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On Inducing n-gons
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Abstract

In this paper, we establish a lower bound on the number
of inducing simple n-gons in grid-like arrangements of
lines. We also show that the complexity associated with
counting the number of inducing n-gons in an arrange-
ment of collinear segments is #P-complete.

1 Introduction

Arrangement of lines in the plane is among the most
studied structures in combinatorial and computational
geometry. Consider an arrangement of n lines. An in-
ducing n-gon is a simple polygon with n sides such that
extension of each side induces a line of the arrangement,
and extensions of all sides induce the whole arrange-
ment. It means that each line in the arrangement should
exactly contain one side of the inducing n-gon.

An interesting question is to find out whether an ar-
rangement includes a simple n-gon inducing the whole
arrangement [3], and a more appealing question is to
find an upper or lower bound on the number of these n-
gons that an arrangement can tolerate [2]. The first
question has been responded affirmatively for simple
arrangements [1, 5] while the second one still remains
open. In addition to the above problems, the complexity
of counting inducing n-gons in arrangements is another
appealing issue to those interested in complexity theory.

In this paper, we establish a lower bound on the num-
ber of inducing n-gons in a grid-like arrangement of lines
as defined formally in Section 3. This class of arrange-
ments is interesting because despite the well-shaped ap-
pearance of the arrangements it seems to be hard to
count all the inducing n-gons.

Inducing n-gons are discussed in arrangements of lines
and pseudo-lines [3]. In this work, the complexity of
counting these n-gons in arrangements of collinear seg-
ments is studied.

This paper is organized as follows. In Section 2, we
present a method to count a subset of inducing n-gons in
a special class of arrangements. The results of Section 3
are utilized to present a lower bound on the number
of inducing n-gons in grid-like arrangements of lines.

∗Laboratory of Algorithms and Computational Geometry, De-
partment of Mathematics and Computer Science, Amirkabir Uni-
versity of Technology, {m.abedin,mohades}@aut.ac.ir
†Department of Mathematics, Alzahra University,

eskandari@alzahra.ac.ir

In Section 4, it is shown that the complexity of count-
ing the number of inducing n-gons in arrangements of
collinear segments is #P-complete.

2 Arrangements of n lines with at least factorial
number of inducing n-gons

This section is concentrated on a specific class of ar-
rangements of n lines, where n = 3m and m is an inte-
ger. We present a method to show that an arrangement
in this class contains at least factorial number of induc-
ing n-gons.

2.1 Initialization

Consider an arrangement of 3m lines arranged in three
sets of m parallel lines. Call the sets R, L and B, and
consider the set B to be horizontal. The lines of each set
are parallel to one side of an empty hypothetical triangle
with horizontal base. Label the lines of each set in an
ascending order, from the inner to the outer line. The
intersection point between two lines is denoted by the
names of those lines, xbi,rj for the intersection of the
lines bi and rj .

Intersections of any triple of lines, each one from dif-
ferent set, forms a triangle. We shall regard the area
inside the biggest triangle as arrangement-core, and de-
note the triangles formed by the intersection of b1, ri
and li as Ti. Call all the segments on lis and ris of Tis
mountain range-LR. Similarly, all the segments on bis
and lis of Tis and likewise all the segments on bis and
ris of Tis are designated. We only explain the method
for the mountain range-LR because of the symmetrical
appearance of the arrangement.

In each mountain range, there are m mountains and
m−1 narrow corridors, which play a fundamental role in
the following section. Let Mi denote the ith mountain,
and label the mountains and corridors from the inner
to the outer one in an ascending order. Half of each
corridor is on the right and the other half is on the left
side of the arrangement; see Fig. 1(a). There is a specific
edge in all the n-gons constructed by the method, call
it ceiling-edge. Depending upon the parity of m, the
ceiling-edge is defined differently that is described in
the following section.
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Figure 1: (a) The second corridor is filled with gray and
M4 is bolded. (b) An inducing 12-gon.

