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Convexifying Polygons Without Losing Visibilities
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Abstract

We show that any simple n-vertex polygon can be made
convex, without losing internal visibilities between ver-
tices, using n moves. Each move translates a vertex of
the current polygon along an edge to a neighbouring
vertex. In general, a vertex of the current polygon rep-
resents a set of vertices of the original polygon that have
become co-incident.

We also show how to modify the method so that ver-
tices become very close but not co-incident, in which
case we need O(n2) moves, where each move translates
a single vertex.

The proof involves a new visibility property of poly-
gons, namely that every simple polygon has a visibility-
increasing edge where, as a point travels from one end-
point of the edge to the other, the visibility region of
the point increases.

1 Introduction

There are many interesting problems about reconfigur-
ing geometric structures while maintaining some proper-
ties. Examples include: flips in triangulations [5], push-
ing and sliding block puzzles [17], morphing of poly-
gons and planar graphs [18, 21], and linkage reconfig-
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aloupis.greg@gmail.com
‡MIT Computer Science and Artificial Intelligence Labora-

tory, 32 Vassar St., Cambridge, MA 02139, USA, {edemaine,

mdemaine}@mit.edu
§School of Computer Science, Carleton University,

vida@scs.carleton.ca
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uration [7, 23]. Reconfiguration has also been studied
outside the geometric domain [19].

This paper is about convexifying a simple polygon,
i.e., continuously transforming the polygon to a con-
vex polygon while maintaining simplicity. If no other
structure must be maintained, this can be done in a
trivial way, moving only one vertex at a time. When
edge lengths must be maintained, this is a major re-
sult, namely the Carpenter’s Rule Theorem [7, 23], and
the reconfiguration process involves moving all vertices
simultaneously.

In the Open Problem session at CCCG 2008 [11],
Satyan Devadoss asked whether a polygon can be con-
vexified without losing internal visibility between any
pair of vertices, and in particular, whether this can be
done by moving only one vertex at a time [12]. We give a
positive answer. We first consider a version of the prob-
lem where vertices may become co-incident during the
transformation, so one vertex of the polygon in general
represents a set of vertices of the original polygon. We
show that any polygon can be convexified by a sequence
of n moves, where each move strictly increases the set
of pairs of vertices that are internally visible, and each
move translates one vertex along an edge of the polygon
to a neighbour. In terms of the original polygon, each
move translates a set of vertices along a straight line to
join another set of vertices.

In Section 3 we modify our method so that vertices
become very close but not coincident. In this case, we
need O(n2) moves, each moving one vertex. Internal
vertex visibilities are never lost, but a single move does
not necessarily add any internal vertex visibilities.

Our main tool, which may be of independent interest,
is to show that every polygon has a visibility-increasing
edge where, as a point travels from one endpoint of the
edge to the other, the visibility region of the point in-
creases.

Previous Work

In the original model where coincident vertices are not
allowed, Aichholzer et al. [2] showed that any monotone
polygon can be convexified without losing vertex vis-
ibilities. Their transformation moves one vertex at a
time, but the number of vertex moves is not polynomi-
ally bounded. If all vertices may move simultaneously,
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they observe that a monotone polygon can be convexi-
fied in one move. They also show that, even for mono-
tone polygons, it is not always possible to move just
one vertex and strictly increase the set of vertex visibil-
ities. Note that such an example depends crucially on
prohibiting coincident vertices! If vertices are allowed
to be coincident, our result shows that for any simple
polygon, it is possible to move one vertex until it gains
a new neighbour in the visibility graph.

The issue of allowing/disallowing coincident vertices
has arisen before in problems of transforming (or “mor-
phing”) polygons and straight-line graph drawings.
Cairns [6] showed how to transform between any two
straight-line planar triangulations that are combinato-
rially the same, using a sequence of moves each of which
translates one vertex onto another (or the reverse). He
then comments that it is possible to avoid coincident
vertices by keeping them a small distance apart. A
somewhat similar issue comes up in the result of Guibas
and Hershberger [16] who show that for any two simple
polygons on vertices 1, 2, . . . , n such that edge (i, i+ 1)
has the same direction vector in both polygons, there is
a morph between the polygons that preserves simplicity
and the direction vectors of edges. Their method moves
vertices infinitesimally close together and operates on
the infinitesimal structures.

The question of moving only one vertex at a time has
recently been settled in independent work by Ábrego et
al. [1], who show that if a there is a transformation that
convexifies a polygon without losing vertex visibilities,
then the transformation can be accomplished by moving
only one vertex at a time.

