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Abstract

We revisit the problem of finding curvature-constrained
paths in a polygonal domain with holes. We give a
new proof that finding a shortest curvature-constrained
path is NP-hard; our proof is substantially simpler, and
makes fewer assumptions about the polygonal domain,
than the earlier proof of [Reif and Wang, 1998]. We also
prove that it is NP-hard to decide existence of a simple
(i.e., non-self-intersecting) path.

1 Introduction

Understanding the feasibility and optimality of the
motion of car-like robots in the presence of obsta-
cles entails, among many things, an understanding of
curvature-constrained paths between specified configu-
rations in the plane, that avoid a given set of obsta-
cles. The study of curvature-constrained path planning
has a rich history that long predates and goes well be-
yond robot motion planning, for example the work of
Markov [29] on the construction of railway segments.

1.1 Definitions

Let P be a polygonal domain with holes (forbidden
regions, or obstacles) in R2. Let π : [0, L] 7→ P be
a continuous differentiable path, parameterized by arc
length, and denote by π′(t) the derivative of π at t.
Path π is said to be curvature constrained if, for some
constant c, the average curvature of π on every inter-
val [t1, t2] ⊆ [0, L], namely ||π′(t1) − π′(t2)||/|t1 − t2|,
is bounded above by c. Intuitively, every point on such
a path can be sandwiched between two tangent circles
of radius 1/c. We assume that π(0) = s, π(L) = t are
two given points in P , and π′(0) = S, π′(L) = T are two
given vectors; the pair (s, S) (resp., (t, T )) is called the
initial (resp., final) configuration of π. The path π is
simple if it has no self-intersections: π(t1) 6= π(t2) for
t1 6= t2.
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Under suitable scaling we can assume that c = 1.
Hereafter we will assume that all paths avoid the interior
of obstacles, that is they remain within P ; all such paths
with average curvature bounded by 1 are referred to as
admissible paths.

1.2 Background

A fundamental result in curvature-constrained motion
planning, due to Dubins [15], states that in the absence
of obstacles shortest admissible paths are one of two
types: a (unit) circular arc followed by a line segment
followed by another arc (CLC), or a sequence of three
circular arcs (CCC)1. Variations and generalizations of
the problem were studied in [8,9,11,13,14,18,28,30,31,
33,34,36,37].

Dubins’ characterization plays a fundamental role in
establishing the existence as well as the optimality of
curvature-constrained paths. Jacobs and Canny [22]
showed that even in the presence of obstacles it suf-
fices to restrict attention to paths of Dubins form be-
tween obstacle contacts and that if such a path exists
then the shortest such path is well-defined. Fortune and
Wilfong [19] give a super-exponential time algorithm for
determining the existence of, but not actually construct-
ing, such a path. Characterizing the intrinsic complex-
ity of the existence problem for curvature-constrained
paths is hampered by the fact that there are no known
bounds on the minimum length or intricacy (number of
elementary segments), expressed as a function of the de-
scription of the polygonal domain, of obstacle-avoiding
paths in Dubins form. In a variety of restricted domains
polynomial-time algorithms exist that construct short-
est admissible paths [1, 2, 6].

The NP-hardness of computing a shortest admissible
path amid polygonal obstacles was established by Reif
and Wang [32]. This motivated a variety of approaches
to approximating shortest admissible paths including [4,
5, 22,35,38–40]. It is known, for example, that shortest
robust paths, shortest paths of bounded intricacy and
minimum intricacy paths of bounded length all have
polynomial-time approximations. The books [25,26] are
general references; for some very recent work on Dubins
paths see [7, 12,16,17,20,21].

1In general, any of the C or L segments could have zero length.
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1.3 Results

In Section 2 we present a new proof that finding a short-
est admissible path from (s, S) to (t, T ) is NP-hard. Our
proof is considerably simpler than the one given in [32].
In addition, our construction is more “robust” in that
it applies even in non-degenerate polygonal domains,
specifically domains that have no “pinhole” gaps be-
tween obstacles.