2.2 The method

All the inducing n-gons constructed by the method, con-
tain one of the three mountain ranges. Through contri-
bution of the segments on the mountain range-LR, there
are 2m lines induced. Therefore, we extend the selected
mountain range and close each corridor with a segment
on a line of B to induce all the lines and obtain an
inducing n-gon.

Assume m is even. The ceiling-edge for even m is a
segment of a line of B, e.g. bz, with two endpoints xbz,r1

and xbz,rm or two endpoints xbz,l1 and xbz,lm . Because
of the symmetry, let us consider the ceiling-edge with
two endpoints xbz,r1 and xbz,rm on the right side, on bz
(z ≥ dm2 e). Lemma 1 explains why it is necessary that
the ceiling-edge lies on a line of B with an index greater
than dm2 e.

Having fixed the ceiling-edge, extend the right seg-
ments of M1 and Mm to reach it. As the ceiling-edge
is placed on the right, extend m

2 − 1 of the right half-
corridors, and close each one of them with a segment
on a so far unused line of B above bz. Furthermore on
the other side, extend m

2 of the left half-corridors and
close each one with a segment on a remaining unused
line of B. As presented in Fig. 1(b), the ceiling-edge
is on b3 and the extended corridors are closed on b2,
b1, b4 respectively. In summary, the even half-corridors
are closed on the right, and the odd half-corridors are
closed on the left alternatively starting from the first
left half-corridor.

In conclusion, select m−z odd corridors from the left
to be extended bellow bz then there are (m−z)! possible
choices for them to be closed on the left. Similarly, for
the remaining z−1 half-corridors on both left and right,
there are (z−1)! different configurations to be extended
up to above bz and to be closed. This method uses
each line exactly once and all the inducing n-gons are
different.

There are
( m

2
m−z

)
(m−z)!(z−1)! number of inducing n-

gons by fixing the ceiling-edge on bz (z ≥ dm2 e). There-

fore, our method constructs
∑m

m
2

( m
2

m−z
)
(m− z)!(z − 1)!

number of different inducing n-gons by taking all
the possible places for the ceiling-edge into account,
z ≥ dm2 e. Disregarding the algebraic simplification, the

result equals (m
2 )!(m

2 − 1)![
(
m
m
2

)
− 1].

The discussed points for even m are also true for odd
m with some changes:

• The ceiling-edge is a segment on bz, z ≥ dm2 e, with
two endpoints xbz,l1 and xbz,rm or two endpoints
xbz,r1 and xbz,lm . Because of the symmetry, con-
sider the ceiling-edge with two endpoints xbz,l1 and
xbz,rm on the right side of the arrangement. Then
it is necessary to extend the left segment of M1 and
the right segment of Mm to reach the ceiling-edge,
and the right half-corridors should be extended and
closed above the ceiling-edge to avoid crossing it.

• Since m is odd, extend and close m−1
2 of the even

corridors on the left, and do the same for m−1
2 of

the odd corridors on the right alternatively starting
from the first right corridor. According to the posi-
tion of the ceiling-edge, whether it is on the left or
on the right, some of the corridors should be closed
above the line containing the ceiling-edge, and the
remaining ones ought to be closed below it.

The lower bound presented for even m is also true here.

Lemma 1 The ceiling-edge has to lie on bz, z ≥ dm2 e.

Proof. By contradiction, while closing some corridors
on the left or right, there would be an intersection
among the ceiling-edge and the extended corridors.
Therefore, there are more than one side of an induc-
ing polygon on the ceiling-edge or other lines, and of
course the result is not an inducing n-gon. It is also
possible to have some self-intersections. �

2.3 Generalization of the arrangements

The presented lower bound in the previous section is
preserved for generalized arrangements of n lines, where
n = km and k and m are both integers. Lines in the ar-
rangements are divided into k sets of parallel lines, each
set of size m. In addition, each pair of sets are intersect-
ing, and the lines of each set are parallel to one side of
an empty hypothetical k-gon. The arrangement-core for
a generalized arrangement is the limited space with the
exterior line of each set. To take advantage of the ben-
efits attributed to the method discussed in Section 2.2,
each set of lines should only intersect its adjacent sets
inside the arrangement-core, and the intersections with
other sets lie outside of this area.

