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Approximation Algorithms for a Triangle Enclosure Problem
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Abstract

Given a set S of n points in the plane, we want to find
a triangle, with vertices in S, such that the number of
points of S enclosed by it is maximum. A solution can
be found by considering all

(
n
3

)
triples of points in S. We

show that, by considering only triangles with at least 1,
2, or 3 vertices on the convex hull of S, we obtain various
approximation algorithms that run in o(n3) time.

1 Introduction

Let S be a set of n points in the plane. A triangle4pqr,
with vertices p, q, r ∈ S, is defined to be optimal if the
number of points of S enclosed by it is maximum. Epp-
stein et al. [1] have shown that this optimal triangle can
be computed in O(n3) time: They present an algorithm
that preprocesses the set S in O(n2) time so that, for
any triple (p, q, r) of points in S, the number of points
enclosed by 4pqr can be computed in O(1) time. By
considering all

(
n
3

)
triples, we find an optimal triangle

in O(n3) time.
Since it is not known if an optimal triangle can be

computed in o(n3) time, we consider the problem of
approximating it. That is, we will present several sub-
cubic algorithms that compute triangles with vertices in
S that enclose at least 1/c times as many points as an
optimal triangle with vertices in S, for some approxi-
mation ratio c.

Our main approach is based on the simple fact that
if a triangle 4 can be covered by c triangles, then one
of them is a c-approximation of 4.

We show that, by considering only triangles that con-
tain at least 1, 2, or 3 vertices on the convex hull of S,
we obtain approximation algorithms, for various values
of c, that run in o(n3) time. Let h denote the number
of vertices on the convex hull of S. A summary of our
results is given in Table 1.

2 Preliminaries

We will assume that no three points in S are collinear
and that no two points have the same y-coordinate.

∗School of Computer Science, Carleton University, Ot-
tawa, Ontario K1S 5B6, Canada. This work was sup-
ported by the Natural Sciences and Engineering Re-
search Council of Canada. Emails: kdouieb@ulb.ac.be,

{meastma2,anil,michiel}@scs.carleton.ca.

vertices on the approximation runtime
convex hull ratio
≥ 1 2 O(n2)
≥ 2 3 O(nh2 log n)

≥ 2 4 O(n log2 n)
3 4 O(nh2 log h)

3 8 O(n log2 h)
3 3 log h O(n log h)

Table 1: Summary of results.

The number of points enclosed by a triangle 4pqr is
the number of points contained in the interior of 4pqr.
We say that 4pqr, with p, q, r ∈ S, is optimal if the
number of points of S enclosed by it is maximum.

A triangle 4 is a c-approximation of a triangle 4pqr
if 4 encloses at least 1/c times as many points as 4pqr.

Observation 1 If a triangle 4pqr can be covered by a
set of c triangles then at least one of these triangles is
a c-approximation of 4pqr.

In order to show that an algorithm gives a c-
approximation of a triangle 4pqr it is enough to show
that the algorithm counts the number of points enclosed
by each of the c triangles that cover 4pqr.

Let l(p, q) denote the directed line through points p
and q, and let pq denote the line segment between p and
q. Define the wedge of a vertex p in a triangle 4pqr as
the area bounded by the lines l(q, p) and l(r, p) opposite
the interior angle ∠rpq.

Lemma 1 The three wedges of an optimal triangle with
vertices in S cannot contain any points of S.

Proof. Let 4pqr be an optimal triangle with vertices
in S. Assume that the wedge of p contains a point
p′ as in Figure 1. Then the triangle 4p′qr encloses
more points than 4pqr, as it encloses all of the points
enclosed by 4pqr in addition to the point p, giving a
contradiction. �

We refer to the three wedges of an optimal triangle
as the empty regions of the optimal triangle.

3 Counting points in triangles with two fixed ver-
tices on the convex hull

In order to approximate an optimal triangle in o(n3)
time we need to be able to count the number of points
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Figure 1: The wedge of p cannot contain any points.
The shaded regions denote the empty regions of 4pqr.

in a set of triangles in o(n3) time. Fixing two vertices
of every triangle on the convex hull of S allows us to
count the number of points enclosed by these triangles
in O(n log n) time, or O(n log h) time if we only consider
triangles with the third vertex on the convex hull.

Lemma 2 Given two points ti and tj on the convex
hull of S we can count the number of points enclosed by
every triangle 4titjs, s ∈ S, in O(n log n) time.

Proof. Without loss of generality assume that ti is be-
low tj . Let SL be the set of points of S lying to the left
of l(ti, tj) and let SR be the set of points of S lying to
the right of l(ti, tj).

