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Kinetically-aware Conformational Distances in Molecular Dynamics

Chen Gu∗ Xiaoye Jiang† Leonidas Guibas‡

Abstract

In this paper, we present a novel approach for dis-
covering kinetically metastable states of biomolecular
conformations. Several kinetically-aware metrics which
encode both geometric and kinetic information about
biomolecules are proposed. We embed the new met-
rics into k-center clustering and r-cover clustering algo-
rithms to estimate the metastable states. Those cluster-
ing algorithms using kinetically-aware metrics are tested
on a large scale biomolecule conformation dataset. It
turns out that our algorithms are able to identify the
kinetic meaningful clusters.

1 Introduction

Conformational changes are of fundamental importance
in a wide range of biological processes including protein
folding [4], RNA folding [1] and the operation of key
cellular machinery [7]. Extensive genetic, biochemical,
biophysical and structural experiments can help to un-
derstand these conformational changes. However, prob-
ing the mechanisms of conformational changes at atomic
resolution is very difficult experimentally and without
these details it is impossible to understand the crucial
chemistry they perform. On the other hand, computer
simulations may complement such experiments by pro-
viding dynamic information at an atomic level. With
powerful individual processors, or large distributed clus-
ters of processors, one can routinely generate large
quantities of simulation data for a given phenomenon
of interest. As a result, a growing challenge is how to
mine such massive data sets so as to gain insight into
the interesting biochemical phenomena under study.

To meet such a challenge, a lot of recent effort has
been devoted to constructing stochastic kinetic mod-
els, often in the form of discrete-state Markov mod-
els, from relatively short molecular dynamics simula-
tions [2]. In order to construct useful mathematical
models that can faithfully represent the molecular dy-
namics at the timescales of interest, it is often necessary
to decompose the conformational space into a set of ki-
netically metastable states, or clusters.

In this paper, we present a new method for the dis-
covery of kinetically metastable states that are gen-
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Figure 1: Two conformations which are geometrically
close but kinetically far away. Red dots and blue lines
denote atoms and bonds respectively.

erally applicable to solvated macromolecules. Given
molecular dynamics trajectories consisting of thousands
of molecular conformations, our algorithm can identify
the long lived, kinetically metastable states by cluster-
ing with respect to the kinetically-aware conformational
distances. Such distance functions encode both the ge-
ometry and kinetic information about molecular confor-
mations, which allow robust partitioning of the confor-
mational space into kinetically related regions.

2 Conformational distance measures

2.1 cRMS distance

In bioinformatics, a commonly used metric for estimat-
ing the distance between two molecules is the coordi-
nate root mean squared (cRMS) distance. Such a dis-
tance can be evaluated as the root mean squared de-
viation (RMSD) distance1 of the Cartesian coordinates
of heavy atoms in the molecules, optimally aligned by
a rigid body translation and rotation minimizing the
RMSD [6]. The cRMS distance is a popular choice
for biological computation because it possesses all the
qualities of a proper distance metric [9], which takes
account of both local similarities between molecule con-
formations and global ones. Moreover, the complexity
of estimating the cRMS distance is proportional to the
number of atoms, which makes it possible to compute
distances between large molecules quickly.

However, a key disadvantage of the cRMS distance
is that it ignores the kinetic deformation change from
one conformation to another. As illustrated in Figure 1,
each of the two conformations has two folded arms, yet
the orders that the arms overlap are different. Thus, the
two conformations are close geometrically, while they in-
deed differ greatly kinetically because the deformation
change from one to the other has to follow a long trajec-
tory without self-collision in the conformational space.
Therefore, it would be more appropriate if we can in-
corporate such kinetic information from trajectories into
the distance functions.

1The RMSD distance between two vectors x = (x1, . . . , xN )T ,

y = (y1, . . . , yN )T is
√∑N

i=1(xi − yi)2/N = ‖x− y‖2/
√
N .



23rd Canadian Conference on Computational Geometry, 2011

j

j−1

j−3
j−4

j+3
j+4

j−2

j+1
j+2

AA

A
A

A
A

A

A i

i+1
i+2

i−1
i−2

i−3

i−4

i+3

B
B

B B

BB
B

B
B

Figure 2: An illustration of the delayed coordinates dis-
tance.