It is important to note that the method in the pre-
vious section presents a lower bound on the number of
inducing n-gons inside the arrangement-core, which in-
dicates that the method ignores the intersections be-
yond this region. This is an observation which is used
to establish a lower bound on the number of inducing
n-gons in the following section.
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3 Inducing n-gons in grid-like arrangements

A grid-like arrangement is an arrangement with two sets
of parallel lines. If the numbers of lines in two sets are
not equal, then there is no inducing n-gon. Otherwise
the numbers of horizontal and vertical sides of inducing
n-gons are not equal, and this cannot happen. Thus,
consider a grid of size n with two sets of parallel lines
each one of size m, where m is an integer. Without loss
of generality, consider the lines of one set parallel to the
x-axis and those of the other set parallel to the y-axis.

An obvious lower bound on the number of inducing
n-gons in the grid is (m − 1)!. This amount is ob-
tained by considering the biggest bounded segment on
the bottommost line as a fixed edge, closing each ver-
tical corridor with a segment on a horizontal line and
finally joining them with vertical segments on the verti-
cal lines. The inducing n-gons obtained by this method,
form monotone orthogonal n-gons in the direction of the
x-axis. The former results in Section 2.2 are utilized to
improve this bound.

Consider an arrangement of 2kz lines, the same as
the arrangements described in Section 2.3, where k is a
divisor of m and z is an integer. The arrangement con-
tains 2k sets of parallel lines each one of size z. The 2k
sets are arranged such that the arrangement-core forms
a 2k-gon, in which each set intersects only its adjacent
sets. So it can be concluded that the segments of non-
adjacent sets, inside the arrangement-core, are parallel
because they do not intersect each other. It is a trans-
formation of the grid to an arrangement of segments
bounded with the arrangement-core. In other words,
the whole m lines in one set of the grid are divided into k
sets in such a way that each set contains m

k lines. These
k sets are arranged parallel to the non-consecutive sides
of a hypothetical 2k-gon.

Although a grid contains extra intersections in com-
parison with the arrangement of segments inside the
arrangement-core, simply ignore those additional inter-
sections; see Fig. 2(a). In other words, it is a lower
bound on the number of inducing n-gons where the
n-gons do not bend on the extra intersections; see
Fig. 2(b).

Based on the above discussion, the presented lower
bound in Section 2.2 is also true for grids. As
there is no overlap between inducing n-gons obtained
by the two methods, the lower bound is equal to
(m−1)!+

∑
k∈K( m

2k )!( m
2k −1)![

(m
k
m
2k

)
−1], where K is the

set of all divisors of m which are greater than two. Note
that for a fixed k, the ceiling-edge contains exactly k−1
segments. Therefore, different k do not lead to identi-
cal n-gons while there is at least one difference between
their ceiling-edges. This bound can become more pre-
cise by taking inducing n-gons in other directions into
account although we ignore them.

Figure 2: (a) Arrangement of segments inside the
arrangement-core and the related grid, extra intersec-
tions are removed. (b) The related inducing n-gons.

4 Complexity of counting inducing n-gons in an ar-
rangement of collinear segments

An arrangement of collinear segments, ACS, is a col-
lection of line segments in the plane. The arrangement
includes some maximal subsets of collinear segments,
i.e. a maximal subset family. A single segment can
also be a family if there is no other segment collinear
with it. Note that an arrangement of lines is a special
case for this arrangement, as there are n families in an
arrangement of n lines.

An inducing n-gon in ACS is a polygon with n sides
for which there is a bijective relation between its sides
and the families. It means that each family of ACS
should contain exactly one side of the inducing n-gon.
Obviously, if there are less than n intersections between
the families of ACS, there is no inducing n-gon.

