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Approximating Geodesic Distances on 2-Manifolds in R3

Christian Scheffer∗ Jan Vahrenhold†

Abstract

We present an algorithm for approximating geodesic dis-
tances on 2-manifolds in R3. Our algorithm works on an
ε-sample of the underlying manifold and computes ap-
proximate geodesic distances between all pairs of points
in this sample. The approximation error is multiplica-
tive and depends on the density of the sample. For an
ε-sample S, the algorithm has a near-optimal running
time of O

(
|S|2 log |S|

)
, an optimal space requirement of

O
(
|S|2

)
, and approximates the geodesic distances up to

a factor of 1−O (
√
ε) and (1−O (ε))−1.

1 Introduction

The study of geodesic (paths and) distances on three-
dimensional objects has a long history both in Differ-
ential and Discrete Geometry, and a recent survey [4]
summarizes the main results and the variety of appli-
cations, e.g., in GIS and Robotics. If the underlying
object is differentiable, methods from Differential Ge-
ometry, e.g. special classes of partial differential, can be
applied. If, on the other hand, the underlying object is
non-differentiable, e.g. polyhedral objects, discretized
versions of algorithms from Differential Geometry or
discrete shortest-paths algorithm have to be used.

The problem setting we focus on can be seen as a hy-
brid between these two extremes: We study the problem
of computing geodesic distances on 2-manifolds in R3

but assume that the input is a set of points sampled from
the considered surface. The task then is to compute
geodesic distances on the manifold between all pairs of
points in the sample. Since the set of sample points can
only approximate the manifold, the algorithm can only
be expected to compute approximate geodesic distances.
Our main contribution is to show that an approximation
with an multiplicative approximation error that only de-
pends on the quality of the point sample with respect
to the manifold can be computed in near-optimal time.

1.1 Shortest Paths on Manifolds

Kimmel and Sethian [7] present the so-called fast march-
ing method to compute geodesics on a discretized (ex-
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plicitly given) manifold. For the case of computing
distance functions and geodesics on an implicitly given
manifold, we can resort to the theoretical framework of
Mémoli and Sapiro [8]. Their theory is based upon con-
tinuous differential geometry methods, and a discrete
version can be implemented using the fast marching
method which results in a running time of O

(
n2 log n

)
for a discretized manifold consisting of n points. The
algorithm approximates geodesic distances up to an ad-
ditive error term that depends on the granularity of
the discretized manifold (and thus on the number n of
points), also, an upper bound on the local curvature of
the manifold has to be known to the algorithm. While
this latter restriction can be removed using methods we
developed in a companion paper [10], the additive er-
ror seems to be inherent to any approach using the fast
marching method.

1.2 Shortest Paths on Polyhedral Objects

In contrast to the algorithms described in the previ-
ous section, our approach is to first to approximate
the manifold by a polyhedral object and then to com-
pute (exact) geodesics on this approximation. As for
the case of explicitly given manifolds, the fast marching
method of Kimmel and Sethian can be used, see, e.g.,
the work by Mémoli and Sapiro [9], but the analysis
shows that it still results in an additive approximation
error. Efficient exact shortest path computations on
general polyhedra are considered complex and challeng-
ing, and recent surveys [1, 4] conclude that the general
problem is still wide open. The currently best known
results related to shortest path computations on poly-
hedra are due to Chen and Han [5] and Schreiber [11].
Chen and Han [5] present an algorithm based on a con-
tinuous Dijkstra technique that, after O

(
n2

)
prepro-

cessing time, can answer distance queries to a fixed
source in O (q · log n/ log q) time where 1 ≤ q ≤ n is a
trade-off parameter. Since this source has to be known
during preprocessing, using their algorithm as a build-
ing block in an all-pairs geodesics problem results in
O

(
n3

)
running time. The algorithm by Schreiber [11]

solves the single-source shortest path problem in opti-
mal O (n log n) time but assumes that the underlying
polyhedron belongs to one of three classes of polyhedra
where the edge length of adjacent faces do not differ
by more than a constant factor. In the general case
we are considering, this assumption cannot be made.
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Thus, one of the main contributions of this paper is to
demonstrate that we can transform the polyhedral ap-
proximations of the manifolds we are working with such
that we can both apply Schreiber’s algorithm and at
the same time maintain the asymptotic approximation
quality of the resulting shortest paths. We embed this
algorithm in an approximation context and show that
computing approximate geodesic distances between all
pairs of points can be done in O

(
n2 log n

)
time.

