
CCCG 2011, Toronto ON, August 10–12, 2011

Bichromatic Line Segment Intersection Counting in O(n
√
log n) Time

Timothy M. Chan∗ Bryan T. Wilkinson†

Abstract

We give an algorithm for bichromatic line segment in-
tersection counting that runs in O(n

√
log n) time under

the word RAM model via a reduction to dynamic prede-
cessor search, offline point location, and offline dynamic
ranking. This algorithm is the first to solve bichromatic
line segment intersection counting in o(n log n) time.

1 Introduction

We consider bichromatic line segment intersection
counting : given a set of disjoint blue line segments and a
set of disjoint red line segments in the plane, output the
number of intersections of blue segments with red seg-
ments. Bichromatic line segment intersection problems
arise in applications such as map overlay in GIS. We give
an algorithm that runs in O(n

√
log n) time, where n is

the total number of segments, under the standard word
RAM model with w-bit words. The input segments are
specified by their endpoints, which are given as O(w)-
bit integer or rational coordinates. Our result answers
an open question of Chan and Pǎtraşcu [6] by showing
that bichromatic line segment intersection counting can
be solved in o(n log n) time. Thus, the problem finally
joins the ranks of many other problems in computa-
tional geometry that have Ω(n log n) lower bounds un-
der the comparison model but o(n log n) upper bounds
under the word RAM model. Recent examples include
2-d Voronoi diagrams [2], 3-d convex hulls [6], and 3-d
layers-of-maxima [12]. The word RAM model is im-
portant because its power corresponds very closely to
that of actual programming languages (our algorithm
uses only standard operations, such as arithmetic and
bitwise logical operations) and it includes only the rea-
sonable assumption that each input value is an integer
(or rational) that fits in a word.

Chazelle et al. [7] give algorithms based on segment
trees for bichromatic segment intersection reporting in
O(n log n + k) time, where k is the number of inter-
sections reported, and for counting in O(n log n) time.
Chan’s trapezoid sweep algorithm [3] for the report-
ing problem also achieves O(n log n + k) time, but has

∗David R. Cheriton School of Computer Science, University of
Waterloo, tmchan@uwaterloo.ca
†David R. Cheriton School of Computer Science, University of

Waterloo, b3wilkin@uwaterloo.ca. Supported by NSERC.

smaller constant factors and can be extended to curve
segments. Mantler and Snoeyink [11] modify the trape-
zoid sweep to use operations of algebraic degree at most
2 and also to support counting in O(n log n) time.

Our algorithm follows the high-level idea of Mantler
and Snoeyink [11] but reduces the low-level computa-
tions to dynamic predecessor search, offline point loca-
tion, and offline dynamic ranking. Note that we cannot
base similar reductions on just any high-level algorithm;
the algorithm of Mantler and Snoeyink [11] gives par-
ticularly exploitable structure to the bichromatic line
segment intersection counting problem. The algorithm
of Chazelle et al. [7] inherently requires O(n log n) time
due to the use of segment trees, and Chan’s trapezoid
sweep does not address the counting problem.

Recently, efficient algorithms have arisen for both of-
fline point location and offline dynamic ranking under
the word RAM model. Chan and Pǎtraşcu [6] give an
algorithm for offline point location that locates O(n)
points in a subdivision of the plane defined by O(n) seg-

ments in n · 2O(
√
log logn) time. Chan and Pǎtraşcu [5]

also give an algorithm for offline dynamic ranking that
processes O(n) queries and updates in O(n

√
log n) time.

We use both of these algorithms as subroutines.

In Section 2 we give an overview of Mantler and
Snoeyink’s algorithm [11] and describe a 1-d data struc-
ture problem to which it reduces. In Section 3 we discuss
a rank space reduction which is integral to achieving
speed ups under the word RAM model. In Section 4 we
describe our data structure, which we analyse in Sec-
tions 5 and 6.

