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Abstract

The shape and center of mass of a part are crucial pa-
rameters to algorithms for planning automated manu-
facturing tasks. As industrial parts are generally manu-
factured to tolerances, the shape is subject to variations,
which, in turn, also cause variations in the location of
the center of mass. Planning algorithms should take
into account both types of variation to prevent failure
when the resulting plans are applied to manufactured
incarnations of a model part.

We study the relation between variation in part shape
and variation in the location of the center of mass for
a convex part with uniform mass distribution. We con-
sider a general model for shape variation that only as-
sumes that every valid instance contains a polygon PI
while it is contained in another polygon PE . We charac-
terize the worst-case displacement of the center of mass
in a given direction in terms of PI and PE . The charac-
terization allows us to determine an adequate polygonal
approximation of the locus of the center of mass. We
also show that the worst-case displacement is small if
PI is fat and the distance between the boundary of PE
and PI is bounded.

1 Introduction

Many automated part manufacturing tasks involve ma-
nipulators that perform physical actions—such as push-
ing, squeezing [1], or pulling [2]—on the parts. Over the
past two decades, researchers in robotics in general and
algorithmic automation in particular have thoroughly
studied the effect of physical actions as well as their
potential role in accomplishing high-level tasks like ori-
enting or sorting. It is evident that shape and—in many
cases (see e.g. [1, 3, 4, 5, 6, 7])—location of the center
of mass are important parameters in determining the
effect of a physical action on a part.

Industrial parts are always manufactured to toler-
ances as no production process is capable of deliver-
ing parts that are perfectly identical. Tolerance models
[12, 13] are therefore used to specify the admitted varia-
tions with respect to the CAD model. A consequence of
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these variations [8, 9] is that actions that are computed
on the basis of a CAD model of a part may easily lead
to different behavior when executed on a manufactured
incarnation of that part, and thus to failure to accom-
plish the higher-level task. It is important to note that
the shape variations not only directly affect the behav-
ior of the part but indirectly as well because they also
cause a displacement of the center of mass of the part.

To extend the planning algorithms to imperfect man-
ufactured incarnations, it is important to understand
the effects of variations and take them into account
during planning. Larger variations in part shape and
center-of-mass location inevitably result in a larger
range of possible part behaviors, which reduces the like-
liness that a manufacturing task can be accomplished.
Therefore we will study how variations in part shape
influence the location of the center of mass. (Note that
variations in shape and center of mass are not the only
sources of uncertainty in robotics. Additional uncer-
tainty can result from the inaccuracy of the actuators
and manipulators [11] and sensors [10].)

Several geometric approaches have been proposed to
overcome the problems occurring in the presence of un-
certainty and to smooth the effects of errors. Among
the existing approaches are the model of ε−geometry
[14], tolerance and interval geometry [15, 16] and region-
based models [17]. Generally, in all these models an
uncertain point is represented by a region in which it
may vary. The model of ε−geometry assumes that a
point can vary within a disk of radius ε. Tolerance and
interval-geometry take into account coordinate errors
which results in an axis-aligned rectangular region in
which a point can vary. In general, region-based models
represent a point by any convex region. After model-
ing uncertainty as a point surrounded by a region, it is
possible to study worst (and best) cases for a problem
under the specific uncertainty model.

As observed before, variation of the shape causes vari-
ation of the center of mass of a part. The locus of the
centroid of a set of points with approximate weights has
been studied by Bern et al. [19]. Akella et al. [18] es-
timated the locus for a polygon under the ε−geometry
model [18]. The problem of finding the locus of the
center of mass of a part with shape variation and uni-
formly distributed mass has been mentioned as an open
problem [9, 18]. Akella et al. [18] studied rotating a con-
vex polygon whose vertices and the center of mass lie
inside predefined circles centered at their nominal loca-
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tions. The problem of orienting a part by fence has been
studied by Chen et al. [9]. They define disk and square
regions for the vertices of a part and proposed a method
for computing the maximum allowable uncertainty ra-
dius for each vertex. They also discussed in a more
general way the key role of the center of mass and the
successfulness of part feeding (or orienting) algorithms
in a setting of shape variation. Chen el al. [20] pre-
sented algorithms for squeezing and pushing problems.
Kehoe et al. [21] explored cloud computing in a context
of grasping and push-grasping under shape variation.

