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Establishing Strong Connectivity using Optimal Radius Half-Disk Antennas
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Abstract

Given a set S of points in the plane representing wireless
devices, each point equipped with a directional antenna
of radius r and aperture angle α ≥ 180◦, our goal is to
find orientations and a minimum r for these antennas
such that the induced communication graph is strongly
connected. We show that r =

√
3 suffices to establish

strong connectivity, assuming that the longest edge in
the Euclidean minimum spanning tree for S is 1. This
result is optimal in the sense that r =

√
3 is necessary in

the worst-case for α ∈ [180◦, 240◦). In contrast, r = 2
is sometimes necessary when α < 180◦.

1 Introduction

Consider a wireless network modeled by a set of planar
point sites S each equipped with a transceiver having
a transmission radius r. Typically one assumes that
communication is omni-directional and two nodes can
directly communicate with each other if the distance
separating them is r or less. Geometrically the trans-
mission region of an antenna at a point p is modeled
by a circle of radius r centered at p. The connectivity
of the network can be represented by a communication
graph G(S), which has a node for each point and an
edge between each pair of nodes separated by distance
r or less.

Recently there has been interest in using directional
antennas in place of their omni-directional counter-
parts [2, 3, 4, 5, 6, 7, 8]. Some advantages of using
directional antennas are that security can be enhanced
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and communication interference can be reduced. Fur-
thermore, if directional antennas are used cleverly the
power consumption of the network may be reduced. The
transmission region of a directional antenna at a node
p is geometrically represented by the sector of a circle
with its apex at p, a central angle α, and a radius r. Its
orientation is determined by a rotation θ about p. We
assume that all antennas have the same α and r; it is
only θ that varies. Thus communication between two
nodes is no longer symmetric and is best modeled by a
directed communication graph in which a directed edge
−→pq indicates that q lies in p’s sector.

The direction assignment problem is the task of find-
ing orientations for a set of directional antennas such
that the induced communication graph has certain de-
sired properties. In this paper we focus on obtaining a
strongly connected communication graph using minimal
r. We will assume S is normalized so that the length
of the longest edge in a Euclidean minimum spanning
tree is 1. It is not difficult to see that to achieve con-
nectivity in the normalized point set, r must be at least
1. Caragiannis et al. [3] show that, for antennas with
α < 240◦, an increase in r by a factor of

√
3 is sometimes

necessary to guarantee strong connectivity in the com-
munication graph. We show here that, for α ≥ 180◦, an
increase factor of

√
3 is always sufficient. In contrast,

when α < 180, the communication range must some-
times increase by a factor of 2 (i.e., consider points at
unit intervals on a line).

We review some related results. In addition to provid-
ing lower bounds on r, Caragiannis et al. [3] also give an
algorithm for orienting antennas with 180◦ ≤ α < 288◦

to obtain strong connectivity using r = 2 sin(180◦ −
α/2). Thus the algorithm presented here (with r =

√
3)

improves upon their result when 180◦ ≤ α < 240◦.
Damian and Flatland [6] consider directional antenna
angles of 120◦ and 90◦, and provide bounds of r = 5
and r = 7 (resp.) while at the same time bounding
the number of hops to 5 and 6 (resp.) for nodes within
unit distance. Bose et al. [8] have recently shown that
a connected network using omni-directional communi-
cation, can be replaced with directional antennas (with
any α > 0◦) so that the increase of r and hop distance
are bounded by constant factors (which depend on α).

In other related work, Nijnatten [2] also considers the
problem of finding suitable orientations of α-antennas
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to form a strongly connected graph, but in his variant
of the problem he allows a different r for each antenna
and seeks to minimize the overall power consumption of
the network. Ben-Moshe et al. [5] consider 90◦-antennas
but restrict the orientations to one of the four standard
quadrant directions. Bhattacharya et al. [4] consider
nodes with multiple directional antennas and focus on
minimizing the sum of the antenna angles for a fixed r.
Kranakis et al. [7] have recently published a survey of
results pertaining to the use of directional antennas in
wireless networks.

