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Isotopic Fréchet Distance

Erin W. Chambers∗ Tao Ju† David Letscher‡ Lu Liu§

Abstract

We present a variant of the Fréchet distance (as well
as geodesic and homotopic Fréchet distance) which
forces the motion between the input objects to fol-
low an ambient isotopy. This provides a measure of
how much you need to continuously deform one shape
into another while maintaining topologically equiva-
lently shapes throughout the deformation.

1 Introduction

We are interested in defining a distance measure be-
tween two (homeomorphic) shapes. This measure has a
number of potential applications in computer graphics
and vision, such as assessing the error when approxi-
mating a continuous function by a discrete one, or eval-
uating the similarity between two shapes. We propose
a new distance measure which intuitively is the least
effort of morphing a source shape into a target shape,
such that each intermediate shape during the morph is
homeomorphic to the source. For a given morph, this
“effort” is measured as the maximum distance traveled
by any point on the source shape.
Our measure is closely related to Fréchet distance,

which can be defined as the least travel distance among
all possible deformations between the two shapes. Ho-
motopic Fréchet distance [4] further restricts the defor-
mations to be continuous, particularly in the presence of
obstacles. However, the intermediate shapes during the
deformation may not be homeomorphic to the source
shape. For example, they may have self-intersections
even though the source shape is intersection-free. Our
measure, called isotopic Fréchet Distance, enforces the
deformation of the source shape to induce a continuous
deformation of the ambient space.
Two other distance measures similar to ours, in the

special case of curves, were geodesic width [6] and min-
imum deformation area [10]. Geodesic width considers
a class of deformations between two planar curves that
is more restricted than what we consider in this work,
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in that no two intermediate curves during the deforma-
tion can intersect. Note that this restriction means that
geodesic width is applicable only to non-intersecting
curves. The deformation area is defined between two
curves lying on any 2-manifold, and considers a similar
class of deformations as in our work. The key difference
is that the deformation area evaluates the “effort” of
morphing as the area swept by the deformation, while
the isotropic Fréchet Distance considers the longest dis-
tance traveled. Practical work on this problem has also
been done, although with no real guarantee of optimal-
ity [9].

In this paper, we formulate isotropic Fréchet Distance
and compare it with homotopic Fréchet distance. In
particular, we give an example in 2D where this new
measure better characterizes the dissimilarity between
two curves. We also briefly touch on the challenges in
computing the measure and its potential applications.

2 Definitions

Consider two homeomorphic subsets A and B of a met-
ric space M . Often M will be Euclidean space or Eu-
clidean space with obstacles removed from it. There
are a variety of ways to measure how “close” A and
B are. These include Hausdorff distance, Fréchet dis-
tance, geodesic Fréchet distance and homotopic Fréchet
distance. Hausdorff distance measures how large of a
neighborhood of A is needed to contain B and vice-
versa.

Definition 1 Given A,B ⊂ M , the Hausdorff distance
between them is

H(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}

However, Hausdorff distance is solely based on geom-
etry and ignores the topology of both A and B. Fréchet
distance considers all possible homeomorphic pairings
between points in A and B and how far away paired
points are. The distance is defined to be the minimum
over all homeomorphisms between A and B of the max-
imum distance between any pair identified points. In
many applications, Fréchet distance is only defined for
curves; this definition generalizes this for arbitrary A
and B, see [3] for a similar definition. Unless otherwise
specified, all maps are assumed to be continuous.
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Definition 2 Given A,B ⊂ M with X ∼= A ∼= B, the

Fréchet distance between them is

F(A,B) = inf
f, g : X → M

f(X) = A, g(X) = B

sup
x∈X

d(f(x), g(x))

Following geodesic paths between identified pairs of
points (and around any obstacles) gives a way to de-
form one shape to another, yielding the geodesic Fréchet
distance [5]. However, under either geodesic or stan-
dard Fréchet distance, nearby points do not follow sim-
ilar paths when obstacles are present in the underlying
space. For example, if A and B are curves and the
geodesics are thought of as the traditional “dog leash”
connecting the curves, the leash might jump discontin-
uously over any obstacles in the space.
Homotopic Fréchet distance [4] restricts Fréchet dis-

tance still further and only considers continuous defor-
mations of one shape to another. For these definitions
we must assume that M has a Riemannian metric or
some other structure that allows the measurement of
the length of curves.
Note that in the following definition, we consider X

to be an abstract representation of A and B (which are
homeomorphic), allowing us to match different pairs of
points in A and B by fitting them to points in the refer-
ence shape X . In previous work, this distance was only
defined if A and B were curves, and it was assumed that
the parametrizations of the curves were non-decreasing.
However, if only monotonic parametrizations are con-
sidered then the infimum does not change. Notice that
monotonic parametrizations are homeomorphisms, so
the following definition does generalize the definition of
homotopic Fréchet distance to general spaces.

