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Abstract

Given a point set S and a polygonal curve P in Rd, we
study the problem of finding a polygonal curve through
S, which has minimum Fréchet distance to P . We
present an efficient algorithm to solve the decision ver-
sion of this problem in O(nk2) time, where n and k
represent the sizes of P and S, respectively. A curve
minimizing the Fréchet distance can be computed in
O(nk2 log(nk)) time. As a by-product, we improve the
map matching algorithm of Alt et al. by an O(log k)
factor for the case when the map is a complete graph.

1 Introduction

Matching two geometric patterns is a fundamental prob-
lem in pattern recognition, protein structure predic-
tion, computer vision, geographic information systems,
etc. Usually these patterns consist of line segments and
polygonal curves.

One of the most popular ways to measure the simi-
larity of two curves is to use the Fréchet distance. An
intuitive way to illustrate the Fréchet distance is as fol-
lows. Imagine a person walking his/her dog, where the
person and the dog, each travels a pre-specified curve,
from beginning to the end, without ever letting go of the
leash or backtracking. The Fréchet distance between
the two curves is the minimum length of a leash which
is necessary. The leash length determines how similar
the two curves are to each other: a short leash means
the curves are similar, and a long leash means that the
curves are different from each other.

Two problem instances naturally arise: decision and
optimization. In the decision problem, one wants to de-
cide whether two polygonal curves P and Q are within ε
Fréchet distance to each other. In the optimization prob-
lem, one wishes to determine the minimum such ε. Alt
and Godau [2] presented an O(n2)-time algorithm for
the decision problem, where n denotes the total number
of segments in the curves. They also solved the corre-
sponding optimization problem in O(n2 log n) time.

In this paper, we address the following variant of the
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Figure 1: A problem instance.

Fréchet distance problem. Given a point set S and a
polygonal curve P in Rd (d > 2), find a polygonal curve
Q, with its vertices chosen from S, such that the Fréchet
distance between P and Q is minimum. Note that each
point of S can be used more than once in Q. In the
decision version of the problem, we want to decide if
there is polygonal curve Q through S whose Fréchet
distance to P is at most ε, for a given ε > 0. An instance
of the decision problem is illustrated in Figure 1.

One can use the map matching algorithm of Alt
et al. [1] to solve the decision version of this problem
by constructing a complete graph G on top of S, and
then running Alt et al.’s algorithm on G and P . If n
and k represent the sizes of P and S, respectively, this
leads to a running time of O(nk2 log k) for solving the
decision problem.

In this paper, we present a simple algorithm to solve
the decision version of the above problem in O(nk2)
time. This improves upon the algorithm of Alt et al. [1]
by a O(log k) factor for the case when a curve is matched
in a complete graph. Our approach is different from and
simpler than the approach taken by Alt et al. which is
a mixture of line sweep, dynamic programming, and
Dijkstra’s algorithm.

2 Preliminaries

Let ε > 0 be a real number, and d > 2 be a fixed
integer. For any point p ∈ Rd, we define B(p, ε) ≡ {q ∈
Rd : ‖pq‖ 6 ε} to be a ball of radius ε centered at p,
where ‖ · ‖ denotes the Euclidean distance. Given a line
segment L ⊂ Rd, we define C(L, ε) ≡ ∪p∈LB(p, ε) to be
a cylinder of radius ε around L (see Figure 2).

A curve in Rd can be represented as a continuous
function P : [0, 1]→ Rd. Given two points u, v ∈ P , we
write u ≺ v, if u is located before v on P . The relation �
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Figure 2: A cylinder of radius ε around segment L.

is defined analogously. For a subcurveR ⊆ P , we denote
by left(R) and right(R) the first and the last point of R
along P , respectively.

Given two curves α, β : [0, 1] → Rd, the Fréchet
distance between α and β is defined as δF (α, β) =
infσ,τ maxt∈[0,1] ‖α(σ(t)), β(τ(t))‖, where σ, τ : [0, 1] →
[0, 1] range over all continuous non-decreasing surjective
functions. The following two observations are immedi-
ate.

Observation 1 Given four points a, b, c, d ∈ Rd, if

‖ab‖ 6 ε and ‖cd‖ 6 ε, then δF (−→ac,
−→
bd) 6 ε.

Observation 2 Let α1, α2, β1, and β2 be four curves
such that δF (α1, β1) 6 ε and δF (α2, β2) 6 ε. If the
ending point of α1 (resp., β1), is the same as the starting
point of α2 (resp., β2), then δF (α1 + α2, β1 + β2) 6 ε,
where + denotes the concatenation of two curves.

3 The Decision Algorithm

Let P be a polygonal curve composed of n line segments
P1, . . . , Pn, and let S be a set of k points in Rd. In this
section, we provide an algorithm to decide whether there
exists a polygonal curve Q whose vertices are chosen
from S, such that δF (P,Q) 6 ε, for a given ε > 0.