Due to the apparent difficulty of the exact short-
est path problem on general polyhedra (possibly of
genus g ≥ 1), Aleksandrov et al. [1] focus on an-
swering approximate shortest path queries. They
present an (1 ± δ)-approximation algorithm that, af-
ter O

(
(g+1)n2

δ3/2q
log n

δ log4 1
δ

)
preprocessing time, can an-

swer a shortest-path query between an arbitrary pair of
points in time O (q) (again, q is a trade-off parameter,
this time chosen such that 1√

δ
log2 1

δ < q < (g+1)2/3n1/2
√
δ

).
We come back to this algorithm in Section 4.

2 Description of the Algorithm

As discussed in the introduction, our approach is to
work on a point set sampled from the considered surface.
In a nutshell, we (re-)construct a polyhedral object hav-
ing the sample points as its vertices that approximates
the manifold and then use Schreiber’s exact algorithm to
compute geodesic distances between all pairs of points
in the sample. As a consequence, the approximation
quality of our algorithm only depends on the approxi-
mation quality of the point sample S with respect to the
manifold Γ from which the points have been sampled.
This quality can be characterized using a central con-
cept introduced by Amenta and Bern [2] in the context
of reconstructing smooth surfaces from point samples:
For any point x on the manifold Γ, the local feature size
lfs(x) is defined as the distance of x to the medial axis
of Γ. Thus, the local feature size captures the curvature
and the folding of Γ. It is known that the (topologi-
cal) correctness of a reconstruction algorithm depends
on the density of the set S ⊂ Γ of sample points used
for the reconstruction relative to the local feature size.

Definition 1 A discrete subset S a smooth 2-manifold
Γ ⊂ R3 is an ε-sample of Γ if and only if for every point
x ∈ Γ there is a sample point s ∈ S with |xs| ≤ ε · lfs(x).

In the light of the above definition, we present an
algorithm that takes an ε-sample S of a manifold Γ and
computes geodesic distances on a specific polyhedron Π
whose vertex set is derived from S. For any two points
s1, s2 ∈ S, the geodesic distance on Π between s1 and s2
is within a multiplicative factor of the geodesic distance
between these points when measured on (the unknown)
manifold Γ; the approximation error depends only on ε.

2.1 Outline of Our Approach

We start out by giving an algorithm for converting the
input ε-sample S into what we call a self-conforming
sample Sconf (see Definition 5). We then compute the
restricted Delaunay tetrahedrization Del|Γ(Sconf) (see
Definition 3) and prove that Del|Γ(Sconf) is a self-
conforming polyhedron (see Definition 2), i.e., can be
handled by Schreiber’s algorithm in optimal time.

Definition 2 (Schreiber [11], p. 40) A polyhedron
P ⊂ R3 (possibly non-convex) is self-conforming if for
each edge e of ∂P , there is a connected region R(e),
which is the union of O (1) facets of ∂P and whose in-
terior contains e, so that the shortest path distance from
e to any edge e′ of ∂R(e) is at least 2c · max{|e|, |e′|},
where c is some positive constant.

We emphasize that it is sufficient for the algorithm
(and its correctness proof) to know that for each edge e,
some region R(e) with the desired properties exists; it
is not necessary to have an explicit description of this
region available. Thus, to prove that Del|Γ(Sconf) is self-
conforming (see Lemma 16), we only need to show that
Del|Γ(Sconf) has the following properties:

• The degree of each vertex of Del|Γ(Sconf) is upper-
bounded by a constant.

• The minimum inner angle of each facet of
Del|Γ(Sconf) is lower-bounded by a constant.