2 High-Level Algorithm

We assume that the endpoints of all of the given seg-
ments are in general position. Otherwise, perturbation
techniques can be used to handle any degeneracies [10].
We begin with an overview of the algorithm of Mantler
and Snoeyink [11], simplified under our non-degeneracy
assumption. The algorithm is a plane sweep that keeps
track of all of the segments that intersect the vertical
sweep line. The efficiency of the algorithm is achieved by
storing the segments in maximal monochromatic bun-
dles of segments. The algorithm keeps an alternating
list of red and blue bundles. The order of the bundles in
this list may not be consistent with the order of the seg-
ments along the sweep line. However, the order of the

23d Canadian Conference on Computational Geometry, 2011

bundles of a single colour in the list is always consistent
with the order of segments of the same colour along the
sweep line. Figure 1 shows the grouping of segments
into bundles at various positions of an example plane
sweep.

1

2

3

4

1

2

3

4

1

2

e1

2e

Figure 1: Ordering of red (dashed) and blue (solid) bun-
dles before and after processing endpoints e1 and e2.

When the plane sweep reaches an endpoint e, our
goal is to swap red and blue bundles until all blue bun-
dles below e are below all red bundles above e, and all
blue bundles above e are above all red bundles below e.
When we swap a red bundle br and a blue bundle bb it
is because all segments of br intersect with all segments
of bb. So, whenever we perform a swap, we add |br| · |bb|
to our bichromatic segment intersection counter.

First, we find the red bundles immediately above and
below e. If e is inside a red bundle, we split this bundle
into two bundles such that one is above e and the other
is below e. If br is the red bundle above e, we check if
the blue bundle bb that follows br in our list of bundles
is below e. If so, we swap br and bb. Doing so may result
in two adjacent red bundles and/or two adjacent blue
bundles. We merge these adjacent bundles of the same
colour. We repeat this process until bb is not below e. In
the last repetition, e may be inside bb, in which case we
split bb around e before swapping. We follow a similar
process in the other direction.

After all of the bundle swapping has occurred, we still
need to handle the inclusion or exclusion of the segment
with endpoint e. If e is a left endpoint, we insert the
segment into a new bundle which is placed between the
lowest bundle above e and the highest bundle below e.
If e is a right endpoint, we delete the segment. If the
segment is the only segment in its bundle, deleting the
segment removes its bundle. In either the insertion or
deletion case, we merge adjacent bundles of the same
colour as necessary.

For a proof of correctness, we refer the reader to
Mantler and Snoeyink’s paper [11]. The main idea of the
proof is that the order of the bundles is always consistent

with the order of a certain deformation of the segments
along the sweep line. This deformation pushes inter-
sections as far to the right as possible without moving
endpoints, adding intersections, or removing intersec-
tions.

The low-level computations of the algorithm can be
encapsulated into a data structure that supports the
following operations:

Insert(s, b`, bh)
Inserts a new bundle containing only segment s be-
tween bundles b` and bh.

Delete(s)
Deletes segment s, removing its bundle b if s is the
only segment in b.

IsAbove(e, b) / IsBelow(e, b)
Determines whether or not endpoint e lies above or
below all segments in bundle b.

Split(e, b)
Splits bundle b into two bundles b` and bh such
that b` contains all segments below endpoint e and
bh contains all segments above endpoint e. Figure 2
shows an example of a bundle being split.

b

e

hb

bℓ

Figure 2: Splitting bundle b at endpoint e.

Merge(b`, bh)
Merges two adjacent bundles b` and bh of the same
colour into a single bundle.

Swap(b`, bh)
Swaps the order of two adjacent bundles b` and bh
of different colours.

HighestBelow(e) / LowestAbove(e)
Finds the highest (lowest) red bundle in which all
segments are below (above) endpoint e.

Next(b) / Previous(b)
Finds the bundle that follows or precedes bundle b
in sorted order.