We denote by s and t the starting and the ending
point of P , respectively. For each segment Pi of P , we
denote by Ci the cylinder C(Pi, ε), and by Si the set
S ∩ Ci. Furthermore, for each point u ∈ Ci, we denote
by Pi[u] the line segment Pi ∩B(u, ε).

We call a polygonal curve Q feasible if all its vertices
are from S, and δF (Q,P ′) 6 ε for a subcurve P ′ ⊆ P
starting at s. If Q ends at a point v ∈ S and P ′ ends at
a point p ∈ P , we call the pair (v, p) a feasible pair. A
point v ∈ Si is called reachable (at cylinder Ci) if there
is a feasible curve ending at v in Ci.

Consider a feasible curve Q starting at a point u ∈ S1

and ending at a point v ∈ Si. Since no backtracking
is allowed in the definition of Fréchet distance, Q tra-
verses all cylinders C1 to Ci in order, until it reaches v.
Moreover, by our definition of reachability, each vertex
of Q is reachable at some cylinder Cj , 1 6 j 6 i.

Our approach for solving the decision problem is to
process the cylinders one by one from C1 to Cn, and
identify at each cylinder Ci all points of S which are

reachable at Ci. The decision problem will be then re-
duced (by Observation 2) to checking whether there is
a reachable point in the ball B(t, ε).

To propagate the reachability information through
the cylinders, we need a primitive operation described
below. Let u ∈ Si be a point reachable at cylinder Ci,
and let Q be a feasible curve ending at u. For each
point v ∈ S, we denote by ri(u, v) the index of the fur-
thest cylinder we can reach by the curve Q + −→uv. In
other words, ri(u, v) is the largest index ` > i such that
v ∈ S` is reachable via u ∈ Si. If Q+−→uv is not feasible,
we set ri(u, v) = 0. The following lemma is a direct
corollary of a similar one proved in [1] (Lemma 3) for
computing the so-called right pointers.

Lemma 1 ([1]) Given two points u, v ∈ S, we can
compute ri(u, v) for all 1 6 i 6 n in O(n) total time.

We use the following lemma in our algorithm.

Lemma 2 Let ri(u, v) = `. For all i 6 j 6 `, if v ∈ Sj,
then v is reachable at Cj.

Proof. Let Q be a feasible curve starting at a point
w ∈ S ∩ B(s, ε) and ending at u, and let Q′ = Q + −→uv.
Since v is reachable at C` via Q′, there is a subcurve
P ′ of P starting at s and ending at a point p ∈ P`[v]
(see Figure 3). Consider two point objects OP and OQ
traversing P ′ and Q′, respectively, from beginning to
the end, while keeping ε distance to each other. Since
v is reachable via u ∈ Si, OP is at a point a ∈ Pi when
OQ is at u. Fix a cylinder Cj , i < j 6 `, such that
v ∈ Cj . When OP reaches the point b = left(Pj [v]),
OQ is at a point x ∈ uv such that ‖bx‖ 6 ε. The
subcurve of Q′ from w to x has Fréchet distance at most
ε to the subcurve of P from s to b, and the segment
xv has Fréchet distance at most ε to the point b by
Observation 1. Therefore, by Observation 2, the whole
curve Q′ has Fréchet distance at most ε to the subcurve
P ′ from s to b, meaning that v is reachable at Cj . �

The above proof, not only shows that v is reachable
at Cj , but it also shows that the pair (v, left(Pj [v])) is
feasible. The following lemma is therefore immediate.

Lemma 3 If ri(u, v) = ` and v ∈ Sj, i < j 6 `, then
(v, left(Pj [v])) is a feasible pair.
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Figure 3: Proof of Lemma 2
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The Algorithm Our algorithm for solving the decision
problem is provided in Algorithm 1. It maintains, for
each cylinder Ci, a set Ri of all points in Si which are
reachable at Ci. To handle the base case more easily, we
assume, w.l.o.g., that the curve P starts with a segment
P0 consisting of a single point {s}. Every point of S in-
side the cylinder C0 = B(s, ε) is reachable by definition.
Therefore, we initially set R0 = S ∩B(s, ε) (in line 4).

For each point v ∈ S, the algorithm maintains an
index `v, whose value at the beginning of each iteration
i is the following: `v = max06j<i,u∈Rj

rj(u, v). In other
words, `v points to the largest index ` for which v is
reachable at C` via a reachable point u in some earlier
cylinder Cj , j < i. Initially, we set `v = 1 for all points
in R0, because all points in R0 are also reachable in C1,
as C0 ⊆ C1. For all other points, `v is set to 0 in the
initialization step. The following invariant holds during
the execution of the algorithm.

Lemma 4 After the i-th iteration of Algorithm 1, the
set Ri consists of all points in Si which are reachable at
cylinder Ci.

Proof. We prove the lemma by induction on i. The
base case i = 0 trivially holds. Suppose by induction
that, for each 0 6 j < i, the set Ri is computed cor-
rectly. In the i-th iteration, we first add to Ri (in line 7)
all points in Si which are reachable through a point in
a set Rj , for 1 6 j < i. We call these points entry
points of cylinder Ci. We then add to Ri in lines 8–11
all points in Si which are reachable through the entry
points of Ci (see Figure 4 for an example).