The above is summarized in the following lemma:

Lemma 1 Let Γ be a smooth 2-manifold in R3 and let
S be an ε-sample of Γ. We can decimate S such that
the restricted Delaunay tetrahedrization Del|Γ(Sconf) of
the decimated set Sconf is a self-conforming polyhedron.

Finally, we show that the (exact) geodesic distances
computed on Del|Γ(Sconf) are within a multiplicative
factor (depending on ε) of the geodesic distances on Γ.

2.2 Construction of a Self-Conforming Sample

Our algorithm computes a self-conforming subset of the
input ε-sample and then constructs a restricted Delau-
nay tetrahedrization. To make the definition of a self-
conforming sample more transparent, we first present
the definition of a restricted Delaunay tetrahedrization:

Definition 3 (Funke and Ramos [6], p. 782) Let
S be a set of points sampled from a manifold Γ ∈ R3.

1. The restricted Voronoi diagram Vor|Γ(S) consists
of cells Vor(s) ∩ Γ, s ∈ S.

2. The restricted Delaunay tetrahedrization Del|Γ(S)
is the dual to Vor|Γ(S).
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Since the manifold Γ is unknown to the algorithm, it
is impossible to exactly compute the intersection of a
Voronoi cell with the manifold. Amenta and Bern [2]
and (building upon their work) Funke and Ramos [6]
presented the following approach to approximating this
intersection: For each point s ∈ S, compute its re-
stricted Voronoi cell by intersecting the full-dimensional
cell with an approximation of the plane tangent to Γ
in s. Computing of all approximate tangent planes takes
O (|S| log |S|) time [6], but the approximation quality
has been analyzed in an asymptotic sense only; this is
mainly due to the fact that – to achieve a near-linear
running time – several trade-offs need to be made.

In the situation of our algorithm, we need an ex-
act bound on the approximation quality (to derive the
bounds for vertex degrees and inner angles mentioned
above). What we do not need, however, is a running
time better than Θ

(
|S|2 log |S|

)
, and thus we can use

exact textbook algorithms for computing the Voronoi
diagram and computing the intersection of the faces of
a cell with the respective (approximation of the) tangent
planes. With some technical effort, but using elemen-
tary trigonometry only, we then can prove the following
non-asymptotic bound on the approximation quality:

Lemma 2 Let ε ≤ 1
22 be a constant and let s be an

arbitrary sample point in an ε-sample of a 2-manifold
Γ. Let x′ be the furthest point (from s) in Vor |Γ(s), and
let v be to the furthest vertex (from s) in the intersection
of Vor(s) and the approximate tangent plane computed
by the above algorithm. Then |sx′| ≤ 1.0005 · |sv| holds.

Similarly, since neither Γ nor its medial axis are
known, an exact computation of the local feature size
is impossible. Instead, Funke and Ramos [6] discuss
how to compute a (pointwise) lower bound for ε · lfs(·).
This lower bound is derived from the distance of a point
s ∈ S to the furthest vertex of its restricted Voronoi cell.
Again, this bound is given in an asymptotic sense only.
To be able to prove the above-mentioned bounds on the
degree of each vertex in Del|Γ(Sconf) and on the mini-
mum inner angle of each facet of Del|Γ(Sconf), we need
to know the constants hidden in the Big-Oh notation.
In a companion paper [10], we prove the following result:

Theorem 3 For an ε-sample S of a 2-manifold Γ in R3

we can compute, in quadratic time, a function φ(s) for
each s ∈ S as the distance of s to the furthest Voronoi
vertex v of the intersection of the approximation of the
plane tangent to Γ in s and Vor(s). For this function
holds that φ(s) ≤ 1.135 · ε

1−ε · lfs (s).

If we define φ′(s) := 1.0005 · φ(s) and assume that
ε ≤ 1

22 holds, we have the following result:

Corollary 4 Let s be a point in an ε-sample S of a 2-
manifold Γ in R3. Then, φ′(s) ≤ 1.0005 · 1.135 · ε

1−ε ·

lfs(s) < 1.19 · ε · lfs(s) holds. Furthermore, Vor|Γ(s) is
contained in Bφ′(s)(s), i.e. the ball centered at s with
radius φ′(s).

