
CCCG 2011, Toronto ON, August 10–12, 2011

Bottleneck Steiner Tree with Bounded Number of Steiner Vertices

A. Karim Abu-Affash∗ Paz Carmi† Matthew J. Katz‡

Abstract

Given a complete graph G = (V,E), where each vertex
is labeled either terminal or Steiner, a distance function
d : E → R+, and a positive integer k, we study the
problem of finding a Steiner tree T spanning all termi-
nals and at most k Steiner vertices, such that the length
of the longest edge is minimized. We first show that this
problem is NP-hard and cannot be approximated within
a factor 2− ε, for any ε > 0, unless P = NP . Then, we
present a polynomial-time 2-approximation algorithm
for this problem.

1 Introduction

Given an arbitrary weighted graph G = (V,E) with a
distinguished subset R ⊆ V of vertices, a Steiner tree
is an acyclic subgraph of G spanning all vertices of R.
The vertices ofR are usually referred to as terminals and
the vertices of V \ R as Steiner vertices. The Steiner
tree (ST) problem is to find a Steiner tree T such that
the total length of the edges of T is minimized. This
problem has been shown to be NP-complete [4, 10], even
in the Euclidean or rectilinear version [11]. Arora [3]
gave a PTAS for the Euclidean and rectilinear versions
of the ST problem. For arbitrary weighted graphs, many
approximation algorithms have been proposed [6, 7, 12,
15, 17, 18].

The bottleneck Steiner tree (BST) problem is to find a
Steiner tree T such that the bottleneck (i.e., the length
of the longest edge) of T is minimized. Unlike the
ST problem, the BST problem can be solved exactly
in polynomial time [19]. Both the ST and BST prob-
lems have many important applications in VLSI design,

∗Department of Computer Science, Ben-Gurion University of
the Negev, Beer-Sheva 84105, Israel, abuaffas@cs.bgu.ac.il.
Partially supported by the Lynn and William Frankel Center for
Computer Sciences, by the Robert H. Arnow Center for Bedouin
Studies and Development, by a fellowship for outstanding doctoral
students from the Planning & Budgeting Committee of the Israel
Council for Higher Education, and by a scholarship for advanced
studies from the Israel Ministry of Science and Technology.
†Department of Computer Science, Ben-Gurion University of

the Negev, Beer-Sheva 84105, Israel, carmip@cs.bgu.ac.il. Par-
tially supported by a grant from the German-Israeli Foundation,
the Lynn and William Frankel Center for Computer Sciences
‡Department of Computer Science, Ben-Gurion University of

the Negev, Beer-Sheva 84105, Israel, matya@cs.bgu.ac.il. Par-
tially supported by grant 1045/10 from the Israel Science Foun-
dation, and by the Israel Ministry of Industry, Trade and Labor
(consortium CORNET).

transportation and other networks, and computational
biology [8, 9, 13, 14].

The k-Bottleneck Steiner Tree (k-BST) problem is a
restricted version of the BST problem, in which there
is a limit on the number of Steiner vertices that may
be used in the constructed tree. More precisely, given a
graph G = (V,E) and a subset R ⊆ V of terminals, a
distance function d : E → R+, and a positive integer k,
one has to find a Steiner tree T with at most k Steiner
vertices such that the bottleneck of T is minimized.

A geometric version of the k-BST problem has been
studied in [20]. In this version, we are given a set P
of n terminals in the plane and an integer k > 0, and
we are asked to place at most k Steiner points, such
that the obtained Steiner tree has bottleneck as small as
possible. Wang and Du [20] showed that the problem is
NP-hard to approximate within a factor of

√
2. The best

known approximation ratio is 1.866 [21]. Bae et al. [5]
presented an O(n log n)-time algorithm for the problem
for k = 1 and an O(n2)-time algorithm for k = 2. Li et
al. [16] presented a (

√
2 + ε)-approximation algorithm

with inapproximability within
√

2 for a special case of
the problem where edges between two Steiner points are
not allowed.

Recently, Abu-Affash [1] studied the k-BST problem
with the additional requirement that all terminals in the
computed Steiner tree must be leaves. He presented a
hardness result for the problem, as well as a polynomial-
time approximation algorithm with performance ratio
4. In [2], the authors considered the following related
problem. Given a set P of n points in the plane and
two points s, t ∈ P , locate k Steiner points, so as to
minimize the bottleneck of a bottleneck path between s
and t. They showed how to solve this problem optimally
in time O(n log2 n).