All the previous models for shape variation only allow
the vertices to vary. In this paper we use a more gen-
eral model for shape variation. For given convex shapes
PI and PE such that PI ⊆ PE we consider the family
of shapes P satisfying PI ⊆ P ⊆ PE . In the practical
setting of toleranced parts the shapes PI and PE will be
fairly similar. We will show in Section 3 that the valid
instance that yields the largest displacement of the cen-
ter of mass in a given direction is a shape that combines
a part of PI with a part of PE . The corresponding dis-
placement is computable in O(n) time where n is the
complexity of PI and PE ; it can be used to obtain a
k-vertex outer approximation of the set of all possible
loci of the center of mass in O(kn) time.

In Section 4, we will study the size of the set of pos-
sible center-of-mass loci. Fatness of the objects under
consideration has led to lower combinatorial complexi-
ties and more efficient algorithms for various problems,
including union complexities [24], motion planning [22],
hidden surface removal [25], and range searching [26].
We show that fatness of PI together with the assump-
tion that no point in PE has a distance larger than ε to
PI leads to a bound on the distance between the cen-
ters of mass of any two valid instances of a part which
is proportional to ε and the fatness of PI .

2 Preliminaries

In this section, we first present a general model for shape
variations, then review the notion of a center of mass,
and finally introduce a few notions that allow us to char-
acterize the shapes that maximize the displacement of
the center of mass. Let PM be the model part. The
part PM has a uniform mass distribution.

No production process ever delivers parts that are
perfectly identical to the model part PM and therefore
industrial parts are manufactured to tolerances. We
use a very general model for permitted shape variations
that only requires that any manufactured instance of
PM contains a given convex subshape PI of PM while
it is contained in a convex supershape PE of PM . As a
result, the set of acceptable instances of PM is a family
of shapes V (PI , PE) = {P ⊂ R2|PI ⊆ P ⊆ PE} for
given PI and PE satisfying PI ⊆ PM ⊆ PE . In other

Figure 1: A family of shapes specified by a subshape PI
and a supershape PE of a model part PM , along with a
valid instance P ∈ V (PI , PE).

words, the boundary ∂P of an instance P ∈ V (PI , PE)
should be entirely contained in Q = PE− int(PI) where
int(P ) denotes the interior of the set P . The region
Q is referred to as the tolerance zone. The objects PI
and PE are assumed to be closed polygons with a to-
tal of n vertices. (Figure 1 shows and example of a
model part PM , shapes PI and PE , and a valid instance
P ∈ V (PI , PE).) We denote by COM (PI , PE) the set
of all centers of mass of instances P ∈ V (PI , PE).

We let Xc(P ) denote the x-coordinate of the center
of mass and A(P ) be the area of the object P . The
x-coordinate of the center of mass of an object with
uniform mass distribution satisfies

Xc(P ) =
1

A

∫
A

xdA,

where A is the area of the object. A similar equality
holds for the y-coordinate of the center of mass. In the
case of uniform mass distribution the center of mass
corresponds to the centroid of the object. We will often
decompose an object P into sub-objects Pi (1 ≤ i ≤ n)
and then express its center of mass as a function of the
centers of mass of its constituents, through the equation

Xc(P ) =

∑n
i=1Xc(Pi)A(Pi)∑n

i=1A(Pi)
. (1)

We conclude this section by defining useful objects.
Disks play a prominent role in Section 4. We denote by
Dr(p) the closed disk with radius r centered at p, and
use the abbreviation Dr = Dr(O) where O is the origin.

For an object P and a value m we define its right
portion P+[m] with respect to m by P+[m] = {(x, y) ∈
P |x ≥ m}. Similarly, we define its left portion P−[m]
with respect to m by P−[m] = {(x, y) ∈ P |x ≤ m}.
With these portions we can define minmax objects,
which allow us to capture the intuition that the largest
displacement of the center of mass in a given direction
is achieved by the object from V (PI , PE) that ’maxi-
mizes mass’ in that direction and ’minimizes mass’ in
the opposite direction. The minmax object P ∗[m] con-
sists of a left portion of PI and a right portion of PE
with respect to the same m, so P ∗[m] = P−I [m]∪P+

E [m]
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Figure 2: A minmax object

(see Figure 2). Note that an alternative way to describe
P ∗[m] is by the equation P ∗[m] = PI ∪Q+[m]

3 Displacement of the center of mass

In this section, we find an upper bound on the displace-
ment of the center of mass in a given direction. The
resulting bound allows us to determine a good polyg-
onal outer approximation of the set COM (PI , PE) of
possible loci of the center of mass.