2.2.1 Definition of a Self-Conforming Point Sample

We are now almost ready to define what constitutes a
self-conforming point sample. One property of the local
feature size that is crucial for most proofs is that the
local feature size is a 1-Lipschitz function [2]:

Definition 4 For α ∈ R+, a non-negative, real-valued
function f is α-Lipschitz if f(x) ≤ f(x′) + α · |xx′| for
all x, x′ ∈ dom(f).

Incorporating this property into the requirement that
the point sample should be locally not too dense yields
the following definition:

Definition 5 A subset S′ ⊂ S is self-conforming, if
there is a control function f : S → R+ and constants
0 < α, β < 1 such that the following holds:

1. The function f is α-Lipschitz.

2. For each s ∈ S′, we have Bβ·f(s)(s) ∩ S′ = {s}.

We note that a self-conforming point sample is de-
fined similarly to a locally uniform point sample (see
Funke and Ramos [6]). The latter definition requires
more properties for the point set but allows for an ap-
proximate control function. Since our proofs require a
subset of the properties of a locally uniform point sam-
ple and since we can afford to compute an exact control
function, we consider it instructive to (introduce and)
use this new definition.

2.2.2 Construction of a Lipschitz Control Function

As noted by Funke and Ramos [6, p. 785], a “natural”
way to make a function α-Lipschitz is to encode the
maximum distance to any other point in the domain.
Using the constants derived in the previous paragraph,
we define the function ψ as follows:

ψ(s) : S → R, s 7→ max
s′∈S

{
φ′(s′)− 1.19 · 1

22
· |ss′|

}
(1)

We note that the domain of ψ could be extended to
Γ in the following way: For each Voronoi cell Vor(s),
s ∈ S, and each point x ∈ Vor|Γ(s), define ψ(x) := ψ(s)
(breaking ties for the boundary of Vor|Γ(s) arbitrarily).
Doing so allows us to prove that 2.056 ·ψ is an approxi-
mate control function in the sense of Funke and Ramos’
definition (local unifomity), but increases all constants
in the following by a factor of roughly two.

Lemma 5 The function ψ is a 1
18 -Lipschitz function.
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2.2.3 Decimation of the ε-Sample

To derive a sample Sconf that leads to a self-conforming
polyhedron, we use the “Decimation Step” algorithm
from Funke and Ramos [6, p. 789] (Algorithm 1).
In contrast to their setting, we can afford to spend
quadratic time during preprocessing, and thus this step
can be implemented straightforward, i.e. without the
need for approximate range-reporting structures.

Algorithm 1 Coarsening an input ε-sample [6].
1: function Decimate(Points S, Function ψ)
2: Sconf = ∅, Sdense = S.
3: while Sdense 6= ∅ do
4: Let s be an arbitrary point in Sdense.
5: Sconf = Sconf ∪ {s}.
6: Sdense = Sdense \

(
Sdense ∩Bψ(s)(s)

)
.

7: Return Sconf.

This approach allows to prove the following lemma:

Lemma 6 For s ∈ Sconf, B 17
18 ·ψ(s)(s) ∩ Sconf = {s}.

Lemmas 5 and 6 together imply that ψ is a control
function in the sense of Definition 5:

Corollary 7 For an ε-sample S of a 2-manifold Γ, we
can derive a self-conforming sample Sconf with control
function ψ and α = 1

18 , β = 17
18 in O

(
|S|2

)
time.

2.3 Construction of Del|Γ(Sconf
ssrc )

We first observe that no point x ∈ Γ is “too far” away
from a point s of the self-conforming sample Sconf.

Lemma 8 For each x ∈ Γ, there is some s ∈ Sconf such
that |xs| ≤ 2.056 · ψ(s).

Using this property, we can prove that in a restricted
Delaunay tetrahedrization of a self-conforming sample
the edge lengths of a single face are bounded relative
to each other and that all faces have a minimum inner
angle lower-bounded by a constant. First, we prove:

Lemma 9 For each edge s1s2 in Del|Γ(Sconf), |s1s2| is
upper-bounded by 4.112 ·min{ψ(s1), ψ(s2)}.