Definition 3 Given A,B ⊂ M with X ∼= A ∼= B, the

homotopic Fréchet distance between them is

F(A,B) = inf
h : X × [0, 1] → M

h(X, 0) = A, h(X, 1) = B

max
x∈X

lenh(x, ·)

Continuous deformations of one space to another can
change the topology along the way. If we want to ensure
that all intermediate spaces are identical and are embed-
ded into Euclidean space then we replace homotopies by
ambient isotopies. In essence, isotopic Fréchet distance
treats the intermediate curves or shapes themselves as
obstacles during deformations.

Definition 4 Given A,B ⊂ M with X ∼= A ∼= B, the

(ambiently) isotopic Fréchet distance between them is

I(A,B) = inf
h : M × I → M

h(·, t) homeomorphism

h(x, 0) = x ∀x ∈ X
h(A, 1) = B

max
x∈X

lenh(x, ·)

Figure 1: (a) Two curves with significantly different
Hausdorff and Fréchet distances. (b) With an obstacle
between them the homotopic Fréchet distance is larger
than the Fréchet distance.

Ambient isotopies continuously deform both the shape
and the space containing it to another shape. For ex-
ample, any pair of knots in R

3 are homotopic, but dis-
tinct knots are not ambiently isotopic, since we can-
not continuously morph between them without any self-
intersection along the way. This means that there are
homeomorphic subsets of R3 that have infinite isotopic
Fréchet distance.
Any ambient isotopy also defines a homotopy between

A and B, so isotopic Fréchet distances is at least as large
as homotopic Fréchet distance. In fact, we have

H(A,B) ≤ F(A,B) ≤ F(A,B) ≤ I(A,B)

Figure 1 shows examples where Fréchet distance is
strictly larger than Hausdorff distance and homotopic
Fréchet distance is strictly larger than geodesic Fréchet
distance. In section 5 we will give an example where
homotopic and isotopic Fréchet distance differ.
Before examining any examples, we will demonstrate

that it is appropriate to consider isotopic Fréchet dis-
tance a “distance”.

Lemma 1 Given any subset X ⊂ M , isotopic Fréchet

distance is a metric on the space of all embeddings X →
M .

Proof. Since isotopic Fréchet distance is defined as an
infimum of a set of lengths of curves, it is clearly non-
negative. And if the isotopic Fréchet distance is zero,
then in the limit, points are moved a distance of 0. Thus
I(A,B) = 0 implies that A and B are equal.
If h : M × I → M is a isotopy from A to B then

define h′ : M × I → M by

h′(x, t) = h(g−1(x), 1 − t)
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where g(x) = h(x, 1). Clearly for any t, h(·, t) is a home-
omorphism and

h′(x, 0) = h(g−1(x), 1) = g(g−1(x)) = x

h′(B, 1) = h(g−1(B), 0) = h(A, 0) = A

This shows that h′ is an ambient isotopy from B to A.
The lengths of these two isotopies are identical so the
infimum over all possible isotopies for A to B and B
to A, respectively must be the same. This shows that
isotopic Fréchet distance is symmetric.
Finally, we need to show that Fréchet distance satis-

fies the triangle inequality. Assume that X ∼= A ∼= B ∼=
C. It is enough to show that for any ǫ > 0 there exists
an isotopy h : M × I → M from A to C such that

max
x∈X

lenh(x, ·) ≤ I(A,B) + I(B,C) + ǫ

Chose any ǫ > 0. By definition of isotopic Fréchet dis-
tance there exists an isotopy h1 : M × I → M from A
to B such that

max
x∈X

lenh1(x, ·) ≤ I(A,B) + ǫ/2

and an isotopy h2 : M × I → M from A to B such that

max
x∈X

lenh2(x, ·) ≤ I(B,C) + ǫ/2

Define the isotopy h : M × I → M by

h(x, t) =

{

h1(x, 2t) if t ≤ 1

2

h2(h1(x, 1), 2t− 1) if t > 1

2

h is continuous since both functions agree when t = 1

2
.

Furthermore, we see that

h(x, 0) = h1(x, 0) = x

h(x, 1) = h2(h1(A, 1), 1)

= h2(B, 1) = C

Thus for any ǫ > 0 we have

I(A,C) ≤ max
x∈X

lenh(x, ·)

≤ max
x∈X

lenh1(x, ·) + max
x∈X

lenh2(x, ·)

