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Staying Close to a Curve*

Anil Maheshwari Jorg-Riidiger Sack

Abstract

Given a point set S and a polygonal curve P in R, we
study the problem of finding a polygonal curve through
S, which has minimum Fréchet distance to P. We
present an efficient algorithm to solve the decision ver-
sion of this problem in O(nk?) time, where n and k
represent the sizes of P and S, respectively. A curve
minimizing the Fréchet distance can be computed in
O(nk?log(nk)) time. As a by-product, we improve the
map matching algorithm of Alt et al. by an O(logk)
factor for the case when the map is a complete graph.

1 Introduction

Matching two geometric patterns is a fundamental prob-
lem in pattern recognition, protein structure predic-
tion, computer vision, geographic information systems,
etc. Usually these patterns consist of line segments and
polygonal curves.

One of the most popular ways to measure the simi-
larity of two curves is to use the Fréchet distance. An
intuitive way to illustrate the Fréchet distance is as fol-
lows. Imagine a person walking his/her dog, where the
person and the dog, each travels a pre-specified curve,
from beginning to the end, without ever letting go of the
leash or backtracking. The Fréchet distance between
the two curves is the minimum length of a leash which
is necessary. The leash length determines how similar
the two curves are to each other: a short leash means
the curves are similar, and a long leash means that the
curves are different from each other.

Two problem instances naturally arise: decision and
optimization. In the decision problem, one wants to de-
cide whether two polygonal curves P and @) are within
Fréchet distance to each other. In the optimization prob-
lem, one wishes to determine the minimum such . Alt
and Godau [2] presented an O(n?)-time algorithm for
the decision problem, where n denotes the total number
of segments in the curves. They also solved the corre-
sponding optimization problem in O(n?logn) time.

In this paper, we address the following variant of the
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Figure 1: A problem instance.

Fréchet distance problem. Given a point set S and a
polygonal curve P in R? (d > 2), find a polygonal curve
Q, with its vertices chosen from S, such that the Fréchet
distance between P and () is minimum. Note that each
point of S can be used more than once in ). In the
decision version of the problem, we want to decide if
there is polygonal curve @ through S whose Fréchet
distance to P is at most ¢, for a given € > 0. An instance
of the decision problem is illustrated in Figure 1.

One can use the map matching algorithm of Alt
et al. [1] to solve the decision version of this problem
by constructing a complete graph G on top of S, and
then running Alt et al’s algorithm on G and P. If n
and k represent the sizes of P and S, respectively, this
leads to a running time of O(nk?logk) for solving the
decision problem.

In this paper, we present a simple algorithm to solve
the decision version of the above problem in O(nk?)
time. This improves upon the algorithm of Alt et al. [1]
by a O(log k) factor for the case when a curve is matched
in a complete graph. Our approach is different from and
simpler than the approach taken by Alt et al. which is
a mixture of line sweep, dynamic programming, and
Dijkstra’s algorithm.

2 Preliminaries

Let € > 0 be a real number, and d > 2 be a fixed
integer. For any point p € R?, we define B(p,c) = {q €
R? : ||pg|| < €} to be a ball of radius e centered at p,
where || - || denotes the Euclidean distance. Given a line
segment L C RY, we define C(L,e) = U,eB(p,€) to be
a cylinder of radius € around L (see Figure 2).

A curve in R? can be represented as a continuous
function P : [0,1] — R¢. Given two points u,v € P, we
write u < v, if v is located before v on P. The relation <
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Figure 2: A cylinder of radius € around segment L.

is defined analogously. For a subcurve R C P, we denote
by left(R) and right(R) the first and the last point of R
along P, respectively.

Given two curves o, : [0,1] — R? the Fréchet
distance between « and S is defined as dp(a, ) =
inf, » max;cpoq) (o (t)), B(7(t))]], where o, 7 : [0,1] —
[0, 1] range over all continuous non-decreasing surjective
functions. The following two observations are immedi-
ate.

Observation 1 Given four points a,b,c,d € RY, if
lab|| < & and ||cd|| < &, then dp(at,bd) < e.

Observation 2 Let a1, as, f1, and By be four curves
such that d0p(a1,P1) < € and dp(as, B2) < e. If the
ending point of ay (resp., B1), is the same as the starting
point of ay (resp., ), then dp(a1 + az, By + o) < e,
where + denotes the concatenation of two curves.

3 The Decision Algorithm

Let P be a polygonal curve composed of n line segments
Py,...,P,, and let S be a set of k points in R?. In this
section, we provide an algorithm to decide whether there
exists a polygonal curve ) whose vertices are chosen
from S, such that ér(P, Q) < ¢, for a given € > 0.