Our hardness proof in Section 2 depends critically on
the fact that admissible paths can self-intersect. This
leaves open the possibility that the problem of finding
a shortest simple admissible path could be solved in
polynomial time. (Note that the simplicity constraint is
relevant in many applications; e.g. laying out a conveyor
belt or designing a pipeline.) In Section 3 we show that
this is not the case: even deciding the existence of an
admissible path is NP-hard, if we restrict attention to
simple paths (which, of course, implies that finding any
approximation to the shortest such path is NP-hard).

2 NP-hardness of determining shortest curvature-
constrained paths

Our NP-hardness proof involves a reduction from
4CNF-satisfiability. Specifically, suppose that Φ is a
formula in 4CNF involving m clauses and k variables
X0, . . . , Xk−1. We show how to construct a polygonal
environment E, whose description is bounded in size
by some polynomial in k, together with configurations
(s, S) and (t, T ) and a distance D, such that there exists
an admissible path from (s, S) to (t, T ) whose length is
at most D if and only if Φ is satisfiable.

Our proof, like that of Reif and Wang, uses the idea
of path-encoding, introduced by Canny and Reif [10]
in their proof that determining the shortest obstacle-
avoiding path, with no constraint on curvature, join-
ing specified points in R3, is NP-hard. The fact that
our problem is set in R2 makes it difficult to adapt the
Canny-Reif approach directly (further evidenced by the
fact that shortest obstacle-avoiding paths in R2 can be
constructed in polynomial time, at least in the familiar
algebraic model of computation).

In general, the path encoding approach involves first
constructing a basic environment that admits exactly 2k

distinct shortest paths (referred to as canonical paths)
between the two specified placements. These canonical
paths all have essentially the same length DΦ that can
be distinguished, using a number of bits that is poly-
nomial in k, from all non-canonical paths. Canonical
paths are associated with the distinct truth assignments
to the variables X0, . . . , Xk−1. Next, the environment is
augmented with additional obstacles that serve to block
(filter) every canonical path whose associated truth as-
signment does not satisfy the formula Φ.

In Reif and Wang’s proof canonical paths pass

through a sequence of checkpoints, at distinguishable
angles and unequal–but essentially indistinguishable–
lengths. The complexity of their construction arises
from the rather sensitive analysis needed to show that
as paths continue and errors propagate these properties
are preserved. This exploits, among other things, the
existence of pinhole gaps between obstacles, at which
the checkpoints are located.

2.1 Overview of the proof

We avoid the complexity of the Reif-Wang construction
by mimicking the proof, due to Asano et al. [3], of the
NP-hardness of minimum-length motion planning for a
rod (measuring the trace length of any fixed point), the
first construction to employ the path-encoding approach
in a planar setting. In this variant, canonical paths all
have exactly the same length Dφ. In fact, canonical
paths all have exactly the same length as they pass a se-
quence of checkpoints, vertical lines in our construction.
Between these checkpoints the environment consists of
elementary modules, each of which performs some ba-
sic manipulation of the canonical paths that enter the
module. In fact, as we will argue, the properties of
our modular construction are decomposable in the sense
that they assume paths respect curvature constraints
onlywithin modules; in the transitions between modules
only continuity is assumed. As a consequence, local
analysis alone supports a global conclusion: if Φ is not
satisfiable then any admissible path from (s, S) to (t, T )
has length that exceeds DΦ by an amount that can be
expressed in a number of bits that is polynomial in k.
Hence, even though DΦ itself may not be exactly ex-
pressible in a polynomial (in k) number of bits, there
exists a distance D ≥ DΦ that can be so expressed, such
that there exists a (relaxed) admissible path of length
at most D if and only of Φ is satisfiable.
Figure 1 illustrates the full reduction in schematic form.
As it suggests, the construction is based on a sequence
of three top-level modules. The first module, what we
call a Compound Beam Splitter, splits a single in-coming
canonical path into 2k parallel canonical paths, indexed
from 0 on the topmost path to 2k−1 on the bottommost
path, with fixed separation σ. We interpret the b-th bit
of the binary representation of the index of a canonical
path as a truth assignment to the variable Xb. Each
of these paths has exactly the same length, measured
from their common start point S to the vertical line L1.
The second module is a Formula Filter module that ob-
structs exactly those canonical paths whose associated
truth assignment does not satisfy the formula Φ. The
third module, a Compound Beam Combiner, is just the
mirror image of the first, except that the 2k in-coming
paths have a smaller separation σ′, the result of having
passed through the Formula Filter.
It turns out that all three of these modules can be con-
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Figure 1: Full Reduction schematic.