3.1 Bounding the displacement in one direction

Without loss of generality we assume that PI and PE are
positioned and oriented in such a way that the center
of mass of PI coincides with the origin (so Xc(PI) =
0) and that the direction in which we want to bound
the displacement aligns with the positive x-axis. This
assumption and the equation P ∗[m] = PI∪Q+[m] allow
us to simplify Equation 1 to

Xc(P
∗[m]) =

Xc(Q
+[m])A(Q+[m])

A(PI) +A(Q+[m])
. (2)

Although we will bound the displacement with respect
to the center of mass of PI we observe that the result
also induces a bound with respect to the center of mass
of PM as PM ∈ V (PI , PE) by definition. We let Xr =
max(x,y)∈PE

x.
Our first lemma establishes a connection between the

minmax objects P ∗[x] for 0 ≤ x ≤ Xr and the location
of their centers of mass.

Lemma 1 There is exactly one minmax object P ∗[m]
(0 ≤ m ≤ Xr) that satisfies Xc(P

∗[m]) = m. Moreover
x < Xc(P

∗[x]) ≤ m for all 0 ≤ x < m and Xc(P
∗[x]) <

m for all m < x ≤ Xr.

Proof. From Xc(PI) = 0 and Xc(Q
+[0]) ≥ 0 and the

fact that P ∗[0] = PI ∪Q+[0] it follows that Xc(P
∗[0]) ≥

0; moreover, it is clear that Xc(P
∗[Xr]) ≤ Xr. As

the center of mass of P ∗[x] moves continuously as x
increases from 0 to Xr there must be at least one x
such that Xc(P

∗[x]) = x. It remains to show that
there is also at most one such x. Let m be such that

Xc(P
∗[m]) = m. We consider a minmax object P ∗[x]

for x 6= m and distinguish two cases: (i) 0 ≤ x < m and
(ii) m < x ≤ Xr.

Consider case (i). Using the notation Q′ = Q+[m]
and Q′′ = P ∗[x] − P ∗[m] = Q+[x] − Q+[m] we have
that P ∗[m] = PI ∪Q′ and P ∗[x] = PI ∪Q′ ∪Q′′. Note
that Q′′ ⊂ [x,m]× R and thus

x ≤ Xc(Q
′′) ≤ m.

As x < Xc(P
∗[m]) = Xc(PI ∪ Q′) = m it follows from

Equation 1 that

x(A(PI)+A(Q′)) < Xc(Q
′)A(Q′) ≤ m(A(PI)+A(Q′)).

After observing that Xc(PI) = 0 we apply Equation 1
to P ∗[x] = PI ∪ Q′ ∪ Q′′ and use the aforementioned
inequalities to obtain

Xc(P
∗[x]) =

Xc(Q
′)A(Q′) +Xc(Q

′′)A(Q′′)

A(PI) +A(Q′) +A(Q′′)

>
x(A(PI) +A(Q′)) + xA(Q′′)

A(PI) +A(Q′) +A(Q′′)
= x

and

Xc(P
∗[x]) =

Xc(Q
′)A(Q′) +Xc(Q

′′)A(Q′′)

A(PI) +A(Q′) +A(Q′′)

≤ m(A(PI) +A(Q′)) +mA(Q′′)

A(PI) +A(Q′) +A(Q′′)
= m.

Consider case (ii). Using the notation Q′ = Q+[x]
and Q′′ = P ∗[m] − P ∗[x] = Q+[m] − Q+[x] we have
that P ∗[x] = PI ∪Q′ and P ∗[m] = PI ∪Q′ ∪Q′′. Note
that Q′′ ⊂ [m,x]× R and thus

m ≤ Xc(Q
′′) ≤ x.

As Xc(P
∗[m]) = Xc(PI ∪Q′ ∪Q′′) = m it follows from

Equation 1 that

Xc(Q
′)A(Q′) = m(A(PI)+A(Q′))+(m−Xc(Q

′′))A(Q′′).

We apply Equation 1 to P ∗[x] = PI ∪ Q′ and use the
aforementioned equations and inequality to obtain

Xc(P
∗[x]) =

Xc(Q
′)A(Q′)

A(PI) +A(Q′)

≤ m(A(PI) +A(Q′))− (Xc(Q
′′)−m)

A(PI) +A(Q′)

≤ m(A(PI) +A(Q′))

A(PI) +A(Q′)
= m.