The following algorithm counts the number of points
enclosed by every triangle 4titjs, s ∈ SL. Counting
the number of points enclosed by every triangle 4titjs,
s ∈ SR, is symmetric.

For each point s ∈ SL, let s′ be the intersection be-
tween the horizontal line through s and l(ti, tj). Let S−L
be the set of points in SL lying below the horizontal line
through ti and let S+

L be the set of points lying above
the horizontal line through ti.

Let T be an initially empty balanced binary search
tree such that every node in T stores the size of its
subtree. Rotate a line anchored at ti clockwise over the
set S−L . When this line intersects a point s ∈ S−L insert
s into T using its y-coordinate as the key. The number
of points enclosed by 4tiss

′ is the number of successors
of s in T immediately after inserting s.

To see why this is true let u be a successor of s in T
found immediately after inserting s into T . Since u was
inserted before, s the angle ∠utis′ is less than ∠stis′.
Since u is a successor of s in T , u is higher than s.
Therefore u is enclosed by 4tiss

′ (see Figure 2).
The number of points enclosed by every triangle

4tiss
′, s ∈ S+

L , is found using the same technique, ex-
cept that the line is rotated counter-clockwise over S+

L

and the number of points in each 4tiss
′, s ∈ S+

L , is
the number of predecessors of s in T immediately after
inserting s.

Counting the number of points enclosed by every tri-
angle 4tjss

′, s ∈ SL, is symmetric.
For each point s ∈ SL let ai,s be the number of points

enclosed by 4tiss
′ and let aj,s be the number of points

enclosed by4tjss
′. Then the number of points enclosed

ti

tj

s s′

u
6 s′tis

6 s′tiu

u′

Figure 2: Point u is enclosed by 4tiss
′.

by 4titjs is either (1) −ai,s + aj,s if s is below ti, (2)
ai,s − aj,s if s is above tj , or (3) ai,s + aj,s otherwise.
These cases are shown in Figure 3.
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Figure 3: The three cases encountered when calculating
the number of points enclosed by 4titjs.

It takes O(n log n) time to sort the points by angle
about ti and tj . Inserting each point into the binary
search tree takes O(log n) time. Since the binary search
tree keeps track of the size of each subtree we can cal-
culate the number of predecessors or successors of a
point in the tree in O(log n) time. The total runtime
is O(n log n). �

If we fix two vertices on the convex hull of S we can
count the number of points enclosed by every triangle
containing these two vertices, with the third vertex on
the convex hull, without sorting the entire set S. This
lets us count the number of points enclosed by every
such triangle in O(n log h) time.

Lemma 3 Given two points ti and tj on the convex
hull of S we can count the number of points enclosed by
every triangle 4titjtk where tk, 1 ≤ k ≤ h, is a point
on the convex hull of S, in O(n log h) time.

Proof. Without loss of generality assume that ti is be-
low tj . Let SL be the set of points of S lying to the left
of l(ti, tj) and let SR be the set of points of S lying to
the right of l(ti, tj).

The following algorithm counts the number of points
enclosed by every triangle 4titjtk, where tk ∈ SL is a
point on the convex hull between ti and tj . Counting
the number of points enclosed by every triangle4titjtk,
where tk ∈ SR is a point on the convex hull, is symmet-
ric.
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The number of points enclosed by 4titjtk, with tk ∈
SL, is found by subtracting the number of points in SL

lying to the left of l(ti, tk), or to the right of l(tj , tk),
from the number of points in SL.

A point s ∈ SL lies to the left of l(ti, tk) if the line
l(ti, s) intersects the convex hull between ti and tk. Sim-
ilarly, s lies to the right of l(tj , tk) if l(tj , s) intersects
the convex hull between tk and tj (see Figure 4).

tj

ti

tk tj

ti

tk

Figure 4: Lines through ti and the points lying to the
left of l(ti, tk) intersect the convex hull between ti and
tk. Lines through tj and points lying to the right of
l(tj , tk) intersect the convex hull between tk and tj .

Let ai,k be the number of lines l(ti, s), s ∈ SL, that
intersect the edge tktk+1 of the convex hull and let aj,k
be the number of lines l(tj , s), s ∈ SL, that intersect the
edge tktk+1 of the convex hull.

Let bi,k be the total number of lines l(ti, s), s ∈ SL,
that intersect the convex hull between points ti and tk
and let bj,k be the total number of lines l(tj , s), s ∈ SL,
that intersect the convex hull between tk and tj .