CCCG 2011, Toronto ON, August 10–12, 2011

Size(b)
Calculates the number of segments in bundle b.

The analysis presented by Mantler and Snoeyink [11]
reveals that each of these operations is invoked at most
O(n) times. The main idea of their analysis is that dur-
ing the processing of each endpoint, there is a constant
upper bound on the number of bundle splits, and thus
there are a linear number of bundles over the course
of the algorithm. All of the other operations can be
charged to bundles.

3 Rank Space Reduction

Before we describe our data structure, we discuss a pre-
processing step in which we perform rank space reduc-
tion. Rank space reduction is important under the word
RAM model to, for example, reduce the cost of pre-
decessor search with van Emde Boas trees [14] from
O(log logU), where U is the size of the universe, to
O(log log n). In particular, we want to assign ids to
segments such that segment s1’s id is greater than seg-
ment s2’s id if and only if s1 is above s2. Since red and
blue segments can intersect, there may be no mapping
that is consistent for all segments throughout the en-
tire plane sweep. However, Palazzi and Snoeyink [13]
give a topological ordering that is consistent for a set
of disjoint segments. We can thus assign ids that are
consistent with aboveness to all red segments and all
blue segments separately, based on their own separate
topological orderings. The topological sort involves a
plane sweep that runs in O(n log n) time, since it uses a
balanced search tree in order to find the segment above
the current endpoint.

Instead of using this balanced search tree, we can find
the segment above every endpoint in advance by com-
puting the trapezoidal decomposition of the segments.
Chan and Pǎtraşcu [4] reduce general offline 2-d point
location to offline 2-d point location in a vertical slab
that is divided into regions by disjoint segments that
cut across the slab. We call this latter problem the slab
problem. The same techniques (persistence and expo-
nential search trees) can be used to reduce trapezoidal
decomposition of disjoint segments to the slab problem.
Chan and Pǎtraşcu [6] give an algorithm for the slab
problem that yields an algorithm for trapezoidal decom-
position of disjoint segments that runs in n·2O(

√
log logn)

deterministic time. The topological sort thus has the
same runtime.

4 Data Structure

All segments have ids, as assigned by the rank space
reduction described in Section 3. We keep a doubly
linked list of bundles. A bundle stores pointers to its
top and bottom segments. Only segments which are

top or bottom segments of a bundle have pointers back
to their bundle. In addition to this doubly linked list,
we keep two predecessor search data structures that
use segment ids as keys. These trees, T and B, con-
tain only those red segments that are at the tops and
bottoms of their bundles, respectively. If we were to
use van Emde Boas trees [14], updates would run in
O(log logU) expected time. Since we want to avoid ran-
domization, we use instead a data structure of Anders-
son and Thorup [1], which supports queries and updates
in O(log log n log logU

log log logU) deterministic time. Due to the
rank space reduction, these operations actually run in

O(log2 logn
log log logn) time. Finally, we keep dynamic ranking

data structures Rr and Rb, also using segment ids as
keys, for all red segments and blue segments, respec-
tively, that intersect the sweep line. We defer our selec-
tion of a particular dynamic ranking data structure to
Section 5.

Lemma 1 After a preprocessing step that runs in n ·
2O(
√
log logn) time, we can find the segment of a given

colour above or below endpoint e along the sweep line in
O(1) time.

Proof. Assume without loss of generality that e is red.
The red segments above and below e can be found in
O(1) time by navigating the red trapezoidal decomposi-

tion that was computed in n · 2O(
√
log logn) time in Sec-

tion 3. Finding the blue segments above and below e is
equivalent to locating e within the blue trapezoidal de-
composition. So, in the preprocessing step, we perform
offline planar point location of all red endpoints in the
blue trapezoidal decomposition. The blue trapezoidal
decomposition has linear complexity and has vertices
with O(w)-bit rational coordinates. We can perform of-
fline planar point location of the red endpoints in such
a subdivision of the plane in n · 2O(

√
log logn) time using

another algorithm of Chan and Pǎtraşcu [6]. �

We now describe how we implement all of the opera-
tions of the data structure, using the ability to find the
segments above and below an endpoint in constant time
via Lemma 1 as a primitive.