In this paper, we show that the k-BST problem is
NP-hard and that it cannot be approximated to within
a factor of 2 − ε. We also present a polynomial-time
2-approximation algorithm for the problem.

2 Hardness Result

Given a complete graph G = (V,E) with a distinguished
subset R ⊆ V of terminals, a distance function d : E →
R+, and a positive integer k, the goal in the k-BST
problem is to find a Steiner tree with at most k Steiner
vertices and bottleneck as small as possible. In this
section we prove a lower bound on the approximation

23d Canadian Conference on Computational Geometry, 2011

ratio of polynomial-time approximation algorithms for
the problem.

Theorem 1 It is NP-hard to approximate the k-BST
problem within a factor 2− ε, for any ε > 0.

Proof. We present a reduction from connected ver-
tex cover in planar graphs, which is known to be NP-
complete [11].
Connected vertex cover in planar graphs: Given
a planar graph G = (V,E) and an integer k, does there
exist a vertex cover V ∗ of G, such that |V ∗| ≤ k and
the subgraph of G induced by V ∗ is connected?

Given a planar graph G = (V,E) and an integer k,
we construct a complete graph G′ = (V ′, E′) with an
appropriate distance function and appropriate integer
k′, such that G has a connected vertex cover of size at
most k if and only if there exists a Steiner tree T in G′

with at most k′ Steiner vertices and bottleneck at most
(2− ε), for some ε > 0.

Let V = {v1, v2, . . . , vn} and let E = {e1, e2, . . . , em}.
For each edge e = (vi, vj) ∈ E, we add a vertex ti,j
(e.g., at the middle of e) and connect it to both vi
and vj . Let R = {ti,j : (vi, vj) ∈ E} and let E′1 =
{(vi, ti,j), (ti,j , vj) : (vi, vj) ∈ E}. We set V ′ = V ∪ R,
where V is the set of Steiner vertices and R is the set of
terminals; see Figure 1. Let G′ = (V ′, E′) be the com-
plete graph over V ′. For each edge e ∈ E′, we assign
length d(e) = 1, if e ∈ E′1, and d(e) = 2, otherwise.
Finally, we set k′ = k.

(a)

(b)

Figure 1: (a) A planar graph G = (V,E), and (b) the
vertices of G′: circles indicate Steiner vertices and grey
squares indicate terminals.

Now, we prove the correctness of the reduction.
Clearly, if G has a connected vertex cover V ∗ with
|V ∗| ≤ k, then, by selecting the Steiner vertices of V ′

corresponding to the vertices in V ∗, we can construct

a Steiner tree T with at most k′ = k Steiner vertices,
such that the length of each edge in T is exactly 1.

Conversely, suppose that there exists a Steiner tree T
in G′ with at most k′ Steiner vertices and bottleneck at
most 2 − ε. Let V ∗ be the subset of vertices of V that
belong to T . By the construction, any two terminals
are connected in E′ by an edge of length 2. Thus, we
deduce that each terminal is connected in T to a Steiner
vertex in V ∗. Since T is connected and each edge in E
corresponds to one terminal in V ′, we conclude that V ∗

is a connected vertex cover of G, and its size is at most
k = k′. �

3 2-Approximation Algorithm

In this section, we design a polynomial-time approxi-
mation algorithm for computing a Steiner tree with at
most k Steiner vertices (k-ST for short), such that its
bottleneck is at most twice the bottleneck of an optimal
(minimum-bottleneck) k-ST.

Let G = (V,E) be the complete graph with n vertices,
let R ⊆ V be the set of terminals, and let d : E →
R+ be a distance function. Let e1, e2, . . . , em, where
m =

(
n
2

)
, be the edges of G sorted by length, that is,

d(e1) ≤ d(e2) ≤ · · · ≤ d(em). Clearly, the bottleneck
of an optimal k-ST is the length of an edge in E. For
an edge ei ∈ E, let Gi = (V,Ei) be the graph obtained
from G by deleting all edges of length greater than d(ei),
that is, Ei = {ej ∈ E : d(ej) ≤ d(ei)}.

The idea behind our algorithm is to devise a proce-
dure that, for a given edge ei ∈ E, does one of the
following:

(i) It either constructs a k-ST in G with bottleneck at
most 2d(ei), or

(ii) it returns the information that Gi does not contain
a k-ST.

Let ei ∈ E. For two terminals p, q ∈ R, let δi(p, q) be
a path between p and q in Gi with minimum number
of Steiner vertices. Let GR = (R,ER) be the complete
graph over R. For each edge (p, q) ∈ ER, we assign a
weight w(p, q) equal to the number of Steiner vertices in
δi(p, q). Let T be a minimum spanning tree of GR un-
der w, and put C(T) =

∑
e∈T bw(e)/2c. The following

observation follows from Lemma 3 in [20].