The number of points enclosed by triangle 4titjtk is
|SL| − (bi,k + bj,k − 1).

The sets SL and SR are found in O(n) time. The
convex hull can be found in O(n log h) time and the in-
tersection of a line and the convex hull can be found
in O(log h) time by performing a binary search on the
edges of the convex hull. Then the a-variables are com-
puted in O(n log h) time and the b-variables are com-
puted in O(h) time. The total runtime is O(n log h). �

4 Triangles with one fixed vertex on the convex hull

Lemma 4 Let z be the lowest point in S. Let x and y
be points in S such that 4xyz encloses the maximum
number of points of S. Then 4xyz is a 2-approximation
of an optimal triangle with vertices in S.

Proof. Let 4pqr be an optimal triangle with vertices
in S. Draw a line from z to each vertex of 4pqr. By
Lemma 1 the point z cannot lie in any of the empty
regions of 4pqr. Then one of the lines from z must
cross an edge of 4pqr.

Without loss of generality assume that zp crosses the
edge qr. Then the two triangles 4pqz and 4rpz cover

4pqr (see Figure 5). By Observation 1 one of these
triangles is a 2-approximation of 4pqr. �

p q

r

z

Figure 5: Triangles 4pqz and 4rpz cover 4pqr.

Theorem 5 A 2-approximation of an optimal triangle
with vertices in S can be found in O(n2) time.

Proof. Let z be the lowest point in S. Count the num-
ber of points enclosed by every triangle containing ver-
tex z and return the triangle found that encloses the
most points.

There are
(
n
2

)
triangles containing vertex z so this

takes O(n2) time using the data structure from [1]. The
approximation ratio follows from Lemma 4. �

5 Triangles with at least two vertices on the convex
hull

In this section we consider triangles with at least two
vertices on the convex hull of S.

Lemma 6 Let 4 be a triangle, with vertices in S, such
that at least two of its vertices are on the convex hull
of S, that encloses the maximum number of points of
S. Then 4 is a 3-approximation of an optimal triangle
with vertices in S.

Proof. Let 4pqr be an optimal triangle with vertices
in S. Assume that none of the vertices of 4pqr lie
on the convex hull of S. Then there exist edges titi+1,
tjtj+1 and tktk+1 of the convex hull that cross the empty
regions of4pqr. Figure 6 shows how we can use the end
points of two of these edges, and one vertex of 4pqr, to
cover 4pqr with three triangles. By Observation 1 one
of these triangles is a 3-approximation of 4pqr. �

This approximation factor is tight. Figure 7 shows
an example of a set of points where 4pqr encloses three
times as many points as any triangle 4, with vertices
in S, with at least two vertices on the convex hull of
S. There is no such triangle 4 that covers more than
one of the shaded regions in Figure 7. If we put m
points in each of these regions then 4pqr will enclose
3m points while any triangle with at least two vertices
on the convex hull of S can enclose at most m+1 points.
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Figure 6: Three triangles that cover 4pqr.
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Figure 7: A set S, with an optimal triangle 4pqr, such
that there are no triangles with at least two vertices on
the convex hull of S that enclose more than 1/3 times as
many points as 4pqr. Symmetric cases are not shown.

Theorem 7 A 3-approximation of an optimal trian-
gle with vertices in S can be found in O(min(n2 +
nh2, nh2 log n)) time.

Proof. Count the number of points enclosed by every
triangle with at least two vertices on the convex hull
of S and return the triangle found that encloses the
most points. There are (n − h)

(
h
2

)
such triangles so

this takes O(n2 + nh2) time using the data structure
from [1] or O(h2n log n) time using the algorithm pre-
sented in Lemma 2. The approximation ratio follows
from Lemma 6. �

Theorem 8 A 4-approximation of an optimal triangle
with vertices in S can be found in O(n log2 n) time.

Proof. Consider the following algorithm: Sort the
points of S clockwise by angle about the lowest point z
in S. Let sm be the median of S by angle and let titi+1

be the edge of the convex hull that intersects l(z, sm).
Count the number of points enclosed by every trian-
gle 4ztis and 4zti+1s, s ∈ S, using the algorithm in
Lemma 2. Let SL be the set of points lying to the left of
l(z, sm) and let SR be the set of points lying to the right
of l(z, sm). Recursively run the algorithm on the sets
SL and SR and return the triangle found that encloses
the most points.

To prove the approximation ratio, let 4pqr be an op-
timal triangle with vertices in S. Let x and y be points

in S such that 4xyz encloses the maximum number of
points of S. From Lemma 4 4xyz is a 2-approximation
of 4pqr.