2.2 Kinetically-aware conformational distances

In this section, we propose two different kinetically-
aware conformational distance functions. The first dis-
tance function is defined using the delayed coordinates
of conformations which incorporate information of con-
formational changes at nearby timesteps. The second
distance function is given by the shortest path graph
distance, while such a graph is constructed based on
trajectory dynamics.

2.2.1 Delayed coordinates distance

To define the delayed coordinates distance between two
conformations, we examine their path context – a set of
conformations surrounding them in the trajectory where
they come from. Here we assume that the sampling is at
the same rate along all trajectories, and each conforma-
tion belongs to a unique trajectory in simulation. When
we compare two conformations Ai and Bj , we take
2h+1 samples around each conformation on their paths:
{Ai−h, . . . , Ai, . . . , Ai+h} and {Bj−h, . . . , Bj , . . . , Bj+h}
(h is a pre-given sample window size), and define the dis-
tance between Ai and Bj as a weighted average of the
cRMS distances between the corresponding samples:

D(Ai, Bj) =

h∑
`=−h

w`d(Ai+`, Bj+`) (1)

In (1), d(Ai+`, Bj+`) is the cRMS distance between
Ai+` and Bj+`, and all weights w`’s are non-negative. It
is easy to verify that the distances defined in (1) satisfy
the triangle inequality:

D(Ai, Bj) +D(Bj , Ck)

=
h∑

`=−h
w`d(Ai+`, Bj+`) +

h∑
`=−h

w`d(Bj+`, Ck+`)

=
h∑

`=−h
w`

(
d(Ai+`, Bj+`) + d(Bj+`, Ck+`)

)
≥

h∑
`=−h

w`d(Ai+`, Ck+`) = D(Ai, Ck).

Therefore, the above defined delayed coordinates dis-
tance is a valid metric.

As depicted in Figure 2, Ai and Bj are geometrically
very close in the conformational space, but they occur
on paths that pass through in very different ways. By
considering their path neighbors, we can better charac-
terize their distance because the nearby conformations
can help address the kinetic difference between them.

Notice that in (1), we need to compute the best align-
ment for each conformation pair in the sample win-

dow. Alternatively, we can optimize one alignment
jointly for all conformation pairs. Without loss of gen-
erality, we assume all conformations are centered at
the origin (after optimal translation). We map Ai
to A′i = [w−hAi−h, . . . , w0Ai, . . . , whAi+h]T and Bj to
B′j = [w−hBj−h, . . . , w0Bj , . . . , whBj+h]T , and define
D(Ai, Bj) as the cRMS distance between A′i and B′j ,
which is also a valid metric. The optimal alignment
(rotation) f between A′i and B′j will minimize the fol-
lowing objective function:

D2(Ai, Bj) = d2(A′i, B
′
j) = ‖f(A′i)−B′j‖22

=
h∑

`=−h
‖f(w`Ai+`)− w`Bj+`‖22

=
h∑

`=−h
‖w`f(Ai+`)− w`Bj+`‖22

=
h∑

`=−h
w2
`‖f(Ai+`)−Bj+`‖22 (2)

(ignoring the constant sacling factor 1/N in RMSD
definition). So, f gives the best alignment jointly for all
conformation pairs in the sample window.

2.2.2 Shortest path graph distance

Given a large number of relatively short conformational
trajectories, we can adapt the cRMS distance to reflect
the fact that successive conformations along a trajec-
tory should in some sense be closer to each other than
their cRMS distance represents, capturing the affinity
between the conformations implied by the physical pro-
cess generating the trajectory.

Since ultimately we deal with a discrete set of con-
formations, we can consider a large graph of all the
conformations along the generated trajectories as nodes
and add edges between all pairs with weights given by
their corresponding cRMS. To incorporate kinetic in-
formation into our distance function, for conformation
pairs that are neighbors along a trajectory, we reduce
their cRMS distance by multiplying a certain factor
0 < c < 1, so that conformations along a trajectory
are closer to each other than their static distances.

However, after discounting the cRMS distance for cer-
tain edges that correspond to conformations along the
same trajectory, these new weights may violate the tri-
angle inequality. To retain the metric property, we de-
fine the new distances as the lengths of shortest paths
in this graph connecting the two conformations in ques-
tion, which clearly define a metric.