2 Orienting Antennas Using r =
√

3

Here we establish an upper bound of
√

3 for r, by means
of an algorithm for orienting 180◦-antennas of radius
r =

√
3 to achieve a strongly connected communica-

tion graph. Let MST5 be a minimum spanning tree of
P with maximum degree of five, such as the one de-
scribed in [1]. Our algorithm processes nodes in the
order in which they are visited in a breath-first traver-
sal of MST5. When a node is visited, it is assigned other
nodes (within distance

√
3) for its antenna to cover (so

as to satisfy certain invariants). If a node v is assigned
to cover node w, we will say that “v points to w,” and
we use the notation v → w. During the traversal of
MST5, nodes are colored white, gray, or black. Initially
all nodes are white, meaning that they have not yet
been visited and do not point to any nodes. Visited
nodes are black, and they point to at least one and at
most two other gray or black nodes. Gray nodes are
direct children of visited nodes but have not themselves
been visited. They point to one other gray or black
node.

Let the gray/black communication subgraph be the
graph consisting of the gray/black nodes and having
a directed edge −→uw between each pair of nodes where
u → w. Our goal is to assign/adjust what the nodes
point to by inserting/updating edges of length at most√

3 in the gray/black communication subgraph such
that, throughout the tree traversal, the gray/black com-
munication subgraph is strongly-connected. For each
gray/black node, observe that it is trivial to determine
an orientation for its 180◦-antenna that covers the one
or two nodes it points to. We note that the full com-
munication graph induced by these nodes may include
additional edges, since a node’s 180◦-antenna may (by
chance) cover nodes in addition to the one or two ex-
plicitly assigned to it, but these edges are not needed
for strong connectivity.

Let the root of MST5 be any node with degree one. To
get started, we color the root node black and its child
gray, and we constrain them to point to each other.
Starting with the root’s child, we visit the nodes one by
one in a breadth-first search order. When a node v is vis-
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Figure 1: Solid edges are MST5 edges; the arrows rep-
resent directed edges in the communication graph; the
dotted arrow in (b,e) represents v’s directed edge to
some other gray/black node (by Invariant (I2)).

ited, it is initially gray. During the visit, we change its
color from gray to black and change the color of its chil-
dren from white to gray. We then locally update/insert
directed edges in the gray/black communication sub-
graph so that the following invariants are satisfied:

(I1) Each black node points to at least one and at most
two gray/black nodes.

(I2) Each gray node points to exactly one gray/black
node.

(I3) For each gray node v, one of the following is true:

(I3a) v points to its parent p. (Fig. 1a)

(I3b) p points to v. (Fig. 1b)

(I3c) p has children s and d that are (resp.) the
first child clockwise and first child counter-
clockwise from v, and p → s → v → d → p.

In addition, ŝpv+ v̂pd ≤ 180◦, and s and d lie
on opposite sides of the line passing through
v and p. (Fig. 1c)

(I4) The gray/black communication subgraph has edges
no longer than

√
3 and is strongly connected.

We describe inductively on the number of black nodes
how to maintain these invariants. In the base case there
is one black node, the root of MST5, and it points to its
single gray child, which points back to the root. Observe
that invariant (I1) holds for the root and invariants (I2,
I3a) hold for its child. Also, observe that invariant (I4)
holds for the root and its child. Assume inductively that
the invariants hold after visiting and coloring i nodes
black. Let v be the (i+ 1)-st node visited.

We introduce some definitions so that we can process
v in a uniform manner independent of its degree. Let
boundary(v) be the children of v angularly adjacent to its
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parent p. More formally, let v0, v1, . . . , vk−1, for k ≤ 5,
be the nodes adjacent to v in counter-clockwise order
with v0 = p. Then, if deg(v) = 1, let boundary(v) = ∅;
otherwise, let boundary(v) = {v1, vk−1} (e.g., see v1 and
v3 in Fig. 1b.) An isolated child is a boundary child that
is angularly separated from v’s other children. In other
words, if deg(v) < 3, then isolated(v) = ∅; otherwise
if v̂1vv2 > 120◦, then v1 ∈ isolated(v), and similarly,
if ̂vk−1vvk−2 > 120◦, then vk−1 ∈ isolated(v) (e.g., in
Fig. 1b v3 is isolated, but v1 is not.) Let Children(v) =
{v1, . . . , vk−1}. The predicate in-range(v, w) = true iff
dist(v, w) ≤

√
3. For any gray node v, let source(v) be

the node constrained to point to node v, and let dest(v)
be the node that v is constrained to point to. We use
these terms only when well-defined within the context
of Invariant I3. For instance, if v satisfies (I3a), then
dest(v) = p; if v satisfies (I3b), then source(v) = p; and
if v satisfies (I3c), then source(v) = s and dest(v) = d
(see Fig. 1c).

