
CCCG 2011, Toronto ON, August 10–12, 2011

Algorithms for Bivariate Majority Depth

Dan Chen∗ Pat Morin∗

Abstract

The majority depth of a point with respect to a point
set is the number of major sides it is in. An algorithm
for majority depth in R2 is given in this paper, and it is
the first algorithm to compute the majority depth. This
algorithm runs in O((n+m) log n) time with Brodal and

Jacob’s data structure, and in O
(

(n + m) log n
log log n

)
time

in the word RAM model.

1 Introduction

A data depth is a measure of the centrality of a point
with respect to a given data cloud in Rd. Many depth
notions have been introduced, such as Tukey depth [21],
Oja depth [17], Simplicial depth [15], and majority
depth [18, 16]. For the introduction of these notions, one
can refer to the surveys by Small [19] and Aloupis [2]. In
this paper we give an algorithm for the majority depth.
Let S be a set of points in Rd. If the points in S are in
general position (no d + 1 points of S lie on a common
hyperplane), any d points in S define a unique hyper-
plane }. With } as the common boundary, two closed
half-spaces are obtained. The one containing more than
or equal to n+d

2 points is called the major side of }. Note
that halving hyperplanes have two major sides. Given a
finite set S of n points and a point p in Rd, the majority
depth of p is the number of major sides it is in.

In this paper we consider the problem of computing
the majority depth of a point p with respect to a set S
of n points in R2. We assume that the points in S are in
general position. The tools for the algorithm are given
in Section 2 and Section 3, and the algorithm is given
in Section 4.

2 Dual Arrangement

Let H be a set of n hyperplanes in Rd. We say that H
is in general position, if every subset of d hyperplanes
intersect in one point, and no d + 1 hyperplanes inter-
sect in one point. We say a hyperplane is vertical if it
contains a line parallel to the xd-axis. Without loss of
generality, we assume that no hyperplane in H is ver-
tical. The arrangement A(H) of H is the partitioning

∗School of Computer Science, Carleton University, Ot-
tawa, Ontario K1S 5B6, Canada, dchen4@connect.carleton.ca,
morin@scs.carleton.ca.

of Rd induced by H into vertices (intersections of any d
hyperplanes in H), faces (each flat in A(H) is divided
into pieces by the hyperplanes in H that do not con-
tain the flat, a j-face is a piece in a j-flat), and regions
(connected components in Rd separated by hyperplanes
in H). We call A(H) a simple arrangement if H is in
general position.

In an arrangement, we say a point p is at the k-
level [1, 11, 14], if there are k hyperplanes in H lying
vertically below p. (Above and below are with respect
to the xd coordinate.) The k-level of A(H) is the clo-

Figure 1: The 1-level of an arrangement in R2

sure of all the points of H at level k. Let m be the
number of vertices of the k-level. Tight bounds for m
are still open problems. In R2 the best known upper
bound of m is O(nk1/3) [9], and the best known lower

bound for m is n2Ω(
√

log k) [20]. In R2, constructing
the k-level takes O((n+m) log n) time using Edelsbrun-
ner and Welzl’s algorithm [13] with the data structure
in [3], and it takes O(n log n+nk1/3) expected time with
Chan’s randomized algorithm [4] which is output insen-
sitive. In the word RAM model, the construction takes

O
(

(n + m) log n
log log n

)
time [8].

Let A(T ) be the dual arrangement [1, 11, 14] of S,
where T is a set of dual hyperplanes of the points in
S. For a hyperplane } determined by d points in S,
the major side of } contains at least dn−d2 e points in
its interior, and they are either above or below }. Let
}∗ be the dual image of } in A(T ). Then, below or
above }∗ there are the same number of hyperplanes.
We define the major side of }∗ as a direction of the
xd-axis along which the ray from }∗ intersects at least
dn−d2 e hyperplanes. The directions of the major sides of
} and }∗ are opposite since the relative position between
a point and a hyperplane is reversed in the dual space.
However, if a point is in the major side of }, the dual



23rd Canadian Conference on Computational Geometry, 2011

image of the point (a hyperplane) is on the major side
of }∗.

In the dual arrangement, we call vertices red if they
have major side facing down, blue if the have major side
facing up, and purple if they have major side facing both
up and down. Then the majority depth of p is equal to
the number of purple vertices plus the number of red
vertices above p∗ plus the number of blue vertices below
p∗.

When n is odd, the vertices with level less than dn−d2 e
in A(T ) are blue, and the ones with level more than that

p∗

Figure 2: The vertices and major sides when n is odd

are red (see Figure 2). For each vertex on the dn−d2 e-
level, if the convex angle of its two adjacent segments
faces up it is blue, and if it faces down it is red.

When n is even, the situation is a little different.
As shown in Figure 3, the vertices with level less than
dn−d2 + 1e are blue, and the ones with level more than

dn−d2 e are red. The ones on both of these two levels are
purple.

Computing the majority depth of p with respect to
S is to count the number of major sides p is in. Since
the total number of vertices in a simple arrangement is(
n
d

)
, to compute the majority depth it is sufficient to

count the number of vertices in A(T ) whose major side
does not contain p∗. This problem involves counting the
number of vertices of A(T ) that are contained in a set
of polygons whose boundary is determined by p∗ and
the median level of A(T ). We study this problem in the
next section.