Insert(s, b`, bh)
We create a new bundle b in which s is both the top
and bottom segment and rewire the next/previous
bundle pointers between b, b`, and bh. We insert s
into Rc, where c is the colour of s. If s is red, we
also insert it into both T and B.

Delete(s)
If s is both the top and bottom segment of its
bundle b, s has a pointer to b. We rewire the
next/previous bundle pointers around b to ex-
clude b. If s is only the top (bottom) segment of b,
we can find the new boundary of b by finding the

23d Canadian Conference on Computational Geometry, 2011

segment of the same colour below (above) the end-
point of s on the sweep line. If s is red, we delete
s from T and/or B, as necessary. In any case, we
delete s from Rc, where c is the colour of s.

IsAbove(e, b) / IsBelow(e, b)
We check in constant time whether or not e is above
(below) the top (bottom) segment of b. The end-
point e must then be above (below) all other seg-
ments of b.

Split(e, b)
We find the segments of b’s colour above and be-
low e. The segment below e becomes the top seg-
ment of b, which we relabel to b`. The original top
segment of b becomes the top segment of a new
bundle bh. The bottom segment of bh is the seg-
ment above e. We rewire the next/previous bundle
pointers to include bh after b`. If b was red, we add
the segment below e to T and the segment above e
to B.

Merge(b`, bh)
If b` and bh are red, we remove the top segment of b`
from T and the bottom segment of bh from B. We
replace the top segment of b` with the top segment
of bh and rewire the next/previous bundle pointers
to exclude bh.

Swap(b`, bh)
We rewire next/previous bundle pointers to swap
the order of b` and bh.

HighestBelow(e) / LowestAbove(e)
We find the red segment immediately below e and
find its predecessor in T . The bundle of the result-
ing top segment is the highest bundle below e. A
similar process finds the lowest bundle above e.

Next(b) / Previous(b)
We follow b’s next or previous bundle pointer.

Size(b)
We query Rc, where c is the colour of b, for the
ranks of the top and bottom segments of b. We
obtain the size of b by subtracting the latter from
the former and adding 1.

5 Handling Dynamic Ranking

Dynamic ranking can be solved using Dietz’s data struc-
ture [8], which supports both queries and updates in
O(logn

log logn) time. The high-level algorithm described in

Section 2 must determine the sizes of at most O(n) bun-
dles. Also, each endpoint causes a single insertion or
deletion from a rank query data structure. Thus, if
we were to use Dietz’s data structure, dynamic rank-
ing would contribute O(n logn

log logn) time to the runtime

of our algorithm. However, by considering the purpose
of our rank queries, it turns out that we can do better.

We use dynamic ranking data structures to determine
the sizes of bundles. The high-level algorithm requires
these sizes for a single purpose: to calculate the total
number of bichromatic intersections between a red bun-
dle and a blue bundle that intersect. It is important
to note that the results of these calculations have no
effect on future decisions of the algorithm. In fact, the
results only affect the algorithm’s output value. An-
other way to calculate the same output value is to per-
form all of the rank queries and updates offline at the
end of the algorithm. Offline dynamic ranking can be
solved faster than its online counterpart. Specifically,
Chan and Pǎtraşcu [5] give an algorithm for offline dy-
namic ranking that handles O(n) queries and updates
in O(n

√
log n) time.