The factor c controls the tradeoff between the static
cRMS distances and the kinetic information from tra-
jectories. When c = 1 , the distance function is purely
static; On the other hand, when c → 0, all conforma-
tions along a trajectory are arbitrarily close to each

j−h j−1 j+1j j+hB

A i−h
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Figure 3: Relation between two distance functions.
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other. As a result, each trajectory becomes a cluster
itself. Thus, by varying the factor c, we can control
the relative amount of geometry and kinetic informa-
tion that are used in the new distance function.

2.2.3 Relation between two distance functions

Intuitively, these two distance functions represent two
different ways to incorporate kinetic information from
trajectoties: either penalize conformation pairs from
different trajectories, or maintain conformation pairs
along a same trajectory close to one another. In fact,
both of them can be viewed as graph distances (see Fig-
ure 3). In the delayed coordinates distance, we consider
a set of 2h+1 paths fromAi toBj : {Ai → . . .→ Ai+` →
Bj+` → . . .→ Bj}|h`=−h. Notice that d(Ai+`, Bj+`) can
be seen as the length of the path {Ai → . . .→ Ai+` →
Bj+` → . . . → Bj} with a discount factor c = 0, so

the delayed coordinates distance D
(1)
w,h(Ai, Bj) is equal

to the weighted average of these 2h+1 path lengths. In

contrast, the shortest path graph distance D
(2)
c (Ai, Bj)

is defined as the minimum path length among all possi-
ble paths from Ai to Bj in the complete graph. There-

fore, D
(1)
w,h(Ai, Bj) ≥

h∑
`=−h

w` ·D(2)
c=0(Ai, Bj).

3 Clustering massive data sets

3.1 k-center clustering

Due to the heterogeneous nature of many biological pro-
cesses at the molecular scale, we usually need a large
quantity of simulation data to mine in order to gain in-
sight into the fundamental biochemical phenomena un-
der study. To reach an understanding into the data
scientifically, one often needs to shrink the data sets by
applying a clustering algorithm to yield a family of clus-
ters (metastable states) of much smaller size than the
original data set. Since it is common for simulations
conducted on supercomupters to generate data sets that
contain 105−107 conformations in up to 104 trajectories,
we would prefer a clustering algorithm with computa-
tional complexity linear in the number of conformations.
In non-Euclidean space, a good candidate for clustering
such massive data sets is the k-center clustering.

The k-center problem originates from the facility lo-
cation problem, whose goal is to open k facilities centers
among n points such that every point is near some fa-
cility center. The problem is formulated as follows:

k-center problem: Given n demand points D in a met-
ric space, find k supply points S ⊆ D, such that the
maximum distance between a demand point p ∈ D and
its nearest supply point q ∈ S is minimized.

In the k-center problem, the goal is to find the opti-
mal value r = min

S
max
p∈D

min
q∈S
|p− q|, and to specify which

points should be chosen as centers to satisfy the con-
straints with that value of r. Notice that if we draw k
balls centered at these supply points with radius r, they
will cover all n demand points (see Figure 4). Therefore,

(a) (b)

Figure 4: k-center problem (a) and its equivalent for-
mulation (b).

the k-center problem can be equivalently formulated as
follows: Given n points D in a metric space, find k balls
of smallest radius centered at S ⊆ D which altogether
cover every point in D.

A basic fact about the k-center problem is that it is
NP-hard. Thus there is no efficient algorithm that al-
ways returns the optimal solution. However, there is
a simple greedy algorithm called farthest-first traversal
[3] that works fairly well in practice. The algorithm iter-
atively picks a new center farthest from the ones chosen
so far, and it returns a 2-approximation solution for the
k-center problem. In fact, it is not possible to achieve a
better approximation ratio for arbitrary metric spaces:
even getting a factor 2− ε for any ε > 0 is NP-hard [8].

Assuming we can fetch the distance between two
points in O(1) time, farthest-first traversal takes O(kn)
running time and O(n) working space. So, this algo-
rithm is good for clustering using delayed coordinates
distance. However, in the case of shortest path graph
distance, we cannot get the pairwise distance from the
graph in constant time. As a result, the running time
grows to O(kn2) since we need to run Dijkstra’s algo-
rithm to update the distances from every point to its
nearest center in each iteration. In scenarios when k is
also large (e.g., clustering all conformations into hun-
dreds of microstates), farthest-first traversal becomes
too slow. In the next section, we propose a new cluster-
ing algorithm using shortest path distances by consid-
ering a related variant problem of the k-center problem,
namely, the problem of computing covering numbers.