Combining both cases we find that there is no x 6= m
that satisfies Xc(P

∗[x]) = x. �

In addition to the fact that there is only one minmax
object P ∗[m] that satisfies Xc(P

∗[m]) = m, Lemma
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1 also reveals that Xc(P
∗[x]) > x for x < m and

Xc(P
∗[x]) < x for x > m. Moreover, it shows that

Xc(P
∗[x]) < m for all x 6= m which means that the

minmax object P ∗[m] with Xc(P
∗[m]) = m achieves

larger displacement of the center of mass in the direc-
tion of the positive x-axis than any other minmax object
P ∗[x] with x 6= m. The following theorem shows that
P ∗[m] in fact achieves the largest displacement of the
center of mass among all objects in V (PM ).

Theorem 2 Let P ∗[m] (0 ≤ m ≤ Xr) be the unique
minmax object that satisfies Xc(P

∗[m]) = m. Then
Xc(P ) < Xc(P

∗[m]) for all P ∈ V (PI , PE), P 6= P ∗[m].

Proof. Let P ∈ V (PI , PE), P 6= P ∗[m] be the object
that yields the largest displacement m′ ≥ m of the cen-
ter of mass, so Xc(P ) = m′. If P = P ∗[m′] then it
follows immediately from Lemma 1 that m′ = m. Now
assume for a contradiction that P 6= P ∗[m′] = P−I [m′]∪
P+
E [m′] which implies that (i) P+

E [m′] − P+[m′] 6= ∅ or
(ii) P−[m′]− P−I [m′] 6= ∅.

Consider case (i) and let R be a closed connected
subset with A(R) > 0 of P+

E [m′] − P+[m′]. Observe
that P ∪ R ∈ V (PI , PE). Note that R ⊂ (m′,∞) × R
and thus Xc(R) > m′. We get

Xc(P ∪R) =
Xc(P )A(P ) +Xc(R)A(R)

A(P ) +A(R)

>
m′A(P ) +m′A(R)

A(P ) +A(R)
= m′

which contradicts the assumption that P is the object
in V (PI , PE) that achieves the largest displacement of
the center of mass.

Consider case (ii) and let R be a closed connected
subset with A(R) > 0 of P−[m′] − P−I [m′]. Observe
that P −R ∈ V (PM ). Note that R ⊂ (−∞,m′)×R and
thus Xc(R) < m′. We get

Xc(P −R) =
Xc(P )A(P )−Xc(R)A(R)

A(P )−A(R)

>
m′A(P )−m′A(R)

A(P )−A(R)
= m

which again contradicts the assumption that P is the ob-
ject in V (PI , PE) that achieves the largest displacement
of the center of mass. As a result we find that P ∗[m]
with Xc(P

∗[m]) = m is the unique object in V (PI , PE)
that achieves the largest displacement of the center of
mass. �

The theorem shows that the set COM (PI , PE) does
not extend beyond (i.e., to the right of) the line x = m
where m is such that Xc(P

∗[m]) = m. The bound is
tight because P ∗[m] ∈ V (PI , PE). In fact, the theorem
shows that P ∗[m] is the only instance in V (PI , PE) that
has its center of mass on that line. Since the result
holds in any direction, this implies that COM (PI , PE)
is convex.

Figure 3: Outer approximations of COM (PI , PE) with
(a) 4, (b) 8, (c) 16, and (d) 64 vertices.

3.2 A k-vertex approximation for COM (PI , PE)

The results in the previous subsection suggest an easy
approach to determine an outer approximation of the set
COM (PI , PE) of possible centers of mass of instances in
V (PI , PE). If we select k different directions that pos-
itively span the plane and apply Theorem 2 in each of
these directions then we obtain a bounded polygon with
k edges enclosing COM (PI , PE). To find the largest
displacement in the positive x-direction, we sweep a
vertical line from x = 0 to x = Xr while maintain-
ing Xc(P

∗[m]) using Equation 2. The mathematical
descriptions of A(Q+[m]) and Xc(Q

+[m]) only change
when the line hits a vertex of PI or PE , as the bound-
ary of these two shapes determine the boundary of Q.
The corresponding update of these mathematical de-
scriptions at such a vertex can be accomplished in con-
stant time. Moreover, the check to decide whether the
equation Xc(P

∗[m]) = m has a solution between the
current vertex and the next vertex hit by the line also
takes constant time as it requires (for polygonal PI and
PE) computing the roots of a polynomial function of
degree four. Since PI and PE have n vertices we obtain
the following theorem.