structed by appending copies of one elementary (pa-
rameterized) module that we call a Wide Beam Splitter
WBS(∆) or its mirror image a Wide Beam Combiner
WBS−1(∆) (Fig. 2). The details are analogous to those
in the proof of Asano et al. [3].
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B

Figure 2: Wide Beam Splitter (WBS) and
Combiner(WBS−1) schematics.

2.2 Details of the wide beam-splitter module

The detailed construction of our Wide Beam Splitter
is shown in Figure 3. It is described in terms of two
parameters w, the width of the module, and ∆w, the
separation of the two canonical paths that emerge from
the module. Since w < 4, it is straightforward to see
that as w decreases ∆w decreases. More precisely, since
the horizontal (resp., vertical) separation of the centers
of the left and right turning circle pairs is w − 2 (resp.,√

4w − w2), we have ∆w = 4− 2
√

4w − w2.
As illustrated there are two canonical traversals of the

Wide Beam Splitter. Both share a horizontal segment
starting at the left terminal. Thereafter one (shown in
solid red) traces a C+C−L path 2, emerging at the lower
terminal while the other (shown in dashed green) traces
a C−C+L path, emerging at the upper terminal. It is
not hard to confirm that all admissible traversals must
make a turn of length at least π on a circle tangent

2We denote by C+, resp., C− a clockwise (resp., counter-
clockwise) oriented unit circular arc.

∆w

w
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Figure 3: Wide Beam Splitter detail.

to the right boundary followed, not necessarily immedi-
ately, by a turn, of similar length but opposite direction,
on a circle tangent to the left boundary.3 Since any
(even locally) shortest admissible path must have Du-
bins form between obstacle contacts, it follows directly
that every shortest admissible traversal must have form
LCLCL, where the C-segments are doubly supported
by obstacles and the middle L-segment may have zero
length.

Now, if we focus on admissible paths of form LCLCL
joining a point a on vertical line L1 to a point b on a
vertical line L2 (see Figure 4(i)), it is easily confirmed
that in any shortest such path the middle L-segment
must have length zero, provided that w, the separation
of L1 and L2, is less than 2 and the vertical separation
of a and b is at least ∆w/2 (otherwise, fixing one of the
turning circles while moving the other so that the mid-
dle L segment degenerates to zero, shortens the path).
Among all such LCCL-transitions joining points a and
b we can show that the shortest transition has the sym-
metric form illustrated in Figure 4(ii), independent of
the directions at a and b. Furthermore, the shortest
such transition, over all pairs of points a and b with
vertical separation at least ∆w/2 (again independent of
the directions at a and b), is the one shown in Figure
4(iii) in which a and b have vertical separation exactly
∆w/2.

These minimality results are proved by reference to
Figure 5. The LC-transition from p to q has length
λ = d1 + d2 + (π/2 − θ) = (w − 1 + sin θ)/ cos θ +
(π/2 − θ) and its y-projection has length λy = y1 +
y2 = ((w − 1) sin θ + 1)/ cos θ. It is straightforward to
confirm that (i) the derivative, with respect to θ, of
λ is ((w − 1) sin θ)/cos2θ and (ii) the derivative, with
respect to θ, of λy is ((w − 1) + sin θ)/cos2θ. It follows
that not only is λ minimized, over configurations with
θ ≥ 0, when θ = 0, but so also is the derivative of λ

3A skeptical reader may in fact see alternative traversals of our
Wide Beam Splitter, as illustrated. We note that such alterna-
tives can be eliminated, at a sacrifice in clarity of the figure, by
narrowing all of the internal corridors sufficiently.
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Figure 4: (i) Generic LCLCL transition, (ii) minimum
length transition between two specified points, and (iii)
minimum length transition between two parallel lines.
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Figure 5: Generic LC transition joining points p and q.

