Figure 11 (left): (a) x ∈ Cu

0 to the left

u

v

x

z

u

l

π
6

v

k

Figure 10: Left: The four cases. Right: The case when x
lies in Cu

2 and above k.

of the line uv, (b) x ∈ Cu
2 above k, (c) x ∈ Cu

2 below k
or x ∈ Cu

1 below l, (d) x ∈ Cu
1 above l or x ∈ Cu

0 to the
right of the line uv.

Case (a): x ∈ Cu
0 to the left of the line uv. Since v

lies inside Cx
0 and v lies to the right of u, x lies in the cir-

cle centered at u having radius |uv|. Thus, x lies closer
to u than v, contradicting the existence of edge uv.

Case (b): x ∈ Cu
2 above k. We apply Lemma 6

as follows, see Figure 11 (right): Let C be the circle
centered at u having radius |uv|. Let the line through u
and x be bisector b, the bisector of v and z. Note that
this implies that z lies outside Cu

0 . Let D be the circle
centered at x having radius |xv|. Since x lies to the left
of u, Lemma 6 gives us that the right arc vz of circle D
is enclosed by circle C. Since the area in which y must
lie for xy to cross uv is bounded by the right boundary
of Cx

0 , edge uv, and the right arc vz of circle D, it is
enclosed by C. Therefore, there does not exist a point
y ∈ Cx

0 such that xy intersects uv.

Case (c): x ∈ Cu
2 below k or x ∈ Cu

1 below l. Since u
lies in Cx

0 , y needs to be closer to x than u for edge xy
to exist. Hence it must lie inside the circle C centered
at x having radius |xu|. Look at the lower half-plane
defined by the line through u perpendicular to C and
note that C is contained in this half-plane. However,
the half-plane does not intersect Cu

0 to the right of u
and hence no point y inside the half-plane can be used
to form an edge xy that crosses uv.

Case (d): x ∈ Cu
1 above l or x ∈ Cu

0 to the right
of the line uv. We apply Lemma 6 as follows, see Fig-
ure 11 (right): Let C be the circle centered at u having
radius |uv|. Let the line through u and x be bisector b.
Note that z lies outside Cx

0 . Let D be the circle cen-
tered at x having radius |xv|. Since x lies to the right
of u, Lemma 6 gives us that the left arc vz of circle D
is enclosed by circle C. Since the area in which y must
lie for xy to cross uv is bounded by edge uv, the left
arc vz of circle D, and either the left boundary of Cx

0

(if u /∈ Cx
0 ) or the line ux (if u ∈ Cx

0 ), it is enclosed
by C. Therefore, there does not exist a point y ∈ Cx

0

such that xy intersects uv. �
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1

below l. Right: The case when x ∈ Cu
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0 to
the right of the line uv.

Lemma 8 Every i-path of the Yao-3-graph is well-
defined and has an i-sink as one of its endpoints.

Proof. The proof of this lemma is analogous to
Lemma 2 for the θ3-graph. �

Lemma 9 If a cone of a point is empty, then no edge
in the Yao-3-graph can cross this cone.

Proof. We assume without loss of generality that Cu
0

does not contain any points. We prove the lemma by
contradiction, so assume that there exists an edge xy
that crosses Cu

0 . Since no edge between two points in
the same cone can cross another cone, let x ∈ Cu

2 and
y ∈ Cu

1 .

Point y cannot lie in Cx
0 , since either Cx

0 does not
intersect Cu

1 (if u /∈ Cx
0 ) or the line segment between x

and y does not intersect Cu
0 (if u ∈ Cx

0 ). Hence y must
lie in Cx

1 .

If u ∈ Cx
0 , Cx

1 does not intersect Cu
0 and thus the line

segment between x and y cannot intersect Cu
0 either.

Therefore both u and y lie in Cx
1 . For the edge xy to

exist, y must be closer to x than u, i.e., y must lie in
the circle centered at x having radius |xu|. This cir-
cle is contained in the half-plane to the left of the line
through u perpendicular to the circle.

If x lies on or above the horizontal line through u,
the half-plane does not intersect Cu

1 . If x lies below
the horizontal line through u, the half-plane does not
intersect Cu

1 above u and thus xy would not cross Cu
0 .

Since y is enclosed by the circle, the circle is contained
in the half-plane, and there is no point p in the half-
plane such that p ∈ Cu

1 and px crosses Cu
0 , xy cannot

cross Cu
0 either. �

Using Lemmas 7, 8 and 9, the proof of Theorem 5
translates directly to the Yao-3-graph yielding the fol-
lowing result.

Theorem 10 The Yao-3-graph is connected.

Acknowledgments. This problem was introduced dur-
ing the Fields Workshop on Discrete and Computa-
tional Geometry held at Carleton University in Ottawa,
Canada.
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