Although not directly relevant to this paper, we note
that there is a considerable body of work on making
polygons convex by means of “pivot” operations, such
as flips [13, 8, 15, 25] and flipturns [3, 4].

For background on visibility graphs of polygons, see
the books by Ghosh [14] and O’Rourke [22].

Definitions

Two points inside a polygon P are visible if the line
segment between them is contained in the closed poly-
gon. Given this definition, we will now use “visibility”
rather than “internal visibility”. We will assume that
the input polygon does not have three or more collinear
vertices. It is possible to perturb a polygon to achieve
this without losing internal vertex visibilities. Note the
consequence that if two vertices are visible, then the line
segment between them does not go through another ver-
tex. For point p in P , the visibility region of p, denoted
V (p), is the set of points in P visible from p.

Let a be a reflex vertex with neighbours b and b′ on
the polygon boundary. Extend a line segment from b to
a and beyond, until it first hits the polygon boundary
at p. Define Pocket(b, a) to be the region bounded by
the chain along the polygon boundary from a to p go-

ing through b′, together with the line segment pa. We
consider points along the line segment pa to be outside
the pocket (i.e., the pocket is open along its “mouth”).
In particular, a is outside Pocket(b, a). See the shaded
region in Figure 1(a).

2 Convexifying polygons

Theorem 1 An n-vertex polygon can be convexified in
n moves, where each move strictly increases the set of
pairs of visible vertices, and each move translates one
vertex of the current polygon along an incident edge to
a neighbour on the polygon boundary.

The main tool in proving the theorem is the following.
We prove that if a polygon is not convex then it has an
edge along which visibility increases. More precisely,
define an edge (u, v) to be a visibility-increasing edge if
for every point p along the edge (u, v) we have V (u) ⊆
V (p) ⊆ V (v), and there is a vertex in V (v)− V (u).

We will use a stronger induction hypothesis to
prove that every non-convex polygon has a visibility-
increasing edge (u, v) where v is a reflex vertex. Note
that the fact that v is reflex implies that there is a vertex
in V (v)− V (u).

Lemma 2 Let P be a simple polygon with reflex vertex
a and edge (b, a). Then there is a visibility-increasing
edge (u, v) with v reflex and u, v exterior to Pocket(b, a)
such that u does not see into Pocket(b, a).

Proof. We prove the result by induction on the number
of reflex vertices of the polygon exterior to the pocket.
If (b, a) is a visibility-increasing edge, then it satisfies
the lemma, since b does not see into Pocket(b, a). See
Figure 1(a). This takes care of the base case where every
vertex v 6= a exterior to the pocket is convex.

a a

b
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c

(a) (b)

b'

p

Figure 1: Visibility-increasing edges: (a) the edge (b, a)
is a visibility-increasing edge; (b) vertex b is reflex, so
we apply induction on (c, b).

If b is a reflex vertex then let c be the other neigh-
bour of b (i.e., the neighbour not equal to a). See Fig-
ure 1(b). Then Pocket(c, b) ⊇ Pocket(b, a). Also, note
that the reflex vertex a is exterior to Pocket(b, a) and
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not exterior to Pocket(c, b). Therefore we can apply in-
duction to conclude that there is a visibility-increasing
edge (u, v) exterior to Pocket(c, b) such that v is reflex
and u does not see into Pocket(c, b). Then u cannot see
into Pocket(b, a), so (u, v) satisfies the lemma.

a

b

t

p
q

x

y

Figure 2: Visibility-increasing edges in the general case,
where we apply induction on (y, x).

We are left with the case where b is a convex vertex
but (b, a) is not a visibility-increasing edge. Note that
because a is a reflex vertex, V (a) contains a vertex not
in V (b). Therefore, the only way that (b, a) can fail to
be visibility-increasing is that there is a point p on (b, a)
and a point t on the boundary of P such that t sees p,
but t does not see a. See Figure 2. Now we rotate
the line through t and p about t until it hits the poly-
gon boundary. More precisely, consider the first point
q along the line segment pa such that the line segment
qt does not lie in the interior of P . Then some vertex x
lies on the line segment qt. Note that x must be a reflex
vertex. There are two paths on the polygon boundary
from x to t. Take the path that does not contain a, and
let y be the neighbour of x on this path. (It may happen
that y = t.) We will apply induction on the edge (y, x).
Observe that Pocket(y, x) ⊇ Pocket(b, a). Also, note
that the reflex vertex a is exterior to Pocket(b, a) and
not exterior to Pocket(y, x). Therefore we can apply in-
duction to conclude that there is a visibility-increasing
edge (u, v) exterior to Pocket(y, x) such that v is reflex
and u does not see into Pocket(y, x). Then u cannot see
into Pocket(b, a), so (u, v) satisfies the lemma. �

Proof. [of Theorem 1] The proof is by induction on
the number of vertices. If the polygon has three ver-
tices then it is already convex. For the general case, if
the polygon is convex then there is nothing to prove,
so suppose there is a reflex vertex. Then by Lemma 2,
there is a visibility-increasing edge (u, v). The plan is to
move vertex u to vertex v, resulting in a simple polygon
with fewer vertices on which we apply induction. See
Figure 5. Let w be the other neighbour of u on the poly-
gon boundary. We have V (u) ⊆ V (v) and w ∈ V (u),
so w must be visible to v. In particular, u is a con-

vex vertex and the line segment wv does not intersect
the polygon boundary except at its endpoints. There-
fore moving u to v results in a simple polygon. Observe
that no vertex visibilities are affected by the move, ex-
cept that u gains visibilities once it reaches v (if not
before). Note that u may become collinear with two
other vertices of the polygon at an intermediate point
of the move, but this causes no problems. �

3 Avoiding coincident vertices

In the previous section we showed how to convexify
any polygon without losing internal visibilities, provided
that vertices are allowed to become coincident. In this
section we show how to avoid coincident vertices. Each
set of coincident vertices from the previous method is
replaced by a cluster of vertices that are close together
but not coincident. One move of the previous method
becomes O(n) moves, each moving a single vertex. The
total number of moves is therefore O(n2). Vertex visibil-
ities are never lost, but a single move might not increase
vertex visibilities.

Figure 3: Cluster vertices along a single edge (top); a
reflex cluster (left); and a convex cluster (right). Shaded
areas indicate the interior of the polygon.

The basic idea is to replace an edge uv by a slightly
outward-bent convex chain, with some points on a shal-
low convex curve close to u, and other points on a shal-
low convex curve close to v, see Figure 3 (top). In gen-
eral, a cluster will consist of a representative vertex v,
together with the vertices that have been moved to join
v, and now lie on two convex curves incident to v. The
representative vertex v will be at the same point in the
plane as it was in the original polygon. If C is a clus-
ter with representative vertex v, we will say that C is
the cluster of v. Figure 3 depicts a reflex and a con-
vex cluster. In a convex cluster all vertices see each
other; in a reflex cluster only vertices in the same arc
see each other, and the representative vertex sees the
whole cluster.

All vertices of a cluster lie in the ε-neighbourhood of
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the representative vertex for some sufficiently small ε.
In addition, all vertices of a cluster lie within some angle
α of the original edge. See Figure 4(a).

We define values for ε and α that will work through-
out the algorithm. As the convexification proceeds,
edges between representative vertices of the intermedi-
ate polygons are always chords of the original polygon.
We will take all the chords into account when we define
ε and α. We choose ε small enough that visibility be-
tween two points in the ε-neighbourhoods of two vertices
x and y behaves like visibility between x and y. Thus
ε should be smaller than the distance between any ver-
tex and a (non-coincident) chord or edge extension—see
Figure 4(b). We choose α small enough that a represen-
tative vertex x does not block visibilities of vertices in
its cluster, and that a convex vertex remains convex—
see Figure 4(c). Apart from the constraints imposed
by ε and α we are free to place the cluster vertices on
any convex chain, and we will have occasion to alter the
chain.

α

ε

x

(a)

x y

z

x

y

(b)

x

y

(c)
x

Figure 4: (a) Cluster vertices are located in the shaded
region determined by ε and α; (b) Constraints on ε,
which must be small enough that visibility from a point
within an ε-neighbourhood of a vertex acts like visibility
from the vertex; (c) Constraints on α, which must be
small enough that a vertex x does not block visibility
to its cluster.

We now consider the move operation from the previ-
ous section as it operates on clusters. The move oper-
ation always moves a convex vertex u to join a reflex
vertex v. See Figure 5. The only other vertex affected
by the move is w, the other neighbour of u, which forms
a triangle with u and v. Suppose without loss of gen-
erality that v, u, w are in clockwise order around the

polygon. When vertices are replaced by clusters, the
vertices affected by the move are: all of u’s cluster; the
left part of v’s cluster; and the right part of w’s clus-
ter. See Figure 6. Note that, although the original
move always increased the set of vertices visible from u,
the modified move will not necessarily increase visibility
from u or any of its cluster, since we do not move any
vertex all the way to v.

ww

vvu u

Figure 5: Moving vertex u along the visibility-increasing
edge (u, v) affects vertices u, v, and w, which form a
triangle. Vertex v may remain reflex (left) or become
convex (right).
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Figure 6: The operation from Figure 5 in the presence
of cluster vertices: (a) the initial configuration, the final
configuration shown with dashed lines, and the vertex
correspondence shown with thin lines; (b) the interme-
diate configuration after moving u and its cluster close
to v.