We denote by s and t the starting and the ending
point of P, respectively. For each segment P; of P, we
denote by C; the cylinder C(P;,¢), and by S; the set
S N C;. Furthermore, for each point u € C;, we denote
by P;lu] the line segment P; N B(u,€).

We call a polygonal curve @ feasible if all its vertices
are from S, and 0r(Q, P’) < € for a subcurve P C P
starting at s. If Q ends at a point v € S and P’ ends at
a point p € P, we call the pair (v,p) a feasible pair. A
point v € S; is called reachable (at cylinder C;) if there
is a feasible curve ending at v in C;.

Consider a feasible curve @ starting at a point u € Sy
and ending at a point v € ;. Since no backtracking
is allowed in the definition of Fréchet distance, ) tra-
verses all cylinders C; to C; in order, until it reaches v.
Moreover, by our definition of reachability, each vertex
of @ is reachable at some cylinder C;, 1 < j < i.

Our approach for solving the decision problem is to
process the cylinders one by one from C; to C,, and
identify at each cylinder C; all points of S which are

reachable at C;. The decision problem will be then re-
duced (by Observation 2) to checking whether there is
a reachable point in the ball B(t,¢).

To propagate the reachability information through
the cylinders, we need a primitive operation described
below. Let u € S; be a point reachable at cylinder C;,
and let ) be a feasible curve ending at u. For each
point v € S, we denote by 7;(u,v) the index of the fur-
thest cylinder we can reach by the curve @ + w0, In
other words, r;(u, v) is the largest index ¢ > ¢ such that
v € Sy is reachable via u € S;. If Q + b is not feasible,
we set 7;(u,v) = 0. The following lemma is a direct
corollary of a similar one proved in [1] (Lemma 3) for
computing the so-called right pointers.

Lemma 1 ([1]) Given two points u,v € S, we can
compute r;(u,v) for all 1 < i < n in O(n) total time.

We use the following lemma in our algorithm.

Lemma 2 Letr;(u,v) ={. Foralli < j </, ifves;,
then v is reachable at C;.

Proof. Let @ be a feasible curve starting at a point
w € SN B(s,e) and ending at u, and let Q' = Q + ub.
Since v is reachable at Oy via @', there is a subcurve
P’ of P starting at s and ending at a point p € Py[v]
(see Figure 3). Consider two point objects Op and Og
traversing P’ and ', respectively, from beginning to
the end, while keeping ¢ distance to each other. Since
v is reachable via u € S;, Op is at a point a € P; when
Oq is at u. Fix a cylinder Cj, i < j < ¢, such that
v € Cj. When Op reaches the point b = left(P;[v]),
Oq is at a point & € wv such that ||bz| < e. The
subcurve of Q' from w to x has Fréchet distance at most
€ to the subcurve of P from s to b, and the segment
Tv has Fréchet distance at most € to the point b by
Observation 1. Therefore, by Observation 2, the whole
curve @’ has Fréchet distance at most € to the subcurve
P’ from s to b, meaning that v is reachable at C;. [

The above proof, not only shows that v is reachable
at C;, but it also shows that the pair (v,left(P;[v])) is
feasible. The following lemma is therefore immediate.

Lemma 3 If ri(u,v) = ¢ and v € Sj, i < j < {, then
(v, left(P;[v])) is a feasible pair.

Figure 3: Proof of Lemma 2
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The Algorithm Our algorithm for solving the decision
problem is provided in Algorithm 1. It maintains, for
each cylinder Cj, a set R; of all points in S; which are
reachable at C;. To handle the base case more easily, we
assume, w.l.o.g., that the curve P starts with a segment
P, consisting of a single point {s}. Every point of S in-
side the cylinder Cy = B(s, ) is reachable by definition.
Therefore, we initially set Ro = S N B(s,e) (in line 4).

For each point v € S, the algorithm maintains an
index £,,, whose value at the beginning of each iteration
i is the following: £, = maxo<;j<iuex, 75(u,v). In other
words, ¢, points to the largest index ¢ for which v is
reachable at Cy via a reachable point u in some earlier
cylinder Cj, j < 4. Initially, we set £, = 1 for all points
in Ry, because all points in R are also reachable in C1,
as Cy C (4. For all other points, £, is set to 0 in the
initialization step. The following invariant holds during
the execution of the algorithm.

Lemma 4 After the i-th iteration of Algorithm 1, the
set R; consists of all points in S; which are reachable at
cylinder Cj.