≤ I(A,B) + ǫ/2 + I(B,C) + ǫ/2

= I(A,B) + I(B,C) + ǫ

which completes the proof. �

3 An Extra Constraint on the Isotopy

All of the distance measures between shapes which we
have discussed are determined only by a single max-
imal distance, and many homotopies realize this dis-
tance. We can expand upon these definitions to con-
sider the lengths of all leashes, with our end goal being

to somehow minimize the distance any point travels in
the homotopy realizing the minimum isotopic Fréchet
distance. For any point x, the curves h(x, ·) will be
referred to as the trajectories of the point under the ho-
motopy; this is also sometimes referred to as the set of
leashes.
For a homotopy h : X × I → M (possibly induced by

an isotopy), its length function L : X → R
+ is defined

by L(x) = lenh(x, ·). Homotopic Fréchet and isotopic
Fréchet distances focus on minimizing the maximum of
L(x) over the space of homotopies and isotopies, respec-
tively. There are other measures of complexity, however,
For example we could minimize the area or L2 norm

of these homotopies, which is equal to
√

∫

X
(L(x))2 dx,

similar to what is done in [10], or we could consider

some other Lp norm
(∫

X (L(x))
p
dx)

)1/p
. However, ho-

motopies and isotopies minimizing these norms will not
realize homotopic and isotopic Fréchet distance, respec-
tively.
If there were only finitely many lengths to consider

then we could sort them in decreasing order and then
compare them. The lexicographic minimum would not
only minimize the maximum of L(x), but also mini-
mize the length of the second longest leash length among
homotopies minimizing the maximum. Similarly state-
ments hold for the third longest curve and so on. How-
ever, this comparison process would only work for dis-
crete sets. This notion can be generalized to the con-
tinuous case by consider the set of trajectories lengths
for points that are local maximi of the function L(x).
When these sets of lengths are minimized lexicograph-
ically not only is the length of the longest curve mini-
mized but the next largest local maximum in lengths is
also minimized and so on. This yields a complexity mea-
sure on homotopies that not only realizes homotopic or
Fréchet distances (depending on the space the infimum
is taken over) but also moves other points as little as
possible. In fact, algorithms used to compute Fréchet,
geodesic Fréchet and homotopic Fréchet distances all
produce pairs that minimize these more general com-
plexities.
In 3 dimensions, minimal isotopies can be used to

morph between homeomorphic shapes. Isotopies that
minimize complexity would, in some sense, be minimal
morphs between the two shapes. If an efficient algo-
rithm could be found to minimize this complexity then
it would yield morphs with some quality guarantees.

4 An Example

Consider the spiral curve in figure 2 compared to a
straight line segment. In the minimal homotopy be-
tween them, most of the spiral collapses to a single
point. This is not an ambient isotopy because at time
1 in the homotopy there is an instantaneous change in
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Minimal homotopy “Obvious” isotopy

Figure 2: Comparing a spiral to a straight line. The
minimal homotopy of a spiral to a line collapse the spi-
ral to a point and the “obvious” isotopy of the spiral
unravels it (note: this is not minimal).

the topology of small neighborhoods of this collapsing
point.

This means that this minimal homotopy does not
come from an isotopy. A natural possibility for an iso-
topy between the two curves is also shown in figure 2.
This isotopy unravels the spiral until it flattens out com-
pletely. It is conceivable that this “obvious” isotopy
realizes isotopic Fréchet distance.

In fact, for this spiral curve the isotopic Fréchet dis-
tance is equal to the Fréchet distance. To see this notice
that the homotopy that realizes Fréchet distance is an
isotopy arbitrarily close to time t = 1. So this homotopy
can be followed until the spiral is as small as desired and
then unwrapped. This will result in an isotopy whose
longest trajectory is arbitrarily close to the Fréchet dis-
tance. This gives a sequence of isotopies whose longest
trajectory length limits to the Fréchet distance proving
that the two distance measures are (somewhat surpris-
ingly) the same in this particular instance.

L

s

s+

s−

t

t+

t−

ǫ

Figure 3: Two curves with Fréchet distance ǫ, but iso-
topic Fréchet distance at least 2

9
L. (Conjecturally the

isotopic Fréchet distance is
√
L2 + ǫ2.)

5 Isotopic Fréchet 6= Homotopic Fréchet

The pair of oppositely oriented “zig-zag” curves in fig-
ure 3 give an example where the curves are very close in
terms of Fréchet distance but very far apart in isotopic
Fréchet distance. The minimal homotopy between these
curves is shown in figure 4. The homotopy preserves x
coordinates of all of the points. It narrows the zig-zag
until it flattens out and then expands it in the opposite
direction. This is not an isotopy, and unlike the previous
example, it cannot be modified to yield an isotopy. In
fact, we will show that we can achieve arbitrarily large
isotopic Fréchet distance relative to Fréchet distance by
modifying the width and height of this figure.