Algorithm 1 details how we update/insert edges in
the gray/black communication subgraph when visiting
v. We begin by describing the operation of the algo-
rithm. The IF statement in lines 1-13 initializes the
variables vfrom and vto to be two nodes with a directed
edge between them such that one of the two nodes is v.
The existence of such an edge is guaranteed by Invariant
(I3). For example, in Fig 1b, vfrom = p and vto = v. In
Fig. 1c, there are two directed edges incident to v, one
of which will be used to initialize vfrom and vto; in this
case, there are no isolated children and we will assume
v4 is within range of d, so we set vfrom = v and vto = d.

The remaining pseudocode (lines 14-20) first deter-
mines if there is a boundary child of v that is within
distance

√
3 of both vfrom and vto. If so, then variable

vvia is initialized to one such child, with preference being
given in lines 17-18 to an isolated boundary child (which
will be explained shortly). For example, in Fig. 1b,
vvia = v3; in Fig. 1c, vvia = v4. Then the algorithm
does two things. First, it replaces the edge vfrom → vto
with the two edges, vfrom → vvia and vvia → vto (line 19).
This incorporates child vvia into the strongly connected
subgraph of gray/black nodes. Second, it calls the sub-
routine CHAIN (line 20) which inserts edges that link v
and its children other than vvia into a cycle. This incor-
porates the other children into the strongly connected
subgraph of gray/black nodes. See figure pairs 1b, 1e
and 1c, 1f showing before and after edge insertions. If,
however, there is no boundary child in range of vfrom
and vto in line 15, then vvia = ∅ when the call to CHAIN
in line 20 is made and all of v’s children are linked into
a cycle, thus incorporating them into the gray/black
strongly connected subgraph.

We give intuition regarding the isolated children and
the algorithm’s preference for them. If v has an isolated
boundary child, v′, then we may not be able to CHAIN

Algorithm 1: Visit( Node v )

1 if v → p then /* Invariant I3a */

2 vto = p, and vfrom = v

3 else if p→ v then /* Invariant I3b */

4 vto = v, and vfrom = p

5 else /* Invariant I3c */

6 if ∃v′ ∈ isolated(v) s.t. in-range(v′, dest(v))
then

7 vfrom = v, vto = dest(v)

8 else if ∃v′ ∈ isolated(v)
s.t. in-range(v′, source(v)) then

9 vfrom = source(v), vto = v

10 else if ∃v′ ∈ boundary(v)
s.t. in-range(v′, dest(v)) then

11 vfrom = v, vto = dest(v)

12 else
13 vfrom = source(v), vto = v

14 vvia = ∅
15 if ∃v′ ∈ boundary(v) s.t. in-range(v′, vfrom) ∧

in-range(v′, vto) then
16 vvia = v′

17 if ∃v′ ∈ isolated(v) s.t. in-range(v′, vfrom) ∧
in-range(v′, vto) then

18 vvia = v′

19 REPLACE vfrom → vto with vfrom → vvia and
vvia → vto

20 CHAIN(v,Children(v) \ {vvia})

Subroutine 2: CHAIN(v, v′1, v
′
2 . . . , v

′
`)

Add edges: v → v′1 → v′2 → . . . v′`−1 → v′` → v

v′ with the other children since the angle between it
and the next sibling (in clockwise or counter-clockwise
order) is > 120◦, and thus the next sibling may be at a
distance >

√
3. Observe that in the portion of the IF

statement involving Invariant (I3c) (lines 5-13), there is
a preference for initializing vfrom and vto such that they
both are in range of an isolated child. (Since one of these
two variables will be set to v which is within range of
all its children, we only need to check if dest(v) = d
or source(v) = s is within range.) This is done so that
vvia will be set to an isolated child (in line 18), and
thus an isolated child undergoes the REPLACE opera-
tion rather than being chained with the other children.
(In Section 3 we prove that the remaining children can
be chained.) If no isolated child is within range in lines
6-9, then the algorithm attempts to set vfrom and vto so
that they are within range of a regular boundary child
(lines 10-13). The reason for this is that to maintain
our invariants, we must not chain more than 3 children.
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Thus if there is a boundary child in range, then it un-
dergoes the REPLACE operation, and the other (at most
3) children are chained.