2.3 Other remarks on the proof

Despite the comparative simplicity of our NP-hardness
construction, the reader may object that we have traded
one type of degeneracy in the construction (namely pin-
hole gaps between obstacles) for another (vertical obsta-
cles spaced at distance exactly two, giving no horizontal
freedom for turns in their midst). In fact, this property
of our construction is imposed solely to simplify the ar-
gument; a very similar splitter construction is possible
even if such degeneracies are forbidden.

Although this observation is not a distinguishing fea-
ture of our construction, it is worth noting that the
hardness result remains intact even if we restrict our
attention to shortest admissible paths of bounded intri-
cacy.

2.4 Extensions

One of the advantages of introducing a simpler proof
of the NP-hardness of finding shortest curvature-
constrained paths in R2 is the potential this raises for
establishing the hardness of other related path-planning
problems. As an example, we point out that our re-
sults for standard curvature-constrained paths are easily

modified to apply to polygonal (piecewise linear) paths
that satisfy a novel parameterized notion of discrete
bounded curvature [23] that coincides with the standard
notion in the limit. A wide beam splitter designed for
discrete bounded curvature paths is illustrated in Figure
6.

Figure 6: Beam Splitter gadget for discrete bounded-
curvature paths.

3 Staying simple is hard

We prove that deciding existence of a simple admissible
path in a polygonal domain is NP-hard by a reduction
from planar 3SAT. Recall that the graph of a 3SAT
instance has a vertex for each variable and a vertex for
each clause. The graph edges connect clause-variable
pairs whenever the variable belongs to the clause. In
addition, the graph contains the cycle through variables
(Fig. 7). 3SAT is hard even when restricted to instances
with planar graphs [27]. We identify a 3SAT instance
with its graph.

We transform the graph I of a planar 3SAT instance
to an instance of the path finding problem, follow-
ing the steps analogous to those used to show hard-
ness of finding a simple thick wire in a polygonal do-

Cj

Cm

C1

C2

C3

vn

vi

v1

v2
v3

Figure 7: (Graph of) an instance I of 3SAT. Variables
are shaded circles, clauses are hollow circles.
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Figure 8: I augmented with parent-child edges, sibling
edges, and with variable-clause edges duplicated.
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Figure 9: The closed spanning walk W; the numbers
indicate the order in which edges are traversed.

main [24]: First, augment I with “parent-child” and
”sibling” edges between clauses, and duplicate variable-
clause edges (Fig. 8). Define a DFS-walk W in the aug-
mented I: the walk goes through orphan clauses, recurs-
ing to children clauses, then to variables and to sibling
clauses (Fig. 9). Replace vertices of I by variable and
clause gadgets (Figs. 10, 11). Finally, turn edges of I
into corridors connecting clause and variable gadgets.

The crucial ingredients of the proof are the following
properties: (1) an admissible path must follow the walk
W (the only flexibility is what clause-variable channel
to use in each clause); (2) a variable gadget can be tra-
versed in one of the two ways (setting the truth assign-
ment); (3) for any clause gadget, one of the channels
leading to a variable must be used by the path; (4) a
variable-clause channel may be used only if the variable
satisfies the clause (Fig. 12). Thus, there exists a simple
admissible path in the instance iff in each clause there
is a channel that can be used by a path to the variable
satisfying the clause.

Figure 10: A variable gadget.
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to
parent/
sibling
clause
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variable xi

to/from
children clauses
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variable xj
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Figure 11: When a clause gadget is traversed, from left
to right, one of the channels leading to variables must
be used. Otherwise, 3 subpaths go through the top of
the gadget leading to a self-intersection.
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children 
clauses

to/from
children 
clauses
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clause

to
parent/
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Figure 12: If a variable does not satisfy a clause the
channel between them cannot be used by simple path.
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