3 Counting Vertices

In this section we discuss how to count the vertices of a
2-dimensional arrangement of n line segments confined
by a simple polygon (see Figure 4). Since there can be
Ω(n2) intersections in this arrangement, a sweep line
algorithm would take too much time. In the following
we discuss a couple of more efficient ways of counting
the vertices.

We first transform the arrangement into a structure
as shown in Figure 5, which makes the pattern of in-

a

a′

b

b′

c

c′

d

d′

e

e′

f

f ′

g

g′

Figure 4: An arrangement in a simple polygon

tersections clearer to us. In this structure, the polygon
is cut at some point and laid flat, and all the line seg-
ments are bent into arcs, so that no two arcs intersect
twice. The number of intersections in the new struc-
ture is the same as that in the original one, because, for
any two line segments intersecting in the polygon, the
corresponding arcs intersect once.

Notice that for an arc a, any other arc that intersects
a has an endpoint laying between the two ends of a. To
count the intersections in the new structure, we can use
a queue. Starting from one end of the new structure,
we add the endpoints of the arcs to the queue. Once
the other end of an arc is in the queue, we count the
number of endpoints between the two endpoints of the
arc, which is the number of intersections the arc con-
tributes. We then remove the two ends from the queue.
Upon reaching the other end of the structure, the queue
will be empty and all the intersections will be counted.
If we implement the queue with an augmented binary
tree [7, Chapter 14.1], finding the distance between the
two ends of an arc and deleting the other end of the arc
takes O(log n) time, so the number of intersections can
be counted in O(n log n) time.

Another way to count the intersections is to use an
array A of size 2n. Starting from one end of the struc-
ture, we walk to the other end. Once we come across
a starting end of an arc, we append a 1 to A. Once
we come across a finishing end of an arc a, we append
a 0 to A. Let the index of the starting end of a in A
be i, and that of the finishing end be j. We then set
A[i] to 0. Let sum(k) denote

∑
l≤k A[l]. The num-

ber of the intersections that a contributes is the num-
ber of endpoints we came across between A[i] and A[j],
which is sum(j) − sum(i). We can compute sum(k)

in O
(

log n
log log n

)
time with Dietz’s algorithm [10] in the

word RAM model. Then counting all intersections takes

O
(
n log n

log log n

)
time.

4 The Algorithm

In this section we show how to use the intersection
counting structure of the previous section to obtain an
efficient algorithm for the majority depth problem in



CCCG 2011, Toronto ON, August 10–12, 2011

dn−d
2 e-level

dn−d
2 + 1e-level

p∗

Figure 3: The vertices and major sides when n is even

a a′b b′c c′d d′e e′f f ′g g′

Figure 5: The transformed arrangement

R2. In the following we will first describe the algo-
rithm when n is odd, then we describe the modifications
needed when n is even.

If n is odd, we first compute the median level of the
dual arrangement of S and the intersections between it
and p∗. If they intersect, p∗ splits the levels into sections
(as the schematic example shown in Figure 6). Each
section along with p∗ form a simple polygon except the
leftmost and rightmost sections, which form unbounded
regions. In order to count the vertices in the unbounded
region with the methods in Section 3, we need to find
the leftmost and rightmost vertices. Since the extreme
points of the set of vertices of A(T ) can be found in
O(n log n) time by sorting the lines by slope [6], we can
find those two vertices in O(n log n) time. Then we can
add a vertical line to the left of the leftmost vertex, and
one to the right of the rightmost vertex to bound the
unbounded region (An example is shown in Figure 7).
Now we can count the vertices in each polygon, and
the ones on the median level whose major side does not
contain p∗.

If n is even we need to compute both the n
2 -level and

(n
2 −1)-level. The polygons should be formed by part of

p∗ and the one of the two median levels which is further
away from p∗ (see the schematic example in Figure 8).
In Figure 9 is an example where all regions are bounded.
Then we need to count all the vertices in the polygons,
and count the vertices that on both those levels since
they should be counted twice for the depth of p.

p∗

Figure 7: The polygons when n is odd

The number of lines that intersect with p∗ is n, and
the number of lines that intersect with the two vertical
lines is no more than 2n. Since, in the polygons, each
line segment that intersects with the median level has a
unique extension on the median level, the total number
of line segments that intersect with the median level is
no more than m. Each line segment in the polygons
has two ends on the boundaries, therefore, the total
number of line segments in all the polygons is no more
than 3n + m.

We obtain two different algorithms for computing ma-
jority depth depending on which algorithm we use for
computing the median level and counting the vertices
in a polygon.



23rd Canadian Conference on Computational Geometry, 2011

p∗

bn
2 c-level

Figure 6: The regions when n is odd

p∗

n
2 -level

(n2 − 1)-level

Figure 8: The regions when n is even

Theorem 1 The majority depth in R2 can be computed
in

1. O((n+m) log n) time with Brodal and Jacob’s data
structure.

2. O
(

(n + m) log n
log log n

)
time in the word RAM model.