Consider the recursive call where x and y lie on op-
posite sides of the line l(z, sm). At least one of ti and
ti+1 must lie above l(x, y), otherwise titi+1 wouldn’t
be an edge of the convex hull. If ti lies above l(x, y)
then 4xyz is covered by triangles 4zxti and 4yzti (as
in Figure 8). Otherwise if ti+1 lies above l(x, y) then
4xyz is covered by triangles 4zxti+1 and 4yzti+1. By
Lemma 1 one of these triangles is a 2-approximation of
4xyz and, therefore, a 4-approximation of 4pqr.

z

sm

ti

ti+1x
y

Figure 8: Triangles 4zxti and 4yzti cover 4xyz.

Sorting the points by angle takes O(n log n) time.
Finding the edge of the convex hull that intersects the
line through z and the median takes O(log h) time if we
perform a binary search on the precomputed edges of
the convex hull. Counting the number of points en-
closed by every triangle 4ztis and 4zti+1s, s ∈ S,
takes O(n log n) time using the algorithm presented in
Lemma 2. The total amount of work done at each step
is O(n log n). SL and SR each contain half of the points
of S so the complexity of this algorithm satisfies the
equation T (n) = 2T (n/2) + O(n log n) which solves to
O(n log2 n). �

6 Triangles with three vertices on the convex hull

In this section we consider triangles with three vertices
on the convex hull of S.

Lemma 9 Let 4 be a triangle, whose vertices are on
the convex hull of S, that encloses the maximum num-
ber of points of S. Then 4 is a 4-approximation of an
optimal triangle with vertices in S.

Proof. Let 4pqr be an optimal triangle with vertices
in S. Assume that none of the vertices of 4pqr lie
on the convex hull of S. Then there exist edges titi+1,
tjtj+1 and tktk+1 of the convex hull that cross the empty
regions of 4pqr. Figure 9 shows how we can use the
end points of these edges to find a set of at most four
triangles that cover 4pqr. By Lemma 1 one of these
triangles is a 4-approximation of 4pqr. �
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Figure 9: Four triangles that cover 4pqr.

This approximation factor is tight. Figure 10 shows
an example where 4pqr encloses four times as many
points of S as any triangle 4, whose vertices are on the
convex hull of S. There is no such triangle4 that covers
more than one of the four shaded regions in Figure 10.
If we put m points in each of these regions then 4pqr
will enclose 4m points while any triangle whose vertices
are on the convex hull of S can enclose at most m + 1
points.
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Figure 10: A set S, with an optimal triangle 4pqr,
such that there are no triangles, whose vertices are on
the convex hull of S, that cover more than 1/4 times as
many points as 4pqr. Symmetric cases are not shown.

Theorem 10 A 4-approximation of an optimal trian-
gle with vertices in S can be found in O(min(n2 +
h3, h2n log h)) time.

Proof. Count the number of points enclosed by every
triangle with three vertices on the convex hull of S and
return the triangle found that encloses the most points.
There are

(
h
3

)
such triangles so this takes O(n2 + h3)

time using the data structure in [1] or O(h2n log h) time
using the algorithm presented in Lemma 3. The approx-
imation ratio follows from Lemma 9. �

Theorem 11 An 8-approximation of an optimal trian-
gle with vertices in S can be found in O(n log2 h) time.

Proof. Consider the following algorithm: Let t1 . . . th
be the vertices of the convex hull of S given in clockwise
order starting at the lowest point z = t1 and let tm be
the median of the convex hull. Count the number of
points enclosed by every triangle containing vertices z
and tm, with the third vertex on the convex hull of S,
using the algorithm described in Lemma 3. Let SL be
the set of points of S lying on or to the left of l(z, tm) and

let SR be the set of points of S lying on or to the right
of l(z, tm). Recursively run the algorithm on the sets
SL and SR and return the triangle found that encloses
the most points.

To prove the approximation ratio, let 4pqr be an op-
timal triangle with vertices in S. Let x and y be points
in S such that 4xyz encloses the maximum number of
points of S. From Lemma 4 4xyz is a 2-approximation
of 4pqr.

Assume that x and y are not on the convex hull. Then
there exist edges titi+1 and tktk+1 that cross the empty
regions of 4xyz. Let tj be any point on the convex hull
between ti+1 and tk. Figure 11 shows how we can use
the points z, ti, ti+1, tj , tk and tk+1 to construct four
triangles that cover 4xyz. By Lemma 1 one of these
triangles is a 4-approximation of 4xyz and, therefore,
an 8-approximation of 4pqr.
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Figure 11: Four triangles that cover 4xyz.