3 Proof of Correctness

We now prove that Algorithm 1 is correct. We begin
by proving that the CHAIN and REPLACE operations
only add edges between nodes that are in range of each
other and that they maintain Invariants (I1), (I2), and
(I3). We then show that these operations also ensure
that Invariant (I4) is satisfied. In what follows, let p(w)
denote the parent of node w.

Consider the REPLACE operation in line 19. Ob-
serve first that execution only reaches line 19 if
in-range(vfrom, vvia) = in-range(vvia, vto) = true, and
therefore the edge updates are valid. We now verify that
vvia satisfies the invariants after REPLACE. If v satisfies
(I3a), or if v satisfies (I3c) and in-range(vvia, dest(v)) =
true, then vfrom = v. After REPLACE, vvia will sat-
isfy (I3b) since v = vfrom → vvia and v = p(vvia).
Otherwise, v satisfies (I3b), or v satisfies (I3c) and
in-range(vvia, source(v)) = true, and so vto = v. After
REPLACE, vvia will satisfy (I3a) since vvia → vto = v
and v = p(vvia). It is easy to verify that vvia satisfies
(I2), and since REPLACE does not change the number
of nodes pointed to by vfrom and vto, they continue to
satisfy either (I1) or (I2).

We now prove the correctness of the CHAIN operation.
It is easy to verify that the children involved in CHAIN
satisfy (I2) afterwards, since their color changes from
white to gray and CHAIN makes them each point to
one node. In addition, v satisfies (I1) since v points to
one gray/black node before CHAIN, and CHAIN makes
it point to one more. Therefore, we focus on verifying
(I3). In each case that follows, when vvia 6= ∅, we assume
vvia is intialized to boundary child vdeg(v)−1; situations
in which vvia is initialized to v1 are analogous.

• Case 1 (deg(v) = 1) ∨ (deg(v) = 2 ∧ vvia 6= ∅). In
this case there are no points in Children(v) \ {vvia}.

• Case 2 (deg(v) = 2∧vvia = ∅)∨(deg(v) = 3∧vvia 6=
∅). v1 is the only child in Children(v) \ {vvia},
and CHAIN adds edges v → v1 → v. Since
v = p(v1), in-range(v, v1) = true. Thus, v1 satis-
fies (I3a).

• Case 3 (deg(v) = 3 ∧ vvia = ∅) ∨ (deg(v) =
4 ∧ vvia 6= ∅). v1 and v2 are the two children in
Children(v) \ {vvia}, and CHAIN adds edges v →
v1 → v2 → v. Note that since v = p(v1) =
p(v2), in-range(v, v1) = in-range(v, v2) = true. Also,
by Lemma 4 in-range(v1, v2) = true. Thus, v1 sat-
isfies (I3b) and v2 satisfies (I3a).

• Case 4 (deg(v) = 4 ∧ vvia = ∅) ∨ (deg(v) =
5). Note that if deg(v) ≥ 4 then vvia 6= ∅ by
Lemma 3. Therefore, we only need to handle
the case when deg(v) = 5 ∧ vvia 6= ∅. In this
case, v1 , v2, and v3 are the three children in
Children(v) \ {vvia}, and CHAIN adds edges v →
v1 → v2 → v3 → v. Note that since v = p(v1) =
p(v3), in-range(v, v1) = in-range(v, v3) = true. Also,
by Lemma 4 in-range(v1, v2) = in-range(v2, v3) =
true. Thus, v1 satisfies (I3b) and v3 satisfies (I3a).

To complete the proof, we show that v2 satisfies
Invariant (I3c). First we verify that v̂1vv2+v̂2vv3 ≤
180◦. This is true since vvia is a boundary child of
v, and thus the remaining children v1, v2 and v3 are
radially consecutive about v. For a degree 5 node,
any three radially consecutive adjacent nodes can
span at most 180◦, since otherwise the sum of all
five angles is more than 360◦ (because the angle
between radially consecutive adjacent edges in a
MST is at least 60◦). Finally, we verify that v1
and v3 are on opposite sides of the line through
v2v. For contradiction, suppose they are on or to
the same side of this line. Because v1, v2, v3 are
radially consecutive, this implies that all five nodes
adjacent to v are on or to the same side of the line
through v2v, which again is impossible in a MST.