6 Analysis

The plane sweep requires that all endpoints are sorted
by their x-coordinate, which can be performed in
O(n log log n) deterministic time [9]. The rank space

reduction of Section 3 is performed in n · 2O(
√
log logn)

time. The preprocessing step of Lemma 1 also runs in
n · 2O(

√
log logn) time. The high-level algorithm invokes

each operation of our data structure at most O(n) times.
All operations consist of a constant number of pointer
assignments, queries and updates to dynamic predeces-
sor search data structures, and queries and updates to
dynamic ranking data structures. The queries and up-
dates to the dynamic predecessor search data structures

contribute at most O(n log2 logn
log log logn) deterministic time

to the runtime of the algorithm, using Andersson and
Thorup’s data structure [1]. As discussed in Section 5,
the queries and updates to the dynamic ranking data
structures can be handled offline in O(n

√
log n) time.

This final contribution to the algorithm’s runtime dom-
inates all others; thus, the algorithm as a whole runs in
O(n
√

log n) time.

References

[1] A. Andersson and M. Thorup. Dynamic ordered sets
with exponential search trees. J. ACM, 54, June 2007.

[2] K. Buchin and W. Mulzer. Delaunay triangulations in
O(sort(n)) time and more. J. ACM, 58:6:1–6:27, April
2011.

[3] T. M. Chan. A simple trapezoid sweep algorithm for
reporting red/blue segment intersections. In In Proc.
6th Canad. Conf. Comput. Geom, pages 263–268, 1994.

[4] T. M. Chan and M. Pătraşcu. Transdichotomous re-
sults in computational geometry, I: Point location in
sublogarithmic time. SIAM J. Comput., 39:703–729,
July 2009.

CCCG 2011, Toronto ON, August 10–12, 2011

[5] T. M. Chan and M. Pătraşcu. Counting inversions, of-
fline orthogonal range counting, and related problems.
In Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’10, pages
161–173, Philadelphia, PA, USA, 2010. Society for In-
dustrial and Applied Mathematics.

[6] T. M. Chan and M. Pǎtraşcu. Transdichotomous results
in computational geometry, II: Offline search. CoRR,
abs/1010.1948, 2010. Also in Proceedings of the Thirty-
Ninth Annual ACM Symposium on Theory of Comput-
ing, STOC ’07, pages 31–39, New York, NY, USA, 2007.
ACM.

[7] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and
M. Sharir. Algorithms for bichromatic line-segment
problems and polyhedral terrains. Algorithmica,
11:116–132, 1994. 10.1007/BF01182771.

[8] P. F. Dietz. Optimal algorithms for list indexing and
subset rank. In Proceedings of the Workshop on Algo-
rithms and Data Structures, WADS ’89, pages 39–46,
London, UK, 1989. Springer-Verlag.

[9] Y. Han. Deterministic sorting in O(n log log n) time and
linear space. In Proceedings of the Thiry-Fourth Annual
ACM Symposium on Theory of Computing, STOC ’02,
pages 602–608, New York, NY, USA, 2002. ACM.

[10] H. Mairson and J. Stolfi. Reporting and counting inter-
sections between two sets of line segments. In Theoret-
ical Foundations of Computer Graphics and CAD, vol-
ume 40 of Proceedings of the NATO Advanced Science
Institute, Series F, pages 307–326. Springer-Verlag,
1988.

[11] A. Mantler and J. Snoeyink. Intersecting red and
blue line segments in optimal time and precision. In
J. Akiyama, M. Kano, and M. Urabe, editors, Discrete
and Computational Geometry, volume 2098 of Lecture
Notes in Computer Science, pages 244–251. Springer
Berlin / Heidelberg, 2001. 10.1007/3-540-47738-1 23.

[12] Y. Nekrich. A fast algorithm for three-dimensional lay-
ers of maxima problem. CoRR, abs/1007.1593, 2010.

[13] L. Palazzi and J. Snoeyink. Counting and reporting
red/blue segment intersections. CVGIP: Graph. Models
Image Process., 56:304–310, July 1994.

[14] P. van Emde Boas. Preserving order in a forest in less
than logarithmic time. In Proceedings of the 16th An-
nual Symposium on Foundations of Computer Science,
pages 75–84, Washington, DC, USA, 1975. IEEE Com-
puter Society.