Consider the recursive call where x and y lie on op-
posite sides of l(z, tm). When this occurs tm is on the
convex hull between ti+1 and tk. Thus, in the previous
argument, we can take tj = tm. Then in this call we
count the number of points in triangles 4ztjti+1 and
4ztjtk.

In another recursive call either ti or ti+1 is the median
of the convex hull and we count the number of points
enclosed by the triangle 4ztiti+1. Similarly there is a
recursive call where either tk or tk+1 is the median and
we count the number of points enclosed by 4ztktk+1.

The convex hull of S can be found in O(n log h)
time [2] and does not need to be computed at each step.
Each step requires O(n) time to find SL and SR and
O(n log h) time to count the number of points enclosed
by every triangle with vertices z and tm, with the third
vertex on the convex hull of S, by Lemma 3. When
we recursively call the algorithm on the sets SL and
SR the size of the convex hulls of SL and SR are half
the size of the convex hull of S and the total number
of points in SL and SR is the number of points in S.
The complexity of this algorithm satisfies the equation
T (h, n) = T (h/2, n1) + T (h/2, n − n1) + O(n log h)
for some 1 ≤ n1 < n. The solution to this equation
is O(n log2 h). �
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We can obtain an O(log h)-approximation of the op-
timal triangle with vertices in S in O(n log h) time by
triangulating the convex hull of S and choosing the tri-
angle in this triangulation that encloses the maximum
number of points of S.

Let T = ∅ be an initially empty set of triangles. Ini-
tialize R = r1, r2, . . . , rh to the points of the convex hull
of S given in clockwise order. For each point ri ∈ R
such that i is odd add the triangle 4riri+1ri+2 to T
and remove ri+1 from R. Renumber the elements of R
as r1, r2, . . . and repeat the previous steps until R has
less than 3 points. This gives a triangulation T of the
convex hull of S (see Figure 12). At each iteration we
remove half of the points in R, so T is constructed in
O(h) time after constructing the convex hull of S in
O(n log h) time [2].

Figure 12: Triangulation of the convex hull of a set of
points.

Lemma 12 Any line crosses at most 2 log h triangles
of T .

Proof. Let Ri denote the sequence of points in R at
the ith iteration of the triangulation algorithm.

Observe that Ri and Ri+1 are convex polygons and
that any triangle added to T in the ith iteration has
edges in Ri and Ri+1 only (see Figure 13). Then any
line can intersect at most two of the triangles of T added
during the ith iteration of the triangulation algorithm.

There are log h iterations of the algorithm, so any line
crosses at most 2 log h triangles in T . �

Lemma 13 Any triangle 4, with vertices in S, can be
covered by at most 3 log h triangles in T .

Proof. Observe that any triangle in T that partially
covers 4 must cross at least two edges of 4, since every
triangle in T has vertices on the convex hull of S. By
Lemma 12 each edge of 4 can cross at most 2 log h
triangles in T . Then the edges of 4 can cross at most
6/2 log h different triangles in T . Therefore 4 can be
covered by at most 3 log h triangles in T . �

Theorem 14 A 3 log h-approximation of an optimal
triangle with vertices in S can be found in O(n log h)
time.

Figure 13: Any line can cross at most two of the tri-
angles added during the ith iteration of the algorithm.
The shaded regions denote triangles added to T during
the ith iteration.

Proof. For each point s ∈ S we can find the triangle in
T enclosing s in O(log h) time: Start with the innermost
triangle 4titjtk. If s is in this triangle we are done.
Otherwise s lies to the left of one of the lines l(ti, tj),
l(tj , tk) or l(tk, ti). Without loss of generality let s lie to
the left of l(ti, tj). Repeat the previous steps with the
triangle immediately to the left of the line l(ti, tj). At
each step we remove 2/3 of the triangles. Since there are
O(h) triangles it takes O(log h) time to find the triangle
of T that encloses s. Therefore it takes O(n log h) time
to find the triangle in T that encloses the maximum
number of points of S. The approximation ratio follows
from Observation 1 and Lemma 13. �

7 Conclusion

It is not known whether the O(n3) time algorithm used
to find the triangle enclosing the most points is optimal.
Similarly it is unclear if the runtimes of our approxima-
tions are optimal.

Eppstein et al. [1] studied the more general problem
of finding a convex k-gon that is optimal for some weight
function, for example the minimum or maximum num-
ber of points, or the minimum perimeter. Their algo-
rithm runs in O(kn3) time. It would be interesting to
see if any of our results can be applied to these prob-
lems.
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