3.2 r-cover clustering

When we use the k-center clustering, a natural question
is how many clusters should we choose (especially for
the case when k is large)? As we have seen before,
when we cluster data, we implicitly compute the radius
r. If we choose a large number for k, then r should
be small. In contrast, when k is small, the returned
number r should be large. Therefore, it is equivalent
to ask how large is the radius we want for clustering?
From this observation, we transfer the original k-center
problem into a variant problem of computing covering
numbers, by swapping the input k and the output r .
r-covering number: Given n demand points D in a

metric space, an r-cover of D is a set of supply points
S ⊆ D such that every demand point p ∈ D is at most
distance r away from its nearest supply point q ∈ S.
The r-covering number of D is the size of its smallest
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r-cover, i.e., N (D,r) = min
S
{|S| : max

p∈D
min
q∈S
|p− q| ≤ r}.

In the farthest-first traversal algorithm, we repeat-
edly choose a new center that is farthest from all previ-
ous centers, which costs O(n2) per iteration for shortest
path distances. The main problem here is that we spend
a lot of time to compute the real shortest path distances
between nodes that are very far from each other. How-
ever, by transforming the k-center problem into the r-
cover model, it is possible for us to combine Dijkstra’s
shortest path algorithm and clustering together (see Al-
gorithm 1).

In this r-cover clustering algorithm, we randomly
choose an uncovered node as a new center, and run Di-
jkstra’s algorithm to cover all nodes that are at most r
away from this new center. Recall that Dijkstra’s algo-
rithm finds the real shortest path distances for all nodes
in an increasing order. Once we find a node whose real
shortest path distance is greater than r from the source,
we can stop Dijkstra’s algorithm, because all the re-
maining nodes are outside this cluster and we do not
care about their real shortest path distances. Finally, if
a node is covered by multiple clusters, it will be assigned
to its nearest center at the end of this algorithm.

Let S be the r-cover returned by Algorithm 1. Then,
N (D, r) ≤ |S| ≤ N (D, r/2) because all centers in S are
more than r away from each other. Theoretically, this
may not be a good approximation for N (D, r), and the
design of a better approximation algorithm for covering
numbers is still an open problem [3]. However, our goal
here is not to compute covering numbers but use the
r-cover model for clustering. Moreover, we can adjust
the returned size |S| by varying the input radius r to
approximate the number of clusters we want. We will
discuss the running time of Algorithm 1 in Section 4.3.

4 Experiments

4.1 Test model - alanine dipeptide

We test our clustering algorithms using kinetically-
aware conformational distances on a simple model sys-
tem, terminally blocked alanine peptide (sequence Ace-
Ala-Nme) in explicit solvent. This data set covers both
thermodynamic simulations and kinetic simulations use-
ful for testing algorithms analyzing the biomolecular
systems, and has already been used in several research
papers before [2].

The trajectories were obtained from the 400K replica
of a 20ns/replica parallel tempering simulation, and
consisted of an equilibrium pool of 1, 000 constant-
energy, constant-volume trajectory segments 20ps in
length with conformations stored every 0.1ps. A small
population of the trajectories contained an ω peptide
bond in the cis state, rather than the typical trans state,
were removed from the set of trajectories used for anal-
ysis, leaving 975 trajectories with a total of 195, 000
conformations. The minimum cRMS distance between
conformation pairs is 3.54 × 10−2, and the maximum
cRMS distance between conformation pairs is 1.87.

Algorithm 1 r-cover clustering
Input: A complete graph G =< V,E > and a radius r.
Output: An r-cover of V , according to shortest path distances.
Procedure:
1) Initialize r-cover S = φ.
2) Assign to every node a label `(v) = ∞ (distance to its nearest
center).
3) Randomly pick an uncovered node s as a new center, S = S∪{s}.
4) Assign to every node a distance label: d(s) = 0 and d(v) = ∞
for all other nodes.
5) Mark all nodes as unvisited.
6) Extract node u with smallest d(u) among all unvisited nodes (if
all nodes are visited, go to step 12).
7) If d(u) > r, go to step 12.
8) If d(u) ≥ `(u), go to step 11.
9) Update `(u) = d(u) (assign node u into this new cluster).
10) Update d(v) = min{d(v), d(u) +w(u, v)} for all unvisited node
v.
11) Mark node u as visited, go to step 6.
12) If all nodes are covered, return S; otherwise, go to step 3.

