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A Topologically Convex Vertex-Ununfoldable Polyhedron
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Abstract

We construct a polyhedron that is topologically convex
(i.e., has the graph of a convex polyhedron) yet has no
vertex unfolding: no matter how we cut along the edges
and keep faces attached at vertices to form a connected
(hinged) surface, the surface necessarily unfolds with
overlap.

1 Introduction

Polyhedron unfolding has a long history dating back to
Albrecht Dürer in 1525; see [3]. In general, the goal
is to cut along a one-dimensional subset of the poly-
hedron’s surface to enable the remainder of the surface
to unfold into the plane without overlap. An edge un-
folding consists of cutting along a subset of the edges
of the polyhedron, while keeping the surface interior-
connected; the planar unfolding is then uniquely de-
termined by the development (local unfolding) of the
intrinsic metric in the plane. A vertex unfolding con-
sists of cutting along a subset of the edges, typically all
of them, while keeping the faces connected together via
shared vertices (without any crossing connections at the
vertices); the planar unfolding is no longer unique, but
rather acts like a hinged dissection, with faces able to
rotate around shared vertex hinges.

Vertex unfolding was introduced in [2] as a less re-
strictive form of edge unfolding. They proved that ev-
ery triangulated manifold (in any dimension, though we
focus here on 2-manifolds in 3D) has a vertex unfolding.
This result shows that vertex unfolding is more powerful
than edge unfolding, as there are triangulated polyhe-
dra that are edge-ununfoldable (have no edge unfolding)
[1].

In this paper, we solve the “obvious question left
open” by [2]: to what extent is the assumption of trian-
gular faces necessary for vertex unfolding? Specifically,
they asked whether every polyhedron with simply con-
nected faces has a vertex unfolding, and whether every
polyhedron with convex faces has a vertex unfolding.
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Figure 1: The polyhedron P is a union of two identi-
cal overlapping triangular prisms, and—with proper di-
mension choices—has no vertex unfolding. The labeled
points have coordinates A = (1, 2, 1), B = (1,−2, 1),
C = (5,−2, 1), D = (5, 2, 1), E = (2, 1,−1), F =
(2, 5,−1), G = (0, 5, 3); the rest can be derived from
symmetries around the z-axis and the lines x = ±y in
the xy-plane.

We prove that the answer to the first problem is “no”,
though the second problem remains open.

More precisely, we construct “topologically con-
vex” vertex-ununfoldable polyhedra, strengthening the
CCCG 1999 result of edge-ununfoldable polyhedra [1].
A polyhedron is topologically convex if its graph (1-
skeleton) is the graph of a convex polyhedron, or equiv-
alently by Steinitz’s Theorem, it is 3-connected and pla-
nar. In terms of the polyhedron’s surface, topological
convexity is equivalent to requiring that every face is
homeomorphic to a disk (as they are in a convex poly-
hedron), and that every two faces meet at one edge,
one vertex, or not at all (as they would in a convex
polyhedron). In particular, topological convexity for-
bids the example of a small box attached in the middle
of a face of another box, which is the only previously
known vertex-ununfoldable polyhedron [2].

2 Vertex-Ununfoldable Polyhedra

We present two related topologically convex vertex-
ununfoldable polyhedra. Our first example, P , is sim-
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Figure 2: If faces S1 and S3 were hinged at A, they
must be in this configuration by Observation 2. But as
there are overlaps, this is not allowed.

ply the union of two overlapping, identical triangular
prisms, as shown in Figure 1. For concreteness’s sake,
we have listed coordinates of the labeled vertices, and
the rest can be inferred from symmetries. To prove that
P has no vertex unfolding, we make two self-evident ob-
servations:

Observation 1 If two polygons T1 and T2 have two
vertices v1 ∈ T1 and v2 ∈ T2 whose angles add to more
than 360◦, then these vertices cannot be hinged in the
plane without the polygons overlapping.

Observation 2 If the angles at v1 and v2 add to exactly
360◦, and if these vertices are hinged without overlap in
the plane, then they must be oriented to exactly cover
the 360◦ surrounding the hinge.

Notice these obstructions to vertex unfoldings are en-
tirely local in nature, involving only two polygons joined
at a vertex.1 These observations alone are enough to
prove our claim:

Theorem 3 Polyhedron P has no vertex unfolding.

Proof. We will show that no lightly shaded face (as
in Figure 1) can connect to a dark face in any planar
vertex hinging of the faces, and therefore any proposed
vertex unfolding is disconnected. Indeed, any light-dark
connection must happen at one of the eight central ver-
tices, and as they are all identical under symmetry, we
may focus on vertex A. Because α > 270◦ and β = 90◦,
Observation 1 implies that S1 and S2 cannot hinge at
A. Because α + γ = 360◦, by Observation 2, if S1 and
S3 were hinged at A then they must be hinged as in
Figure 2. But the dimensions were chosen so that these
polygons would overlap in this configuration. �

By contrast, if the unfolding is allowed to have two
connected components, then an edge unfolding is pos-
sible, as in Figure 3. Also, the use of Observation 2
required more global knowledge than just the vertex
angles: the shapes of polygons S1 and S3 were crucial.
Indeed, if AD (and all symmetric copies) were chosen
shorter, then an edge unfolding of P would be possible,
as in Figure 4.

1For the related edge-unfolding problem, these are called 1-
local obstructions [4].

Figure 3: An edge unfolding of P into two connected
components.

Figure 4: If the prisms were shorter, an edge unfolding
would exist, as depicted here.

In fact, Observation 1 alone is sufficient to provide a
vertex-ununfoldable polyhedron. Perturb polyhedron P
to a new polyhedron P ′ by increasing γ slightly (while
maintaining symmetry) so that α+ γ′ > 360◦; this also
increases β slightly to β′. Such a polyhedron P ′ is shown
in Figure 5. Because α + β′, α + γ′ > 360◦, it follows
by Observation 1 that S′1 cannot hinge to S′2 or S′3 at
vertex A, so as before, any vertex unfolding must be
disconnected:

Theorem 4 Polyhedron P ′ has no vertex unfolding.

3 Open Questions

The foremost open question concerning vertex unfold-
ing is to find the largest natural class of polyhedra that
always admit vertex unfoldings. We have shown here
that topologically convex is too large a class. In fact,
topologically convex and star shaped is too large, be-
cause both P and P ′ are star shaped—in both cases,
the origin can see the entire polyhedron.

Another natural question, posed in [2], is whether
(topologically convex) polyhedra with convex faces ad-
mit vertex unfoldings. We conjecture that the answer
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Figure 5: Polyhedron P ′ is obtained from P by mov-
ing vertex C to C ′ = (5,−3, 3) and similarly for its
symmetric copies. This polyhedron has no vertex un-
folding based solely on the fact that α+ β′ > 360◦ and
α+ γ′ > 360◦.

is “no”, but the methods used in this paper cannot be
directly extended. Indeed, any vertex of such a polyhe-
dron with negative curvature must have at least four in-
cident faces, any two of which could potentially remain
connected, so the local conclusions are not as strong.

Finally, we echo an open problem implicit in [2] and
explicit in [3, Open Problem 22.20]: does every convex
polyhedron have a vertex unfolding? This is a weaker
form of the famous convex edge-unfolding conjecture [3].
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