For the estimation of the approximation quality of
our algorithm, we will also need to relate the length of
the Delaunay edges to the local feature size.

Lemma 10 For each point s in the input ε-sample S,
ψ(s) ≤ 1.19 · ε · lfs(s).

Since ψ ist fixed before the decimation, Lemma 10
also holds for each s ∈ Sconf.

Corollary 11 For each edge s1s2 in Del|Γ(Sconf),
|s1s2| is upper-bounded by 5 · ε ·min{lfs(s1), lfs(s2)}.

An immediate implication is that the degree of each
vertex in Del|Γ(Sconf) is bounded by a constant.

Lemma 12 The degree of each vertex in Del|Γ(Sconf)
is bounded by 3925.

If, for each point s ∈ Sconf, we have its 3925 nearest
neighbors at hand, Lemma 12 ensures that we can com-
pute Vor|Γ(Sconf) and thus Del|Γ(Sconf) in O (|S| log |S|)
time (the first step of the algorithm provides us with
the approximations of the planes tangent to Γ needed
for restricting the Voronoi diagram).

In comparison, Funke and Ramos [6] also prove
that a locally uniform sample admits a constant-degree
tetrahedrization. Again, however, the bound is only
given asymptotically, i.e. depending on 1/ε. Since our
algorithm needs an upper bound on the number of
Voronoi neighbors (to ensure that no relevant neighbor
is missed), the upper bound on ε, i.e. the lower bound
on 1/ε is not sufficient for our purpose.

2.4 Intermediate Summary

As mentioned in Section 2.1, our approach is to com-
pute a self-conforming polyhedron such that we can use
Schreiber’s algorithm to efficiently compute shortest-
path maps with respect to each point in the input sam-
ple. The above description indicates that a crucial step
for doing this is to decimate the input sample. On the
other hand, when computing a shortest path map with
respect to some point ssrc, this point needs to be present
in the decimated sample. Since the decimation step is
computationally expensive, we cannot afford to repeat
it a linear number of times. Thus, we decimate the
sample once and then, in each iteration, ensure that the
point ssrc with respect to which the shortest-path map
is computed is present in the set for which the restricted
Delaunay tetrahedrization is computed.

It should be pointed out that the set Sconf
ssrc := Sconf ∪

{ssrc} for which the restricted Delaunay tetrahedriza-
tion is computed may no longer be a self-conforming set
if ssrc /∈ Sconf, since ssrc may violate Property (2) of Def-
inition 5. Except for Lemma 12, however, no Lemma in
the previous section relies on this property, so all other
Lemmas are still valid. For Lemma 12, we observe that
the introduction of ssrc may increase each other vertex’s
degree by one (thus, the constant needs to be adjusted
accordingly). A close look at the proof of Lemma 12,
however, shows that Property (2) of Definition 5 is not
needed for the point s whose degree is to be bounded
but only for the points inside B4.112·ψ(s)(s). Thus, the
statement of Lemma 12 also holds for the point ssrc. For
ease of exposition we thus assume that the degree of all
vertices in Sconf

ssrc is bounded by 3925. Also, we assume
that the computation of Del|Γ(s) for each s ∈ Sconf

ssrc takes
ssrc into account when computing Vor|Γ(s) based upon
its nearest neighbors. This results in Algorithm 2.
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Algorithm 2 Approximating geodesic distances between points of an ε-sample S.
1: function ApproximateGeodesicDistances(Points S)
2: Let Distance be an |S| × |S|-matrix, each entry of which is initialized with +∞.
3: Compute φ(s) and tangent plane for each s ∈ S. . Use the algorithm by Scheffer and Vahrenhold [10].
4: Compute ψ from φ (Lipschitziation). . See Section 2.2.2.
5: Sconf = Decimate(S, ψ). . Use Algorithm 1.
6: Compute for each point in Sconf its 3925 nearest neighbors. . Use the brute-force algorithm.
7: Compute for each point in S \ Sconf its nearest neighbor in Sconf. . Use the brute-force algorithm.
8: for each ssrc ∈ S do
9: Sconf