Observation 1 For any spanning tree T ′ of GR,
C(T) ≤ C(T ′).

Lemma 2 If Gi contains a k-ST, then C(T) ≤ k.

Proof. Let T ∗ be a k-ST in Gi. A Steiner tree is full if
all its terminals are leaves. It is well known that every
Steiner tree can be decomposed into a collection of full
Steiner trees, by splitting each of the non-leaf terminals.

CCCG 2011, Toronto ON, August 10–12, 2011

We begin by decomposing T ∗ into a collection of full
Steiner trees. Next, for each full Steiner tree T ∗j in the
collection, we construct in GR a spanning tree T ′j of the
terminals of T ∗j , such that the union of these trees is
a spanning tree T ′ of GR and C(T ′) ≤ k. Finally, by
Observation 1, we conclude that C(T) ≤ k.

We now describe how to construct T ′j from T ∗j . Ar-
bitrarily select one of the Steiner vertices as the root of
T ∗j ; see Figure 2(a). The construction of T ′j is done by
an iterative process applied to T ∗j . In each iteration, we
select a deepest terminal p, among the terminals of the
current rooted tree that have not yet been processed.
From p we move up the tree until we reach a Steiner
vertex s that has terminal descendants other than p.
Let q, q 6= p, be a terminal descendant of s that is clos-
est to s. We connect p to q by an edge of weight equal
to the number of Steiner vertices between p and q in T ∗j ,
and remove the Steiner vertices between p and s (not
including s). After processing all terminals but one, we
remove all remaining Steiner vertices.

3

a

b

c d

2

3

(a)

(b)

s1

s2 s3

terminals

Steiners

h

1

s4

Figure 2: (a) The rooted tree T ∗j , and (b) the construc-
tion of T ′j .

In the example in Figure 2(b), we first select terminal
a, which is the deepest one, connect it to terminal b by
an edge of weight 3, and remove the vertices s1 and s2.
Next, we select terminal c, connect it to terminal d by an
edge of weight 1, and do not remove any Steiner vertex.
Next, we select terminal d, connect it to terminal h by
an edge of weight 2, and remove the vertex s3. In the

last iteration, we select terminal b, connect it to terminal
h by an edge of weight 3 and remove the vertex s4. We
can now remove all of the remaining Steiner vertices.

Clearly, the union T ′ of the trees T ′j is a spanning
tree of GR. We show below that C(T ′) ≤ k. Notice
that in each iteration during the construction of T ′j , if
the weight of the added edge e is w(e), then we re-
move at least bw(e)/2c Steiner vertices from T ∗j . This
implies that C(T ′j) =

∑
e∈T ′

j
bw(e)/2c ≤ kj , where kj

is the number of Steiner vertices in T ∗j , and, therefore,
C(T ′) =

∑
j C(T ′j) ≤ k. �

We now present our 2-approximation algorithm. We
consider the edges of E, one by one, by non-decreasing
length. For each edge ei ∈ E, we construct a minimum
spanning tree T of GR = (R,ER), using the weight
function w induced by Gi, and check whether C(T) ≤ k.
If so, we construct a k-ST in G with bottleneck at most
2d(ei), otherwise, we proceed to the next edge ei+1.

Algorithm 1 BST (G = (V,E), R, k)

1: Let e1, e2, . . . , em be the edges of E sorted by non-
decreasing length

2: GR = (R,ER)← the complete graph over R
3: C(T)←∞
4: i← 0
5: while C(T) > k do
6: i← i+ 1
7: construct the graph Gi

8: for each edge (p, q) ∈ ER do
9: w(p, q) ← the number of Steiner vertices in

δi(p, q)
10: construct a minimum spanning tree T of GR un-

der w
11: C(T)←

∑
e∈T bw(e)/2c

12: Construct-k-ST (T,Gi)

The construction of a k-ST (line 12 in the algorithm
above) is done as follows. For each edge e = (p, q) ∈ T ,
we select at most bw(e)/2c Steiner vertices from the
path δi(p, q), to obtain a path connecting between p
and q with at most this number of Steiner vertices and
bottleneck at most 2d(ei); see Figure 3. Clearly, the
obtained Steiner tree contains at most k Steiner vertices
and its bottleneck is at most 2d(ei).

Lemma 3 The algorithm above constructs a k-ST in G
with bottleneck at most twice the bottleneck of an optimal
k-ST.