Figure 5: The terminally blocked alanine dipeptide with
φ, ψ, ω backbone torsions are labeled on the left. Poten-
tial of mean force and state decompositions for alanine
dipeptide are labeled manually on the right. This pic-
ture is taken from [2].

In the protein backbone geometry, although there are
many degrees of freedom, many of these are not im-
portant and what really matters are only a few local
angles: the torsion angles φ and ψ (see Figure 5) are
the primary degrees of freedom on the backbone. Since
the slow degrees of freedom (φ and ψ) are known a pri-
ori, it is relatively straightforward to manually iden-
tify metastable states from examination of the poten-
tial of mean force, making it a popular choice for the
study of biomolecular dynamics. Previously, a master
equation model constructed using six manually identi-
fied states was shown to reproduce dynamics over long
times. We therefore determine whether our algorithms
can recover a model of equivalent utility to this manu-
ally constructed six-state decomposition for this system.
Because the algorithm uses the solute Cartesian coordi-
nates, rather than the (φ, ψ) torsions, this is a good test
of whether good approximations to the true metastable
states can be discovered without prior knowledge of the
slow degrees of freedom.

For ease of visualization, we still project the state
assignments onto the (φ, ψ) torsion map for compar-
ison with the manually constructed states. As de-
picted in Figure 5, a two-dimensional potential of mean
force at 400K in the (φ, ψ) backbone torsions was es-
timated from the parallel tempering simulation using
the weighted histogram analysis method by discretizing
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Figure 6: Good manual state decompositions and
automatic state decompositions with their implied
timescales plots. This picture is taken from [2].

each degree of freedom into 10◦ bins. The six such states
identified in the previous study can be seen adequately
separate the free energy basins observed at 400K. In [2],
the authors designed an automatic state decomposition
algorithm using the method of splitting and lumping to
get a good clustering result (see Figure 6). We will take
these decompositions as our references of groundtruth
decomposition and compare the results from our algo-
rithms with them.

4.2 Clustering results

Among the six states in the manual state decomposi-
tions (see Figure 5), states 1 and 2 are the two densest
clusters. It is usually difficult to distinguish these two
states using the original cRMS distance, because they
are more kinetically distinct rather than structurally
distinct. States 3 and 4 are two large clusters that are
also difficult to be distinguished, but the internal kinetic
barrier separating them is smaller than the barrier sep-
arating states 1 and 2. The remaining two states 5 and
6 have much smaller sizes than states 1-4.

The clustering result using the cRMS distance is
shown in Figure 7-(1). It turns out that directly apply-
ing the cRMS metric will cluster states 1 and 2 together.
Thus, such a clustering result is a poor decomposition
because its states include internal kinetic barriers.

We first test the clustering quality of kinetically-aware
conformational distances using delayed coordinates. We
set the weights w` = exp(−λ|`|) which decay exponen-
tially around the center. When the window size h = 0,
the metric is simply cRMS. Figure 7-(2-4) shows the
clustering results with decay rate λ = 1 and window
sizes h = 2, 5, 10 respectively. We can see that as we
increase the window size, the conformations in states
1 and 2 become separated. For h = 10, the returned
six clusters are almost in the same locations as the
groundtruth (Figure 7-(4)). If we further increase the
window size h, the clustering result will not change too
much, because conformations that are far from the cen-
ter have small weights w` in the distance function (1).

Figure 7-(5,6) shows two more clustering results that
are close to the groundtruth decomposition with differ-
ent decay rates λ. In Figure 7-(5), the decay rate λ = 0

and sample window size h = 12, so all conformations in
the sample window are equally weighted. As a result,
the boundaries of the clustering result become ambigu-
ous as there are many outliers in the (φ, ψ) torsion map.
In Figure 7-(6), the decay rate λ = 0.5 and the sample
window size h = 12. By letting λ > 0, we can reduce
the number of outliers significantly.