The class #P contains all counting problems associ-
ated with the polynomial-balanced and polynomial-time
decidable relations [4]. As our problem satisfies these
two properties, it is in #P. We demonstrate that count-
ing the number of inducing n-gons in an arrangement
of collinear segments is #P-complete. Let us reduce the
#P-complete problem #RPM to #n-IP, where #RPM
is the number of perfect matchings in a regular bipartite
graph, and #n-IP is the number of inducing n-gons in
an ACS.

Theorem 2 Complexity of counting #RPM in a k-
regular bipartite graph is #P-complete, for any fixed
k > 2 [6] .

Given a k-regular bipartite graph G = (U, V,E) such
that |U | = |V | = m. The goal is to construct an ar-
rangement of collinear segments such that the induc-
ing n-gons in ACS somehow correspond to the perfect
matchings in G. Consider some guide-lines which form
a (m + 1) times (m + 1) grid-like arrangement A, and
also suppose m vertical guide-segments such that each
segment is limited to the second bottommost guide-line
and a point above the topmost horizontal guide-line.
Each guide-segment is placed inside a vertical corridor
of A and divides it into two vertical corridors, a small
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corridor and a big corridor. For each node in U and
V consider a big corridor and a horizontal guide-line of
A respectively. See Fig. 3(a) and consider the following
segments:

• Main-segments: Bounded horizontal segments with
big corridors.

• Small-segments: Bounded horizontal segments
with small corridors.

• Helping-segments: The segments on both guide-
segments and vertical guide-lines bounded between
the second bottommost horizontal guide-line and
the topmost small segment.

• Final-segments: The biggest segment on the bot-
tommost guide-line and the connecting segments
of its endpoints to the left and right most helping-
segments.

The reduction is as follows. For each edge in G
which connects ui to vj , add a main-segment inside the
big corridor associated with ui and lies on the guide-
line attributed to vj , 1 ≤ i, j ≤ m. Add m small-
segments inside of each small corridor. Put one of the
small-segments above the topmost horizontal guide-line,
and each horizontal corridor of A should contain ex-
actly one small-segment except the bottommost corri-
dor. The small-segments in each horizontal corridor of A
should be collinear, to form horizontal families. Add the
helping-segments and the final-segments; see Fig. 3(b)
as overall arrangement. We claim that #n-IP is equal
to m! #RPM, where n = 4m + 2. It can be shown by
the following lemma.

Lemma 3 All the inducing n-gons in the designed ACS
are monotone in the direction of the x-axis.

Proof. By contradiction, there are more than one
side of the polygon on at least one of the helping-
segments. �

In each inducing n-gon there are exactly m main-
segments. There is no pair of main-segments selected in
a big corridor as an inducing n-gon in the constructed
ACS is monotone, Lemma 3. This point indicates that
there is no pair of vertices in V matched with a vertex
in U ; see Fig. 3(c).

To obtain an inducing n-gon, the main-segments are
joining via small-segments, helping-segments and final-
segments. For a fixed set of selected main-segments in
an inducing n-gon, related to a perfect matching of G,
there are m! possible ways to choose small-segments to
obtain m! different inducing n-gons.

The reduction is now complete and obviously is in
P . It is to mean that if someone can obtain the #n-IP
efficiently, he could easily find the #RPM which is a
#P-complete.

Figure 3: (a) On the left, a 3-regular bipartite graph.
On the right, dash lines/segments are as guidance
and the related main-segments and small-segments to
the graph are bolded. (b) The main-segments, small-
segments, helping-segments and final-segments are blue,
violet, orange and green respectively. (c) On the left, a
perfect matching. On the right, the designed arrange-
ment of segments and a related inducing n-gon to the
perfect matching is bolded.

5 Conclusion

We establish a lower bound on the number of induc-
ing n-gons in grid-like arrangements. It is interesting to
find the exact number of inducing n-gons in this class
of arrangements. We also demonstrate that the com-
plexity of counting the number of inducing n-gons in an
arrangement of collinear segments is complete for the
class #P. We conjecture that the complexity of count-
ing inducing n-gons in arrangements of lines is also #P-
complete.
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