We end by proving that (I4) is satisfied after visiting
v. Let G be the gray/black communication subgraph
just prior to v being visited. By the inductive hypothe-
sis, G is strongly connected. Consider the REPLACE op-
eration. Observe that both vfrom and vto are gray/black
nodes and thus are in G. In addition, vfrom → vto cor-
responds to an edge in G. It is straightforward then
to verify that adding node vvia to G and replacing edge
vfrom → vto with vfrom → vvia and vvia → vto results in
a strongly connected graph. Similarly, adding v’s chil-
dren, v′1, . . . , v

′
`, involved in the CHAIN operation to G

along with edges v → v′1 → · · · → v′` → v results in a
strongly connected graph. This combined with the fact
that v’s children are all colored gray when v is visited
ensures that Invariant (I4) is satisfied.

Due to space constraints, we omit the proof of the
following lemma.

Lemma 1 Let (a, b, c, d) be a path in a minimum span-
ning tree T such that a and d lie on or to a same side

of a line through bc. Then âbc+ b̂cd > 150◦.

Lemma 2 Let (a, b, c, d) be a path in MST5 such that
a and d lie on or to the same side of a line through bc.

Furthermore, 60◦ ≤ âbc ≤ 150◦, 60◦ ≤ b̂cd ≤ 150◦, and

âbc+ b̂cd ≤ 210◦. Then |ad| ≤
√

3.

Proof. Let D(p, r) denote the open disk of radius r
centered at point p, let ∂D(p, r) denote its boundary,
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Figure 2: Lemma 2: Regions of diameter
√

3.

and let D[p, r] = D(p, r) ∪ ∂D(p, r) denote the closed
disk. Rotate MST5 so that bc is vertical (as shown in
Fig. 2a), and a and d lie right of bc. For simplicity,
let |bc| = 1, since this is the value for which |ad| is

maximum. Assume b̂cd ≤ âbc. The case when b̂cd ≥
âbc is symmetrical. We start with a small observation
regarding certain regions of diameter

√
3.

Fix 0 ≤ α ≤ 30◦, and define the points p = p(α), q =
q(α), r = r(α) and s = s(α) as follows: p is the point

above and right of b, such that p̂bc = 120◦+α and |bp| =
1; q is the right intersection point between ∂D(p,

√
3)

and ∂D(b, 1); r is the intersection point between the ray
with origin p passing through b, and ∂D(p,

√
3); and s

is the corner of the equilateral triangle 4prs, right of r.
Refer to Figure 2a. Then the following properties hold:

(P1) p̂bc+b̂cq = 210◦+α
2 . This follows immediately from

the fact that p̂bq = 120◦ (because |pb| = |bq| = 1

and |pq| =
√

3), thus ĉbq = α and b̂cq = 90− α/2.

(P2) The closed region formed by the intersection
D[p,

√
3]∩D[r,

√
3]∩D[s,

√
3] has diameter

√
3. We

abuse the terminology here and denote this region
by lune[p, r, s].

We apply these properties repeatedly, to determine re-
gions for which the lemma holds. We start with the

value α = 30◦, so that p̂bc is at its maximum value of
150◦. Let points p, q, r, s be as defined above. (See Fig-

ure 2b.) By property (P1), b̂cq = 75◦. If both a and
d lie inside lune[p, r, s], then the lemma holds by prop-
erty (P2). Suppose then that d lies outside lune[p, r, s].
Observe that d cannot lie in D(b, 1), because then
|bd| < |bc| and |bc| is not an edge in MST5. So it must be

that b̂cd ≥ b̂cq = 75◦, meaning that âbc ≤ 135◦ (because
their sum does not exceed 210◦, by the lemma state-
ment). We capture this situation by resetting α = 15◦

and redefining p, q, r, s for this new α value. (See to

Figure 2c.) By property (P1), b̂cq = 82.5◦. If both
a and d lie inside lune[p, r, s], then the lemma holds
by property (P2). If d lies outside lune[p, r, s], then

b̂cd ≥ b̂cq = 82.5◦, meaning that âbc ≤ 127.5◦. After
repeating these steps k times, we either get the result of

the lemma, or we get b̂cd ≥ 60◦+30◦ ·( 1
2 + 1

22 +. . .+ 1
2k

),

and âbc ≤ 150◦−30◦ ·( 1
2 + 1

22 + . . .+ 1
2k

). In the limit, as

k −→∞, we get that b̂cd ≥ 90◦ and âbc ≤ 120◦ (other-
wise the lemma holds). When α = 0, q and c coincide:

p̂bc = 120◦ and |pc| =
√

3. (See Figure 2d.) Simple

calculations show that b̂cp = 30◦, p̂cs = 75◦, therefore

b̂cs = 105◦. If both a and d lie inside lune[p, r, s], then
the lemma holds. Otherwise, if d lies outside lune[p, r, s],

then b̂cd ≥ 105◦ and therefore âbc ≤ 105◦. From this
point on, we are in the situation b̂cd ≥ âbc, which is

symmetric to the situation b̂cd ≤ âbc discussed above.
This concludes the proof. �

Lemma 3 If deg(v) ≥ 4, then vvia is initialized. Fur-
thermore, if v has an isolated child, then vvia is initial-
ized to an isolated child.

