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Combinatorics of Minkowski decomposition of associahedra

Carsten E. M. C. Lange∗

Abstract

Realisations of associahedra can be obtained from the
classical permutahedron by removing some of its facets
and the set of these facets is determined by the diago-
nals of certain labeled convex planar n-gons as shown
by Hohlweg and Lange (2007). Ardila, Benedetti,
and Doker (2010) expressed polytopes of this type as
Minkowski sums and differences of dilated faces of a
standard simplex and computed the corresponding coef-
ficients yI by Möbius inversion. Given an associahedron
of Hohlweg and Lange, we give a new combinatorial in-
terpretation of the values yI : they are the product of
two signed lengths of paths of the labeled n-gon. We
also discuss an explicit realisation of a cyclohedron to
show that that the formula of Ardila, Benedetti, and
Doker does not hold for generalised permutahedra not
in the deformation cone of the classical permutahderon.

1 Introduction

Consider the convex (n− 1)-dimensional polytope

Pn({zI}) :=
{
xxx ∈ Rn

∣∣∣ ∑
i∈[n] xi=z[n] and∑

i∈I xi≥zI for ∅⊂I⊂[n]

}
,

where [n] denotes the set {1, 2, · · · , n}. The clas-
sical permutahedron, as described for example by

G. M. Ziegler, [21], corresponds to zI = |I|(|I|+1)
2 for

∅ ⊂ I ⊆ [n]. Generalised permutahedra were first stud-
ied by A. Postnikov, [14]. They are polytopes Pn({zI})
and are contained in the deformation cone of the classi-
cal permutahedron, [15]. We focus our study on special
realisations of associahedra denoted by Ascn−1, which
form a subclass of generalised permutahedra. Two ex-
amples of 3-dimensional polytopes Asc3 are shown in Fig-
ure 1. In Section 5, we give an example to explain the
notion of a deformation cone and to show that the ap-
proach to compute the coefficients of the Minkowski de-
composition fails for polytopes Pn({zI}) not contained
in the deformation cone of the classical permutahedron.

The Minkowski sum of two polytopes P and Q is
defined as {p + q | p ∈ P, q ∈ Q}. On the other
hand, we define the Minkowski difference P −Q of poly-
topes P and Q if and only if there is a polytope R such

∗Fachbereich Mathematik und Informatik, Freie Universität
Berlin, clange@math.fu-berlin.de, partially supported by a
DFG-grant (Forschergruppe 565 Polyhedral Surfaces)

that P = Q + R, for more details on Minkowski differ-
ences we refer to [18] . We are interested in decomposi-
tions of Ascn−1 into Minkowski sums and differences of
dilated faces of the (n−1)-dimensional standard simplex

∆n = conv{e1, e2, · · · , en},
where ei is a standard basis vector of Rn. The faces ∆I

of ∆n are given by conv{ei}i∈I for I ⊆ [n]. If a poly-
tope P is the Minkowski sum and difference of dilated
faces of ∆n, we say that P has a Minkowski decomposi-
tion into faces of the standard simplex. The following is
a general result on Minkowski decompositions of a gen-
eralised permutahedron P ({zI}) where we assume that
the values zI for redundant inequalities of P ({zI}) are
tight.

Proposition 1 ([1, Proposition 2.3])
Every generalised permutahedron Pn({zI}) can be writ-
ten uniquely as a Minkowski sum and difference of faces
of ∆n:

Pn({zI}) =
∑
I⊆[n]

yI∆I

where yI =
∑
J⊆I(−1)|I\J|zJ for each I ⊆ [n].

To put it differently, the functions I 7−→ zI and I 7−→ yI
of the boolean lattice are Möbius inverses. A weaker
version of Proposition 1 that requires yI ≥ 0 for all
I ⊆ [n] was established by A. Postnikov, [14]. Obvi-
ously, the formula of Proposition 1 is computationally
expensive in general. The formula describes a beautiful
relation between the zI - and yI -coordinates of gener-
alised permutahedra, but there is more hidden. The
author showed that the formula for yI of Proposition 1
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Figure 1: Two different realisations Asc3 accord-
ing to [8] after application of an orthogonal trans-
formation. The realisations correspond to dif-
ferent labelings of a hexagon and have distinct
Minkowski decompositions into dilated faces of the
standard simplex.



23d Canadian Conference on Computational Geometry, 2011

simplifies to four terms for all I if P ({zI}) = Ascn−1,
see Theorem 2 and [11]. But even better: we do not
even have to compute the four values zJ that remain
after simplification, the multiplication of two (signed)
numbers of edges connecting points on the boundary of
a polygon suffices. The precise statement is given in
Theorem 4.