The complexity of these algorithms is determined by
the value of m, which is the number of vertices of the
median level.

5 Conclusion

We have given an algorithm for computing the majority
depth of a point p with respect to a set S of n points
in R2. The algorithm’s running time is dependent on
the size of the median level of the dual arrangement of
S. Even without leaving 2 dimensions, this work leaves
several open questions:

1. (Depth of a point) Is there an O(n logO(1) n) time
algorithm for computing the majority depth of a
point p with respect to a set S of n points in R2?

2. (Deepest point) Given a set S of n points in R2, how
quickly can we compute a point p whose majority
depth (with respect to S) is maximum?

3. (Centerpoint) Determine the maximum value k =
f(n) for which the following statement is true: For

any set S of n points in R2, there exists a point
p ∈ R2 whose majority depth, with respect to S, is
at least

(
n
2

)
/2 + k.

4. (Faster algorithm in the word RAM model) The
related problem of counting inversions has recently
been solved in O(n

√
log n) running time [5]. This

unfortunately does not improve our algorithm. Can
the factor log n

log log n in the running time of our algo-

rithm be replaced by
√

log n?

An algorithm for the first problem would have to
avoid computing the median level. The second prob-
lem is easily solved in O(n4) time and O(n2) space by
traversing the arrangement of lines through all

(
n
2

)
pairs

of points in S using the topological sweep algorithm [12].

References

[1] P. Agarwal and M. Sharir. Arrangements and their
applications. In Handbook of Computational Geome-
try, pages 49–119. Elsevier Science Publishers North-
Holland, 1998.

[2] G. Aloupis. Geometric measures of data depth. In DI-
MACS Series in Discrete Mathematics and Theoretical
Computer Science, 2006.

[3] G. Brodal and R. Jacob. Dynamic planar convex hull.
In Proceedings of the 43rd Annual IEEE Symposium on
Foundations of Computer Science, pages 617–626, 2002.

[4] T. Chan. Remarks on k-level algorithms in the plane.
Manuscript, 1999.



CCCG 2011, Toronto ON, August 10–12, 2011

dn−2
2 e-level

dn
2 e-level

p∗

Figure 9: The polygons when n is even

[5] T. Chan and M. Pǎtraşcu. Counting inversions, of-
fline orthogonal range counting, and related problems.
In Proceedings of the 21st ACM/SIAM Symposium on
Discrete Algorithms (SODA), pages 161–173, 2010.

[6] Y. Ching and D. Lee. Finding the diameter of a set of
lines. Pattern Recognition, 18(3-4):249–255, 1985.

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. In-
troduction to Algorithms. The MIT Press, Cambridge,
MA USA, 2nd edition, 2001.

[8] E. Demaine and M. Pǎtraşcu. Tight bounds for dy-
namic convex hull queries (again). In Proceedings of the
23rd annual ACM symposium on Computational geom-
etry, SoCG ’07, pages 354–363, New York, NY, USA,
2007. ACM.

[9] T. Dey. Improved bounds for planar k-sets and re-
lated problems. Discrete & Computational Geometry,
19(3):373–382, 1998.

[10] P. Dietz. Optimal algorithms for list indexing and sub-
set rank. In F. Dehne, J. Sack, and N. Santoro, editors,
Algorithms and Data Structures, volume 382 of Lec-
ture Notes in Computer Science, pages 39–46. Springer
Berlin, 1989.

[11] H. Edelsbrunner. Algorithms in Combinatorial Geome-
try. Springer-Verlag, Heidelberg, Germany, 1987.

[12] H. Edelsbrunner and L. Guibas. Topologically sweep-
ing an arrangement. Journal of Computer and System
Sciences, 38(1):165–194, 1989.

[13] H. Edelsbrunner and E. Welzl. Constructing belts in
two-dimensional arrangements with applications. SIAM
Journal on Computing, 15(1):271–284, 1986.

[14] D. Halperin. Handbook of discrete and computational
geometry. chapter 24, pages 529–562. Chapman and
Hall / CRC, Boca Raton, FL, USA, 2nd edition, 2004.

[15] R. Liu. On a notion of data depth based on random
simplices. Annals of Statistics, 18(1):405–414, 1990.

[16] R. Liu and K. Singh. A quality index based on data
depth and multivariate rank tests. Journal of the Amer-
ican Statistical Association, 88(421):252–260, 1993.

[17] H. Oja. Descriptive statistics for multivariate distribu-
tions. Statistics and Probability Letters, 1(6):327–332,
1983.

[18] K. Singh. A notion of majority depth. Technical report,
Department of Statistics, Rutgers University, 1991.

[19] C. Small. A survey of multidimensional medians. In-
ternational Statistical Review, 58(3):263–277, 1990.

[20] G. Tóth. Point sets with many k-sets. Discrete & Com-
putational Geometry, 26(2):187–194, 2001.

[21] J. W. Tukey. Mathematics and the picturing of data.
In Proceedings of the International Congress of Mathe-
maticians: Vancouver, volume 2, pages 523–531, Mon-
treal, 1975. Canadian Mathematical Congress.