Proof. If v satisfies invariant (I3a) or (I3b), then
vto, vfrom ∈ {v, p}. Note that at most one boundary

child v′ of v may satisfy v̂′vp > 120◦, because each an-
gle between radially consecutive children of v is at least
60◦, and the sum of all these angles is 360◦. It follows
that the second boundary child (which always exists,
because deg(v) ≥ 4) is within range of both p and v,
therefore the condition of the IF statement on line 15
evaluates to true and vvia is initialized on line 16. By
similar arguments, if v has an isolated boundary child,
say v1, then with the exception of v̂1vv2, all other angles
at v must be smaller than 120◦. Thus v1 is within range
of p and v, and therefore vvia is initialized to an isolated
child in line 18.

Next we discuss the more complex situation when
v satisfies invariant (I3c), so v is involved in a cycle
p → s → v → d → p. (See for example Fig. 1c.) First
recall that by Invariant (I3c), s and d lie to opposite
sides of the line through vp, and s, v and d are radi-
ally consecutive children of p, in counter-clockwise or-
der. Since deg(v) ≥ 4 and radially consecutive adjacent
edges in an MST form an angle of at least 60◦, boundary
children v1 and vk−1 (where k = deg(v)) cannot lie on
the same side of the line through vp. Also recall that
v1, p and vk−1 are radially consecutive neighbors of v,
in clockwise order. It follows that s and v1 are both on
or to one side of the line through vp, and d and vk are
both on or to the other side. We will use this fact when
applying Lemma 2 below.

Consider first the case when deg(v) = 4. Assume
first that v has no isolated children. Note that v̂1vp +
v̂3vp ≤ 240◦, because each of v̂1vv2 and v̂2vv3 is at least
60◦, and the sum of all these angles is 360◦. These
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together imply that v̂1vp+ v̂3vp+ ŝpd ≤ 240◦ + 180◦ =

420◦, so at least one of v̂3vp + v̂pd and v̂1vp + v̂ps is
no greater than 210◦. For the pair whose angle sum is
no more than 210◦, each individual angle is at least 60◦

and no more than 210◦ − 60◦ = 150◦. Having verified
the requirements of Lemma 2 for one of the two paths,
(v1, v, p, s) or (v3, v, p, d), we use it to show that either
in-range(v3, d) = true or in-range(v1, s) = true (or both).
If in-range(v3, d) = true, then vfrom and vto are initialized
in line 11 of the algorithm; otherwise, vfrom and vto are
initialized in line 13 of the algorithm. In either case, the
condition of the IF statement in line 15 of the algorithm
evaluates to true.

Assume now that v has an isolated child, say v1. By
definition, v̂1vv2 > 120◦. This along with the fact that
v̂2vv3 ≥ 60◦ implies that v̂1vp+ v̂3vp ≤ 180◦. It follows

that v̂1vp+ v̂3vp+ ŝpd ≤ 360◦. So by Lemma 1, v̂3vp+

v̂pd > 150◦. These together imply that v̂1vp + v̂ps ≤
210◦, and each of these angles has a value in the interval
[60◦, 150◦]. By Lemma 2, in-range(v1, s) = true. Then
vfrom and vto are initialized in line 9 of the algorithm,
and the conditions of both IF statements in lines 15
and 17 of the algorithm evaluate to true.

Consider now the case when deg(v) = 5. In this case,
v has no isolated children: each angle at v is at least
60◦, the sum of all five angles is 360◦, therefore each
angle is at most 120◦. It follows that v̂1vp + v̂4vp ≤
240◦. (In fact, a stronger upper bound is 180◦, but this
is irrelevant to the discussion here.) This situation is
identical to the degree 4, no isolated children case. �

Lemma 4 If deg(v) ≥ 3, let v′1, . . . , v
′
` ∈

Children(v) \ {vvia} be radially sorted around v.
Then, in-range(v′i, v

′
i+1) = true for i = 1, . . . , `− 1.