Proposition 2 For any L > 0 and ǫ ∈ (0, L/2), there
exists a pair of curves C1, C2 ⊂ R

2 with

F(C1, C2) = H(C1, C2) = ǫ

I(C1, C2) ≥ 2

9
L

Proof. Consider the two curves in Figure 3, where
the vertices are the points s = (0, 0), s+ = (0, ǫ/2),
s− = (0,−ǫ/2), t = (L, 0), t+ = (L, ǫ/2) and t− =
(L,−ǫ/2). The first curve, C1, consists of line segments
s → t+ → s− → t and the second, C2, travels from
s → t− → s+ → t. An easy exercise in calculating
Fréchet distance shows that F(C1, C2) = ǫ. Further-
more, the maximum distances are realized by identify-
ing t+ to t− and s+ to s−. (Note that since there are
no obstacles, the Fréchet distance between these curves
is the same as the homotopic Fréchet distance.)
Assume h : M ×I → M is a minimal isotopy between

C1 and C2 and that it moves each point in C1 along a
curve whose length is at most 2

9
L. So we may assume

that the points t+ and s− are moved a distance at most
2

9
L by the isotopy. Let p be the point (4

9
L,− 2

9
ǫ) on the

curve C1. Assume that after the isotopy p is sent to
p′ = h(p, 1). If p′ is not on the line segment from s+ to
t to the left of the line x = 2

3
L then some point on C1

between p and t is moved a distance greater than 2

9
L, a
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contradiction. So, we will assume that p′ is on the line
segment from s+ to t with x coordinate at most 2

3
L.

p′

s− p

x =
2
9L

t

t+s+

x =
7
9L

Let l be the line segment from s− to t+. The point p
is below l and the isotopy takes p to p′ which is above
l. Both the line and point move during the isotopy, but
they cannot cross. The furthest we are allowing s− to
move under the isotopy is 2

9
L, so the x coordinate never

exceeds 2

9
L. Similarly, the x coordinate of t+ never

drops under 7

9
L as the point moves. Hence, during it’s

path in the isotopy p must have it’s x-coordinate either
go below 2

9
L or above 7

9
L. So the length that p moves

is at least L. This implies that any isotopy must move
some point a distance of at least 2

9
L, providing the lower

bound on isotopic Fréchet distance. �

In figure 4, a few intermediate curves of an isotopy
between the two curves are shown. This isotopy leaves
s and t fixed, s+ is sent to t− at unit speed and s− is
sent to t+ at unit speed. The line segments are sent
to straight lines connecting these points as they move.
The corners are the points that move furthest, and they
move a distance of

√
L2 + ǫ2. We conjecture that this

is the isotopic Fréchet distance between the two curves.
Note that in this isotopy, the trajectories of every point
follows a straight line, but this will not be not true in
general.

6 Calculating Isotopic Fréchet Distance

For curves in the plane, Fréchet distance can be calcu-
lated in quadratic time [1], and when polygonal obsta-
cles are present, homotopic Fréchet distance can also
be calculated in polynomial time [4]. These algorithms
rely on the fact that trajectories on any point or leash
must be a straight line if no obstacles are present and
a geodesic in general. However, for isotopies trajecto-
ries, we must avoid other intermediate points, and so
the trajectories will typically be piecewise linear. Also,
isotopies do not need to proceed monotonically; in fact,
they may have to back-trackmultiple times in the course
of a minimal isotopy.

For piecewise-linear curves or surfaces, isotopic
Fréchet distance can be approximated by turning it into
a high dimensional motion planning problem. This ap-
proach would work for both 2 and 3 dimensional shapes.
While it might yield good approximations to isotopic
Fréchet distance, we would not expect these algorithms
to be particularly fast.
It is also possible that previous approaches to mor-

phing, such as [9], may yield computations that would
realize the isotopic Fréchet distance, although the con-
nection is not clear.

7 Applications

As shown above, the isotropic Fréchet distance more
faithfully captures the effort of deforming one shape into
another when compared to the homotopic Fréchet dis-
tance, particularly between undulating shapes. Hence
it can serve as a better similarity measure between such
shapes, which occur in many relevant settings such as
human cortical surfaces which contain numerous folds
(sulci and gyri). It could also yield a similarity mea-
sure between different structures for the same protein.
Moreover, the algorithm for finding the isotropic Fréchet
distance would also yield an optimal morphing sequence
where each intermediate shape is free of intersections.
Such intersection-free morphing is highly desirable for
computer graphics applications such as animation, yet
computational methods are scarce [7, 8, 9].

8 Future Work

Obviously, the most interesting open problem remain-
ing is to determine an algorithm to compute isotopic
Fréchet distance. The main challenge here is that we
cannot fix obstacles in this measure, as is done in both
geodesic and homotopic Fréchet distance, since the ob-
stacles are the curves themselves as they change over
time, so the problem seems harder than computing
Fréchet distance between curves.
In more general spaces, not much is known beyond

the fact that computing Fréchet distance between sur-
faces is upper semi-computable [3] and hard for some
cases [2], so it is perhaps more reasonable to look for
approximation algorithms to compute isotopic Fréchet
distance in settings such as this.
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