We show that the transformation of clusters as shown
in Figure 6 can be accomplished by moving one vertex
at a time. The first phase is to move u and its cluster
close to v, in a configuration congruent to their final
configuration. Move the vertices one by one starting
with the vertex closest to v along the chain. Note that
u loses its status as a representative vertex. The re-
sult of the first phase is shown in Figure 6(b). Note
that the union of the initial and final positions of all
the vertices that are moved in the first phase is in con-
vex position. Therefore, convexity of the cluster and
visibility within the cluster are maintained. Globally,
as each cluster vertex moves from the neighbourhood of
u’s initial position to v’s neighbourhood, its visibility
changes exactly as u’s visibility changed in the original
non-cluster move (stopping just before reaching v).

In the second phase (from Figure 6(b) to the final
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configuration) the transformation we wish to realize is
a counterclockwise rotation of w’s right cluster and a
clockwise rotation of v’s left cluster to their final posi-
tions. We describe how to do this for v’s left cluster. In
the first step, move the vertices of v’s left cluster (one
by one) close enough to v that their new positions and
their final positions are in convex position, as shown in
Figure 7. In the second step, move the vertices one by
one to their final positions, starting with the vertex far-
thest from v along the chain. Convexity of the cluster
(and hence visibility within the cluster) is maintained
during the second step because the union of the initial
and final positions of all moved vertices is in convex po-
sition. Global visibilities may be gained but are never
lost.

v

Figure 7: Adjusting the position of v’s left cluster
vertices. All movement takes place within the ε-
neighbourhood of v. The first vertex move is shown
with a thin directed line. Note that this figure is not to
scale since the angle α should be much smaller.

From the above ideas, we obtain the following result.

Theorem 3 An n-vertex polygon can be convexified in
O(n2) moves, so that visibilities between vertices are
never lost, and vertices never become coincident. Each
move is a translation of a single vertex.

4 Discussion and Open Problems

We have shown that any simple n-vertex polygon can be
convexified in O(n2) single-vertex moves without ever
decreasing the visibility graph, answering a question
posed by Devadoss et al. [12]. If coincident vertices are
allowed, then n moves suffice, and each move strictly
increases the visibility graph.

In the same paper, Devados et al. ask about trans-
forming a polygon to decrease the visibility graph: can
any simple polygon be transformed to a polygon whose
visibility graph is a triangulation without ever increas-
ing the visibility graph? This question remains open.

For orthogonal polygons, it would be desirable to
maintain orthogonality. We conjecture than every sim-
ple orthogonal polygon can be convexified (i.e., trans-
formed to a rectangle) without losing visibilities, while
maintaining orthogonality. A minimal motion that
maintains orthogonality is to move one edge orthogo-
nal to itself (i.e., a horizontal edge moves vertically, and
vice versa). However, Figure 8 shows an example where
no edge can be moved orthogonally to gain visibilities.

It is possible that the current result can be generalized
to straight line drawings of planar graphs: Given a pla-
nar graph embedded in the plane as a straight-line draw-
ing, is it possible to transform the drawing so that every
internal face becomes convex, while remaining straight-
line planar, and without losing internal visibilities? Our
result is the special case where the drawing has only
one internal face. The fact that such a transformation
is possible, ignoring visibility constraints, is not at all
obvious, but follows from the result by Thomassen [24],
who showed (based on a result of Cairns [6]) that there is
a transformation between any two straight-line planar
drawings of the same embedded graph that preserves
straight-line planarity. Vertices become coincident dur-
ing this transformation, although that can be avoided by
keeping them close but distinct. The number of vertex
movements is not polynomially bounded. For further
discussion on morphing of graph drawings, see [20, 21].

Finally, we make two remarks about our result on
the existence of a visibility-increasing edge in any sim-
ple polygon. Since good things (like ears of polygons)
come in pairs, it is natural to ask whether every simple
polygon has two visibility-increasing edges.

Visibility-increasing edges may have other uses in the
study of visibility graphs. A major open question is
whether visibility graphs of polygons can be recognized
in polynomial time (with or without the information
about which edges form the polygon boundary). This
is Problem 17 in the Open Problems Project [9].

Figure 8: An orthogonal polygon where no single edge
can be moved orthogonally to gain visibilities.
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