Proof. Recall that when deg(v) = 5, no angle between
two radially consecutive children of v exceeds 120◦, and
so the lemma is clearly true. So consider the situa-
tion where deg(v) < 5. By similar arguments, at most
one angle between two radially consecutive children of v
may exceed 120◦. Furthermore, one of these children is
necessarily a boundary (isolated) child since all angles
between radially consecutive children involve a bound-
ary child when v is of degree 3 or 4. As noted previously,
a degree 4 vertex can have at most one angle > 120◦. So
if v is of degree 4 and has an isolated child, then both
its boundary children form an angle < 120◦ with p, and
thus both are within range of p. When deg(v) = 3, if
one child is isolated, then they both are (since there are
only two children.) In this case, at least one of the two
children must be within range of p or else the sum of
the three angles at v is more than 360◦. If v satisfies in-
variant (I3a) or (I3b), then vto, vfrom ∈ {v, p}, therefore
the conditions of both IF statements on lines 15 and 17
evaluate to true. It follows that vvia is set to an isolated
child of v in line 18, and Children(v) \ {vvia} contains

either one child of v (the degree 3 case), or two children
of v within range of each other (the degree 4 case).

It remains to discuss the more complex situation when
v satisfies invariant (I3c), so v is involved in a cycle v →
d→ p→ s→ v, and ŝpv+ v̂pd ≤ 180◦. Assume without
loss of generality that v1 is isolated, and v1 and s lie on
the same side of vp (refer to Fig. 1c). If deg(v) = 3,
then v̂1vp + v̂2vp ≤ 240◦ (because v1 and v2 are both
isolated, by our assumption). Arguments similar to the
ones used in the proof of Lemma 3 show that in this
case either in-range(v2, d) = true, or in-range(v1, s) =
true, or both. If in-range(v2, d) = true, vfrom and vto are
initialized in line 7 of the algorithm; otherwise, vfrom and
vto are initialized in line 9 of the algorithm. In either
case, the conditions of both IF statements in lines 15 and
17 of the algorithm evaluate to true, and Children(v) \
{vvia} contains a single child of v.

If deg(v) = 4, Lemma 3 shows that in-range(v1, s) =
true. This guarantees that line 11 of the algorithm gets
executed and vvia = v1. It follows that Children(v) \
{vvia} contains two children of v within range of each
other. �

Acknowledgement. Many thanks to the Fields Insti-
tute of Canada for financial support, and to all partici-
pants of the Fields workshop for fruitful discussions.

References

[1] W. Wu, H. Du, X. Jia, Y. Li, and S.C.-H. Huang: Mini-
mum connected dominating sets and maximal indepen-
dent sets in unit disk graphs. Theor. Comp. Sci., 352:1–
7, 2006.

[2] F. van Nijnatten: Range Assignment with Directional
Antennas. Master’s Thesis, Technische Universiteit
Eindhoven, 2008.

[3] I. Caragiannis, C. Kaklamanis, E. Kranakis,
D. Krizanc, and A. Wiese: Communication in
wireless networks with directional antennae. Proc.
of the 20th Symp. on Parallelism in Algorithms and
Architectures, Proc. of SPAA, pp. 344–351, 2008.

[4] B. Bhattacharya, Y. Hu, Q. Shi, E. Kranakis, and
D. Krizanc: Sensor network connectivity with multi-
ple directional antennae of a given angular sum. Proc.
of IPDPS, pp. 1–11, 2009.

[5] B. Ben-Moshe, P. Carmi, L. Chaitman, M.J. Katz,
G. Morgenstern, and Y. Stein: Direction Assignment
in Wireless Networks. Proc. of CCCG, pp. 39–42, 2010.

[6] M. Damian, and R. Flatland: Spanning Properties
of Graphs Induced by Directional Antennas. Proc. of
FWCG, Stony Brook, NY, 2010.

[7] E. Kranakis, D. Krizanc, and O. Morales: Maintain-
ing Connectivity in Sensor Networks Using Directional
Antennae. Theor. Aspects of Distr. Comp. in Sensor
Netw., Part 2, pp. 59–84, 2011.

[8] P. Bose, P. Carmi, M. Damian, R. Flatland, M.J. Katz,
and A. Maheshwari. Switching to Directional Antennas
with Constant Increase in Radius and Hop Distance To
appear in WADS, 2011.