Proof. Let ei be the first edge satisfying the condition
C(T) ≤ k. Then, by Lemma 2, the bottleneck of any k-
ST in G is at least d(ei), and, therefore, the constructed
k-ST has a bottleneck at most twice the bottleneck of
an optimal k-ST. �

23d Canadian Conference on Computational Geometry, 2011

qp

Figure 3: The constructed k-ST consists of the squares,
solid circles and dotted edges.

The following theorem summarizes the main result of
this section.

Theorem 4 There exists a polynomial-time 2-
approximation algorithm for the k-BST problem.

References

[1] A.K. Abu-Affash. On the Euclidean bottleneck
full Steiner tree problem. In Proceedings of the
27th ACM Symposium on Computational Geome-
try (SoCG ’11), pages 433–439, 2011.

[2] A.K. Abu-Affash, P. Carmi, M.J. Katz, and M. Se-
gal. The Euclidean bottleneck Steiner path prob-
lem. In Proceedings of the 27th ACM Symposium
on Computational Geometry (SoCG ’11), pages
440–447, 2011.

[3] S. Arora. Polynomial time approximation schemes
for Euclidean TSP and other geometric problems.
Journal of the ACM, 45:735–782, 1998.

[4] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and hardness of ap-
proximation problems. In Proceedings of the 33rd
Annual Symposium on Foundations of Computer
Science (FOCS ’92), pages 14–23, 1992.

[5] S.W. Bae, C. Lee, and S. Choi. On exact solutions
to the Euclidean bottleneck Steiner tree problem.
Information Processing Letters, 110:672–678, 2010.

[6] P. Berman and V. Ramaiyer. Improved approx-
imation for the Steiner tree problem. Journal of
Algorithms, 17:381–408, 1994.

[7] A. Borchers and D.Z. Du. The k-Steiner ratio in
graphs. SIAM Journal on Computing, 26:857–869,
1997.

[8] X. Cheng and D.Z. Du. Steiner Tree in Industry.
Kluwer Academic Publishers, Dordrecht, Nether-
lands, 2001.

[9] D.Z. Du, J.M. Smith, and J.H. Rubinstein. Ad-
vances in Steiner Tree. Kluwer Academic Publish-
ers, Dordrecht, Netherlands, 2000.

[10] M.R. Garey, R.L. Graham, and D.S. Johnson. The
complexity of computing Steiner minimal trees.
SIAM Journal of Applied Mathematics, 32(4):835–
859, 1977.

[11] M.R. Garey and D.S. Johnson. The rectilinear
Steiner tree problem is NP-complete. SIAM Jour-
nal of Applied Mathematics, 32(4):826–834, 1977.

[12] S. Hougardy and H.J. Prömel. A 1.598 approxima-
tion algorithm for the Steiner problem in graphs. In
Proceedings of the 10th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’00), pages
448–453, 1999.

[13] F.K. Hwang, D.S. Richards, and P. Winter. The
Steiner Tree Problem. Annals of Discrete Mathe-
matics, Amsterdam, 1992.

[14] A.B. Kahng and G. Robins. On Optimal Intercon-
nection for VLSI. Kluwer Academic Publishers,
Dordrecht, Netherlands, 1995.

[15] M. Karpinski and A. Zelikovsky. New approxi-
mation algorithms for the Steiner tree problem.
Journal of Combinatorial Optimization, 1(1):47–
65, 1997.

[16] Z.-M. Li, D.-M. Zhu, and S.-H. Ma. Approximation
algorithm for bottleneck Steiner tree problem in the
Euclidean plane. Journal of Computer Science and
Technology, 19(6):791–794, 2004.

[17] H.J. Prömel and A. Steger. A new approximation
algorithm for the Steiner tree problem with perfor-
mance ratio 5/3. Journal of Algorithms, 36(1):89–
101, 2000.

[18] G. Robbins and A. Zelikovsky. Tighter bounds for
graph Steiner tree approximation. SIAM Journal
on Discrete Mathematics, 19(1):122–134, 2005.

[19] M. Sarrafzadeh and C.K. Wong. Bottleneck Steiner
trees in the plane. IEEE Transactions on Comput-
ers, 41(3):370–374, 1992.

[20] L. Wang and D.-Z. Du. Approximations for a bot-
tleneck Steiner tree problem. Algorithmica, 32:554–
561, 2002.

[21] L. Wang and Z.-M. Li. Approximation algorithm
for a bottleneck k-Steiner tree problem in the
Euclidean plane. Information Processing Letters,
81:151–156, 2002.