Proof. We prove the lemma by induction on ¢. The
base case ¢ = 0 trivially holds. Suppose by induction
that, for each 0 < j < 4, the set R; is computed cor-
rectly. In the i-th iteration, we first add to R; (in line 7)
all points in S; which are reachable through a point in
a set R, for 1 < j < 7. We call these points entry
points of cylinder C;. We then add to R; in lines 8-11
all points in S; which are reachable through the entry
points of C; (see Figure 4 for an example).

We first show that all points added to R; are reachable
at C;. For each point v € S; added to R; in line 7, we
have £, > i. It means that there is a point u € R;, for
some j < i, such that r;(u,v) > i. Therefore, Lemma 2

Algorithm 1 DECISION(S, P, ¢)

1: Initialize:

2 compute r;(u,v) for all u,v € Sand 1 <i<n
3 set £, =0 forallvesS
4 let Ry =S NB(s,¢)

5: set £, =1 for all v € Ry
6: for i =1 ton do

7 let R, ={ves;:t,>i}
8 let ¢ = min,ex, left(P;[v])
9 for all v € S; \ R; do

10: if ¢ < right(P;[v]) then
11: add v to R;

12: for all (u,v) € R; x S do
13: £, + max{l,,r;i(u,v)}

14: return YES if R, N B(t,e) # 0

Figure 4: Point v is an entry point of C;.

implies that v is reachable at C;. Now, consider a point
v added to R; in line 11. According to the condition
in line 10, there is an entry point w in C; such that
left(P;[w]) < right(P;[v]). By Observation 1, the seg-
ment wd is within e Fréchet distance to the line segment
from left(P;[w]) to right(P;[v]). Moreover, by Lemma 3,
(w, left(P;[w]) is a feasible pair. Therefore, by Observa-
tion 2, v is reachable.

Next, we show that any reachable point at C; is added
to R; by the algorithm. Suppose that there is a point
v € S; which is reachable at C;, but is not added to R;.
Let @ be a feasible curve ending at v, and w be the first
point on @ which is reachable at C;. By our definition,
w is an entry point of C;. If w = v, then v must be added
to R; in line 7, which is a contradiction. If w is before
v on @, then we have left(P;[w]) = right(P;[v]). Now,
by our selection of ¢ in line 8, we have ¢ < left(P;[w]) =
right(P;[v]), and hence, v is added to R; in line 11, which
is again a contradiction. O

Theorem 5 Given a polygonal curve P of n segments
and a set S of k points in R, we can decide in O(nk?)
time whether there is a polygonal curve @ through S
such that 0p(P,Q) < €, for a given € > 0. A polygo-
nal curve Q through S of size O(min {n, k}) minimizing
Sr(P,Q) can be computed in O(nk?log(nk)) time.

Proof. The correctness of the decision algorithm (Al-
gorithm 1) directly follows from Lemma 4. Line 2 of
the algorithm takes O(nk?) time by Lemma 1. The
other three lines in the initialization step (lines 3-5)
take only O(k) time. In the main loop, lines 7-11 take
O(k) time, and lines 12-13 require O(k?) time. There-
fore, the whole loop takes O(nk?) time in total.

Once the algorithm finds a reachable point v € S, N
B(t,e), we can construct a feasible curve @) ending at
v by keeping, for each reachable point u at a cylinder
C;, a back pointer to a reachable point w at C;, j < 1,
from which u is reachable. The feasible curve ) can be
then constructed by following the back pointers from
v to a point in S; N B(s,e). Since at most two points
from each cylinder are selected in this process, the curve
Q@ has O(min {n,k}) segments. For the optimization
problem, we use parametric search as in [1, 2], to find
a curve minimizing ér (P, Q) by an extra log(nk)-factor
in O(nk?log(nk)) time. O
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4 Conclusions

In this paper, we presented a simple efficient algorithm
for finding a polygonal curve through a given point set
S in R? such that its Fréchet distance to a given polyg-
onal curve P is minimized. Several interesting problems
remain open. For a fixed €, one can easily modify the
algorithm provided in this paper to find a curve with a
minimum number of segments, having Fréchet distance
at most € to P. It can be done by keeping reachable
points in a priority queue, and propagating the reacha-
bility information in a Dijkstra-like manner. However,
we cannot see any easy adaptation of our algorithm to
find a curve passing through a maximum number of
points for a fixed . Another major open problem is
whether an efficient algorithm exists for computing a
curve passing through “all” points of S with a mini-
mum Fréchet distance to P.

The algorithm presented in this paper improves the
map matching algorithm of Alt et al. [1] for the case
of matching a curve in a complete graph. The cur-
rent lower bound available for the problem is Q((n +
k)log(n + k)) due to Buchin et al. [3]. It is therefore
open whether a better algorithm is available, or whether
the algorithm obtained in this paper is optimal.
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