ssrc := Sconf ∪ {ssrc}.
10: Compute Del|Γ(Sconf

ssrc ). . See Section 2.3.
11: SPMap = SchreibersPreprocessing(Del|Γ(Sconf

ssrc ), ssrc). . Use the algorithm by Schreiber [11].
12: for each s ∈ S do
13: if s ∈ Sconf

ssrc then
14: Distance[ssrc, s] = SchreibersQuery(SPMap, s). . Use the algorithm by Schreiber [11].
15: else
16: Let s′ be s’s nearest neighbor in Sconf

ssrc .
17: for each face f of the O (1) faces adjacent to s′ do
18: Let s′′ be the point on f closest to s.
19: Distance[ssrc, s] = min{Distance[ssrc, s],SchreibersQuery(SPMap, s′′)}.

. Use the algorithm by Schreiber [11].
20: Return Distance.

e
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∂R (e)

s1

s1 = s

s2

∂R (R (e))

e
s1

s

s2

∂R (R (R (e)))

e

(a) ssrc /∈ R(e) (b) ssrc ∈ e (c) ssrc ∈ R(e) \ {e}

Figure 1: Region Rstrip(e) for an edge e ∈ Del|Γ(Sconf
ssrc ).

Lemma 13 Assuming that Del|Γ(Sconf
ssrc ) is self-con-

forming, Algorithm 2 runs in O
(
|S|2 log |S|

)
time.

2.5 Properties of Del|Γ(Sconf
ssrc )

To show that Del|Γ(Sconf
ssrc ) is self-conforming in accor-

dance to Definition 2, we need to show that for each
edge e of a facet of Del|Γ(Sconf

ssrc ), there is a constant-size
region Rstrip(e) containing e so that the shortest-path
distance from e to any edge e′ of ∂Rstrip(e) is at least
2c ·max{|e|, |e′|}, where c is a positive constant.

Intuitively, we define Rstrip(e) as a (constant-size, yet
not necessary minimal) triangle patch surrounding e
such that if ssrc lies inside Rstrip(e), it is neither a vertex
of ∂Rstrip(e) nor adjacent to a vertex of ∂Rstrip(e).

Definition 6 Let e be an edge of a facet of Del|Γ(Sconf
ssrc )

and define R(e) as the set of facets adjacent to e. If
ssrc /∈ R(e), define Rstrip(e) := R(e)—see Figure 1(a).
Otherwise, depending on whether ssrc ∈ e or ssrc ∈
R(e)\{e}, define Rstrip(e) := R(R(e)) (see Figure 1(b))
or Rstrip(e) := R(R(R(e))) (see Figure 1(c)), where
R(R(e)) consists of R(e) and all facets adjacent to R(e)
and where R(R(R(e))) is defined analogously.

By Lemma 12, each vertex of Rstrip(e) has constant
degree, and thus Rstrip(e) consists of O (1) facets. To
bound the shortest-path distance in Rstrip(e), we need
the following technical lemma that relates the edge
lengths on the boundary of ∂Rstrip(e) and the boundary
of the “next inner” strip, i.e., ∂R(R(e)), ∂R(e), or e.

Lemma 14 Let ∆ be a facet of Del|Γ(Sconf
ssrc ) such that

ssrc is no vertex of ∆. Then, for any two edges e, e′ of
∆, we have 1

6 ≤
|e|
|e′| ≤ 6 and for any vertex s and any

edge e of ∆, we have 2
6 · |e| ≤ 2.056 · ψ(s) ≤ 6

2 · |e|.

Using Lemma 14 and elementary trigonometry, we
can prove the following:

Lemma 15 Let ∆ be a facet of Del|Γ(Sconf
ssrc ) such that

ssrc is no vertex of ∆. Then, each angle of ∆ is of size
at least π/20.