Theorem 3 A polygonal k-vertex outer approximation
of COM (PI , PE) can be computed in O(kn) time.

Lemma 1 suggests that we can use binary search to iden-
tify the m satisfying Xc(P

∗[m]) = m. Unfortunately it
seems impossible to evaluate A(Q+[m]) and Xc(Q

+[m])
for an arbitrary m in o(n) time, which would be crucial
to improve the time bound reported in Theorem 3.

Figure 3 shows 4-, 8-, 16-, and 64-vertex outer ap-
proximations of COM (PI , PE) for a given PI and PE .
Recall that every edge of the polygonal approximation
contains one point of the convex set COM (PI , PE), so
COM (PI , PE) strongly resembles its approximation.
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4 Bounding the size of COM (PI , PE)

The admitted shape variation for a manufactured part
is usually small compared to the dimensions of the part
itself. As a result, the enclosed shape PI and enclosing
shape PE do not deviate much from the model shape
PM , and therefore also not from each other. To capture
this similarity we will assume that PI ⊆ PE ⊆ PI ⊕
Dε, where Dε is the disk of radius ε centered at the
origin and ⊕ denotes the Minkowski sum. Note that
this means that every point in PE is within a distance
of at most ε from some point in PI . In Subsection 4.1 we
will see that this distance constraint alone is not enough
to obtain a bound on the diameter of COM (PI , PE) that
is independent of the size of PI and PE . In Subsection
4.2 we show that the additional assumption that PI is
fat leads to a bound on the diameter of COM (PI , PE)
that depends on ε and the fatness.

4.1 A thin part

When PI is a sufficiently long and narrow box the set
V (PI , PE) contains shapes whose centers of mass are
a distance proportional to the diameter of PI apart.
Let L � ε and pick δ such that 0 < δ < ε2/(2L − ε).
We define PI = [−L/2, L/2] × [−δ/2, δ/2] and PE =
[−(L+ ε)/2, (L+ ε)/2]× [−(δ+ ε)/2, (δ+ ε)/2], and note
that PE ⊆ PI⊕Dε. Now consider the object P ∗[L/2] =
P−I [L/2] ∪ P+

E [L/2] = PI ∪ P+
E [L/2]. We observe that

A(PI) = δL, Xc(PI) = 0, A(P+
E [L/2]) = ε(ε+ δ)/2, and

Xc(P
+
E [L/2]) = L/2 + ε/4 > L/2. The upper bound

on δ implies that A(P+
E [L/2]) > A(PI). From Equation

1 it follows that Xc(P
∗[L/2]) > L/4 showing that the

diameter of COM (PI , PE) is not proportional to ε in
this case.

4.2 Fat parts

In this subsection we add the assumption that PI is fat
to deduce a bound on the diameter of COM (PI , PE)
that depends on ε and the fatness. There are many
different definitions of fatness and we will use the one by
De Berg et al. [23], which is based on a similar definition
presented in the thesis of van der Stappen [22].

Definition 1 Let P ⊆ R2 be an object and let β be a
constant with 0 < β ≤ 1. Define U(P ) as the set of
all disks centered inside P whose boundary intersects
P . We say that the object P is β-fat if for all disks
D ∈ U(P ) we have A(P ∩D) ≥ β · A(D). The fatness
of P is defined as the maximal β for which P is β-fat.

For bounded objects the value of β is at most 1/4; larger
values only occur for unbounded objects [22].

In the remainder of this section we assume that PI
is β-fat (0 < β ≤ 1). The main implication of this

assumption is that it provides us with a lower bound on
the area of PI in terms of its diameter.

The following lemma is not strictly necessary yet it
leads to a better bound in our main theorem. We omit
the proof and immediately apply it in the theorem.

Lemma 4 Let P be a convex polygon with diameter d.
Then no point in P has distance larger than 2d

3 to the
center of mass of P .

Theorem 5 Let PI be a bounded convex β-fat object
(0 < β ≤ 1) and let PE be a bounded object satis-
fying PI ⊆ PE ⊆ PI ⊕ Dε. Then the diameter of
COM (PI , PE) is bounded by 5

2β
−1ε.