We first show that all points added toRi are reachable
at Ci. For each point v ∈ Si added to Ri in line 7, we
have `v > i. It means that there is a point u ∈ Rj , for
some j < i, such that rj(u, v) > i. Therefore, Lemma 2

Algorithm 1 Decision(S, P, ε)

1: Initialize:

2: compute ri(u, v) for all u, v ∈ S and 1 6 i 6 n

3: set `v = 0 for all v ∈ S
4: let R0 = S ∩B(s, ε)

5: set `v = 1 for all v ∈ R0

6: for i = 1 to n do

7: let Ri = {v ∈ Si : `v > i}
8: let q = minv∈Ri

left(Pi[v])

9: for all v ∈ Si \ Ri do
10: if q � right(Pi[v]) then

11: add v to Ri

12: for all (u, v) ∈ Ri × S do

13: `v ← max {`v, ri(u, v)}
14: return yes if Rn ∩B(t, ε) 6= ∅

Ci
u

v

Figure 4: Point v is an entry point of Ci.

implies that v is reachable at Ci. Now, consider a point
v added to Ri in line 11. According to the condition
in line 10, there is an entry point w in Ci such that
left(Pi[w]) � right(Pi[v]). By Observation 1, the seg-
ment −→wv is within ε Fréchet distance to the line segment
from left(Pi[w]) to right(Pi[v]). Moreover, by Lemma 3,
(w, left(Pi[w]) is a feasible pair. Therefore, by Observa-
tion 2, v is reachable.

Next, we show that any reachable point at Ci is added
to Ri by the algorithm. Suppose that there is a point
v ∈ Si which is reachable at Ci, but is not added to Ri.
Let Q be a feasible curve ending at v, and w be the first
point on Q which is reachable at Ci. By our definition,
w is an entry point of Ci. If w = v, then v must be added
to Ri in line 7, which is a contradiction. If w is before
v on Q, then we have left(Pi[w]) � right(Pi[v]). Now,
by our selection of q in line 8, we have q � left(Pi[w]) �
right(Pi[v]), and hence, v is added to Ri in line 11, which
is again a contradiction. �

Theorem 5 Given a polygonal curve P of n segments
and a set S of k points in Rd, we can decide in O(nk2)
time whether there is a polygonal curve Q through S
such that δF (P,Q) 6 ε, for a given ε > 0. A polygo-
nal curve Q through S of size O(min {n, k}) minimizing
δF (P,Q) can be computed in O(nk2 log(nk)) time.

Proof. The correctness of the decision algorithm (Al-
gorithm 1) directly follows from Lemma 4. Line 2 of
the algorithm takes O(nk2) time by Lemma 1. The
other three lines in the initialization step (lines 3–5)
take only O(k) time. In the main loop, lines 7–11 take
O(k) time, and lines 12–13 require O(k2) time. There-
fore, the whole loop takes O(nk2) time in total.

Once the algorithm finds a reachable point v ∈ Sn ∩
B(t, ε), we can construct a feasible curve Q ending at
v by keeping, for each reachable point u at a cylinder
Ci, a back pointer to a reachable point w at Cj , j 6 i,
from which u is reachable. The feasible curve Q can be
then constructed by following the back pointers from
v to a point in S1 ∩ B(s, ε). Since at most two points
from each cylinder are selected in this process, the curve
Q has O(min {n, k}) segments. For the optimization
problem, we use parametric search as in [1, 2], to find
a curve minimizing δF (P,Q) by an extra log(nk)-factor
in O(nk2 log(nk)) time. �
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4 Conclusions

In this paper, we presented a simple efficient algorithm
for finding a polygonal curve through a given point set
S in Rd such that its Fréchet distance to a given polyg-
onal curve P is minimized. Several interesting problems
remain open. For a fixed ε, one can easily modify the
algorithm provided in this paper to find a curve with a
minimum number of segments, having Fréchet distance
at most ε to P . It can be done by keeping reachable
points in a priority queue, and propagating the reacha-
bility information in a Dijkstra-like manner. However,
we cannot see any easy adaptation of our algorithm to
find a curve passing through a maximum number of
points for a fixed ε. Another major open problem is
whether an efficient algorithm exists for computing a
curve passing through “all” points of S with a mini-
mum Fréchet distance to P .

The algorithm presented in this paper improves the
map matching algorithm of Alt et al. [1] for the case
of matching a curve in a complete graph. The cur-
rent lower bound available for the problem is Ω((n +
k) log(n + k)) due to Buchin et al. [3]. It is therefore
open whether a better algorithm is available, or whether
the algorithm obtained in this paper is optimal.

References

[1] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar
maps. J. Algorithms, 49(2):262–283, 2003.

[2] H. Alt and M. Godau. Computing the Fréchet distance
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