The constant factor of 4.112 in the upper bound for
the edge length in Del|Γ(Sconf) (Lemma 9), the “edge-
length” ratio of 1:6 (Lemma 14), and the minimum angle
of π/20 (Lemma 15) allow to determine the constant c
needed in the definition of a self-conforming polyhedron.

Lemma 16 Let e be an edge of a facet of Del|Γ(Sconf
ssrc ).

Then the shortest path distance from e to any edge
e′ of ∂Rstrip(e) is at least c · max{|e|, |e′|} for c :=(
1− 1

18 · 4.112 ·
(
2 + 1

18 · 4.112 +
(
1 + 1

18 · 4.112
)2

))
·

sin
(
π
20

)
· 1

63 .

Corollary 17 Del|Γ(Sconf
ssrc ) is self-conforming.

Corollary 18 Algorithm 2 takes O
(
|S|2 log |S|

)
time.
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3 Analysis of the Approximation Quality

We fix two points s1, s2 in the original ε-sample S and
use LDel = LDel(s1, s2) to denote their geodesic distance
as returned by Algorithm 2 and LΓ = LΓ(s1, s2) to de-
note their (unknown) geodesic distance on Γ.

The following lemma needed to bound the approxima-
tion quality is derived from Bernstein et al. [3, Cor. 4].

Lemma 19 Let x1 and x2 be two arbitrary points on Γ
with |x1x2| ≤

√
ε−1 · max {lfs (x1) , lfs (x2)}. Then we

have LDel(x1, x2) ≥ (1−O (ε)) · LΓ(x1, x2).

For the lower bound for LDel relative to LΓ we iter-
atively partition the geodesic path on Del|Γ(Sconf

ssrc ) be-
tween s1 and s2 into subpaths whose endpoints fulfill
the assumptions of Lemma 19. With rather technical
computations synchronized over all subpaths we obtain
the following lemma.

Lemma 20
(
1−O

(
ε

1
2

))
· LΓ ≤ LDel.

For the upper bound for LDel we first establish a bi-
jection between the facets of Del|Γ(Sconf

ssrc ) and patches
on Γ. We then replace each subpath of the (un-
known) geodesic path on Γ between s1 and s2 that
crosses a patch in Γ by a path along the boundary of
the corresponding facet of Del|Γ(Sconf

ssrc ). Exploiting the
lower bound on the minimum inner angle of the facets
(Lemma 15) and the approximation quality of the facet
w.r.t. the patch on Γ, we obtain the following result.

Lemma 21 (1−O (ε))−1 · LΓ ≥ LDel.

4 Using Aleksandrov et al.’s Algorithm

The algorithm of Aleksandrov et al. [1] is a (1 ± δ)-
approximation algorithm for all-pair shortest distance
queries which could also be applied instead of repeat-
edly using Schreiber’s (involved) algorithm. Lemma 22
shows that this leads to either the same running time
and strictly worse approximation quality or to the same
approximation quality and strictly worse running time.

Since an ε-sample S can be augmented by arbitrarily
many points while still remaining an ε-sample, we need
to restrict ourselves to tight ε-samples when comparing
the dependence between |S|, the running time, and the
approximation quality for the two algorithms. A tight
ε-sample is an ε-sample S for which there is a positive
constant η such that Bη·ε·lfs(s)(s) ∩ S = {s} for s ∈ S.

Lemma 22 Let S be a tight ε-sample of a 2-manifold Γ
and assume that we use the Algorithm of Alexandrov
et al. as part of Algorithm 2 to compute approximate
shortest paths on Del|Γ(Sconf

ssrc ).

1. If the running time of Algorithm 2 is to remain in
O

(
|S|2 log |S|

)
, LΓ and LDel relate as follows:

(a)
(
1− Ω

(
ε0.427

))
· LΓ ≤ LDel.

(b)
(
1−O

(
ε

1
1.08

))−1

· LΓ ≥ LDel.

2. If the approximation quality of Algorithm 2 is to re-
main as given in Lemmas 20 and 21, a tight sample
of a higher density than S is required. The size of
this sample implies a running time of ω

(
|S| 198

)
.
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