Proof. We use d to denote the diameter of PI and
once again assume without loss of generality that the
center of mass of PI coincides with the origin. Theo-
rem 2 shows that it suffices to consider objects P ∗[m]
(0 ≤ m ≤ Xr) to bound the size of COM (PI , PE).
Lemma 4 says that PI lies completely inside the disk
D(2d/3). As a consequence, the object P ∗[m] must
lie entirely inside D(2d/3 + ε), which implies that
Xc(P

∗[m]), Xc(Q
+[m]) ≤ 2d/3 + ε. We distinguish two

cases based on the ratio of ε and d.
If ε ≥ d/6 then Xc(P

∗[m]) ≤ 2d/3 + ε ≤ 5ε. Since
P ∗[m] is bounded we know that β ≤ 1/4 and thus
Xc(P

∗[m]) ≤ 5ε ≤ 5β−1ε/4.
If ε ≤ d/6 we use Equation 2 to obtain an up-

per bound Xc(P
∗[m]) by combining the upper bound

Xc(Q
+[m]) ≤ 2d/3+ε with a lower bound on A(PI) and

upper and lower bounds on A(Q+[m]). The lower bound
on A(PI) follows from the fatness of PI . As d is the di-
ameter of PI there must be two points p1, p2 ∈ PI that
are d apart. The boundary of the disk Dd(p1) contains
p2 and thus belongs to the set U(PI). The β-fatness of
PI implies that A(PI) ≥ β ·A(Dd(p1)) = βπd2.

It remains to bound A(Q+[m]). Recall that Q = PE−
int(PI). Due to our assumption PE ⊆ PI⊕Dε we obtain
that Q ⊆ Q′ = (PI⊕Dε)−int(PI), from which it follows
that A(Q+[m]) ≤ A(Q) ≤ A(Q′). We observe that the
convexity of PI implies that A(Q′) = lε + πε2, where
l denotes the perimeter of PI . As PI is contained in
D(2d/3) the perimeter l of PI is bounded by 4πd/3.
Combining these observations with a trivial lower on
A(Q+[m]) we get 0 ≤ A(Q+[m]) ≤ 4πεd/3 + πε2.

Plugging all the inequalities into Equation 2 and using
ε/d ≤ 1/6 yields

Xc(P
∗[m]) =

Xc(Q
+[m])A(Q+[m])

A(PI) +A(Q+[m])

≤
( 2
3d+ ε)( 4

3πεd+ πε2)

βπd2

= β−1ε( 8
9 + 2( εd ) + ( εd )2)

≤ 5
4β
−1ε.

which shows COM (PI , PE) ⊆ D( 5
4β
−1ε). �
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Theorem 5 confirms the intuition that the variation of
the center of mass grows if the admitted shape variation
increases or the fatness decreases.

5 Conclusion

We have considered a very general model for admitted
shape variations of a model part, based on enclosed con-
vex shape PI and an enclosing convex shape PE . We
have identified the valid instance that maximizes the
displacement of the center of mass in a given direction,
and used this result to find a k-vertex polygonal outer
approximation of the set of all possible center-of-mass
loci in O(kn) time, where n is the number of vertices
of PI and PE . If PI is β-fat and every point of PE is
within a distance ε of PI then the diameter of the set of
all center-of-mass loci can be shown to be O(β−1ε).

We expect that our results will generalize to three-
dimensional objects. It is interesting to see under which
circumstances the results can be extended to non-convex
shapes PI (and PE), and to parts with non-uniform
mass distribution.
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Halperin, K.-F. Böhringer, Y. Zhuang, Shape tol-
erance in feeding and fixturing. Robotics: the algo-
rithmic perspective, pp. 297–311. A.K. Peters, 1998.

[10] S.M. Lavalle, Planning Algorithms, chapter 12:
Planning Under Sensing Uncertainty. Cambridge
University press, 2006.

[11] M. Dogar, S.S. Srinivasa, A Framework for Push-
grasping in Clutter. Robotics: Science and Systems
2, 2011.

[12] A.A.G. Requicha, Toward a theory of geometric
tolerancing. International Journal of Robotics Re-
search, 2, 1983.

[13] H. Voelker. A current perspective on tolerancing
and metrology. Manufacturing Review, 6(4), 1993.

[14] L. Guibas, D. Salesin, J. Stolfi, Epsilon geometry:
Building robust algorithms for imprecise compu-
tations. Proc. of the 5th Annual ACM Symp. on
Computational Geometry, pp. 208–217, 1989.

[15] U. Roy, C. Liu, T. Woo. Review of dimensioning
and tolerancing. Computer-Aided Design, 23(7),
1991.

[16] Y. Ostrovsky-Berman, L. Joskowicz, Tolerance en-
velopes of planar mechanical parts with parametric
tolerances. Computer-Aided Design, pp. 531–534,
2005.
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