We have also implemented the alternative approach
where we find only one transformation that jointly align
two series of conformations in the sample window. As
depicted in Figure 7-(7,8), we use decay rates and win-
dow sizes (λ = 0.5, h = 5) and (λ = 1, h = 5) respec-
tively. The clustering quality is also very close to the
groundtruth. Notice that the clustering results converge
faster in this case because the weights w` are squared
in the objective function (2).

We finally test the kinetically-aware conformational
distances using shortest paths (see Figure 7-(9-12)),
which use discount factors and radii (c = 0.9, r = 1.1),
(c = 0.8, r = 1.0), (c = 0.7, r = 1.0) and (c = 0.5, r =
0.9) respectively. We can see that as we decrease the
discount factor c, more kinetic information is incorpo-
rated into the distance function, and thus the conforma-
tions in states 1 and 2 become separated. For c = 0.7,
the clustering quality is closest to the groundtruth (Fig-
ure 7-(11)). When the discount factor c is too small,
conformations from the same trajectory are more likely
to be clustered together, while in this case we will
observe that the conformations in states 3 and 4 are
merged into a single cluster (Figure 7-(12)).

For validation, we examine the implied timescales as
a function of lag time (τ), as computed from the eigen-
values of the transition matrix [5]. Theoretically, if the
model is Markovian, then the implied timescales will be
independent of the lag time for large τ . Figure 8 shows
the estimated implied timescales (in picoseconds) as a
function of lag time for good decompotitions in Fig-
ure 7-(4), (6), (7), (8) and (11) respectively, indicating
that they can reproduce dynamics over long times.

4.3 Running time analysis

In this section, we investigate the running time of
our clustering algorithms. For k-center clustering,
the farthest-first traversal algorithm takes O(kn) time,
which is fairly efficient. For r-cover clustering, we set
the discount factor c = 0.8 and generate clusters of dif-
ferent sizes by varying the input radius r. The empirical
runtime of Algorithm 1 is shown in Table 1. Such an ex-
periment is performed on a computer cluster with AMD
Opteron(tm) Processor 250 and 16GB Memory. When
r →∞, the r-cover contains only one node, so the run-

Radius r 0 0.10 0.15 0.20 0.25
Size of r-cover 195,000 42,479 4,826 1,042 377
Runtime (hour) 24.9 63.3 142.3 81.7 109.4

Radius r 0.30 0.40 0.50 1.00 2.00
Size of r-cover 180 67 33 6 1
Runtime (hour) 88.1 65.6 67.9 53.3 24.5

Table 1: Running time of r-cover clustering algorithm.
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Figure 7: Clustering results with kinetically-aware conformational distances.
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Figure 8: Implied timescales as a function of lag time. The metastability Q is the sum of the self-transition proba-
bilities of the Markov transition matrix.

ning time is Θ(n2) by running Dijkstra’s algorithm once
in a complete graph. As we decrease the radius r, the
size of r-cover increases, but we can save more running
time from Dijkstra’s algorithm because we will never
compute the real shortest path distances between nodes
that are greater than r. Finally, when r = 0, the r-
cover contains all nodes in the graph, so we only relax
one node (the source) in each Dijkstra’s computation,
and the total running time is also Θ(n2).

For 0 < r < ∞, the running time is Ω(n2) since all
nodes in the graph are covered, and it would be larger
than those two extreme cases because there exists over-
lap between different clusters. However, the experimen-
tal results in Table 1 show that Algorithm 1 usually runs
in O(n2) time in practice, which is significantly faster
than farthest-first traversal for large k.

5 Conclusions and future work

In this paper, we designed and tested algorithms that
use kinetically-aware distances to cluster biomolecular
conformations. The proposed approach outperforms the
existing methods that only use geometric information
within biomolecules to build distance functions. The
shortest path graph distance is of particular interest for
constructing metric spaces on a discrete point set: Once
we have a distance funciton, we need to check whether
it satisfes the triangle inequality. If not, we can always
form a new metric by using shortest path graph dis-
tances. Therefore, it would be interesting to derive a
theoretical upper bound on the expected running time
of Algorithm 1, or develop other efficient algorithms for
clustering using shortest path distances. This would be
a topic for our future research.
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