We end this introduction with some general remarks.
S. Fomin and A. Zelevinsky introduced generalised as-
sociahedra in the context of cluster algebras of finite
type, [5], and it is known that associahedra and gen-
eralised associahedra associated to cluster algebras of
type A are combinatorially equivalent. The construc-
tion of [8] was generalised by C. Hohlweg, C. Lange,
and H. Thomas to generalised associahedra, [9]. The
construction depends on choosing a Coxeter element c
and the normal vectors of the facets are determined by
combinatorial properties of c. Since the normal fans
of these realisations turn out to be Cambrian fans as
described by N. Reading and D. Speyer, [16], the ob-
tained realisations are generalised associahedra associ-
ated to some cluster algebra of finite type. N. Read-
ing and D. Speyer conjectured a linear isomorphism be-
tween Cambrian fans and g-vector fans associated to
cluster algebras of finite type with acyclic initial seed
introduced by S. Fomin and A. Zelevinsky, [6]. They
proved their conjecture up to an assumption of another
conjecture of [6]. In 2008, S.-W. Yang and A. Zelevin-
sky gave an alternative proof of the conjecture of Read-
ing and Speyer, [20]. We remark in this context that
the results of Section 2 and 3 of [11] can be read along
these lines: the computations of zI and yI for fixed I
and varying c involve sums over different choices of z̃cRδ
where the diagonals δ that have to be considered de-
pend on c. Moreover, the values for z̃cRδ that occur in
these sums should be tight for the polytope but can be
choosen within a large class of possible values as de-
scribed for example in [9], not just the specific value
chosen here in Section 2. The formula of Theorem 4
of this manuscript could be rewritten in this sense by
introducing extra parameters. From this point of view,
we suggest that combinatorial properties of the g-vector
fan for cluster algebras of finite type A with respect to
an acyclic initial seed are reflected by the Minkowski
decompositions studied in [11] and in this manuscript.

Some instances of Ascn−1 have been studied earlier.
For example, J.-L. Loday computes vertex coordinates
from planar binary trees, [12]. This generalises Asc12

studied in Section 3 to higher dimensions. G. Rote,
F. Santos, and I. Streinu relate associahedra to one-
dimensional point configurations, [17]. Both realisa-
tions are affinely equivalent to Ascn−1 if Uc = ∅ or
Uc = [n] \ {1, n}. Moreover, Rote et.al. point out that
a realisation of F. Chapoton, S. Fomin, and A. Zelevin-
sky, [4], is not affinely equivalent to their realisation.

But in fact, it is affinely equivalent to some Ascn−1,
i.e. Uc = {2} or Uc = {3} for n = 4. F. Santos and
V. Pilaud recently constructed a family of polytopes
called brick polytopes that are related to multitrangu-
lations, [13]. As a special case, they obtain translates
of the associahedra Ascn−1 studied in this paper. They
describe brick polytopes as Minkowski sums of brick
polytopes and in particular, they achieve a Minkowski
decomposition different from ours. The precise relation
of these two decompositions is not clear at the time of
writing.

2 The associahedra Ascn−1

Associahedra form a class of combinatorially equivalent
simple polytopes and can be realised as generalised per-
mutahedra. They are often defined by specifying their
1-skeleton or graph. A theorem of G. Kalai, [10], implies
that the face lattice of an (n − 1)-dimensional associa-
hedron Asn−1 is completely determined by this graph.
Now, the graph of an associahedron is isomorphic to a
graph with all triangulations (without new vertices) of
a convex and plane (n + 2)-gon Q as vertex set and
all pairs of distinct triangulations that differ in pre-
cisely one proper diagonal1 as edge set. Alternatively,
the edges of Asn−1 are in bijection with the set of tri-
angulations with one proper diagonal removed. Simi-
larly, k-faces of Asn−1 are in bijection to triangulations
of Q with k proper diagonals deleted. In particular, the
facets of Asn−1 are in bijection with proper diagonals
of Q. J.-L. Loday published a beautiful algorithm to
obtain explicit vertex coordinates for associahedra from
planar binary trees, [12]. This algorithm was gener-
alised by C. Hohlweg and C. Lange and explicitly de-
scribes realisations of Asn−1 as generalised permutahe-
dra that depend on combinatorics induced by the choice
of a Coxeter element c of the symmetric group Σn on n
elements, [8]. A Coxeter element is a permutation ob-
tained by multiplying the generators of Sn in some or-
der.

We now outline the construction of [8] and avoid to
use Coxeter elements explicitly. Nevertheless, we use
them to distinguish different realisations in our nota-
tion. The choice of a Coxeter element c corresponds to
a partition of [n] into a down set Dc and an up set Uc:

Dc = {d1 = 1 < d2 < · · · < d` = n}
and

Uc = {u1 < u2 < · · · < um}.
This partition induces a labeling of the vertices of Q
with label set [n + 1]0 := [n + 1] ∪ {0} as follows. Pick

1A proper diagonal is a line segment connecting a pair of ver-
tices of Q whose relative interior is contained in the interior of Q.
A non-proper diagonal is a diagonal that connects vertices ad-
jacent in ∂Q and a degenerate diagonal is a diagonal where the
end-points are equal.



CCCG 2011, Toronto ON, August 10–12, 2011

two vertices of Q which are the end-points of a path
of `+2 vertices on the boundary of Q, label the vertices
of this path counter-clockwise increasing using the label
set Dc := Dc ∪ {0, n + 1} and label the remaining path
clockwise increasing using the label set Uc. Without
loss of generality, we shall always assume that the label
set Dc is to the right of the diagonal {0, n+ 1} oriented
from 0 to n + 1, examples are given in Section 3. We
derive values zI for some subsets I ⊂ [n] obtained from
this labeled (n+2)-gon Q using proper diagonals of Q as
follows. Orient each proper diagonal δ from the smaller
to the larger labeled end-point of δ, associate to δ the
set Rδ that consists of all labels on the strict right-hand
side of δ, and replace the elements 0 and n + 1 by the
smaller respectively larger label of the end-points con-
tained in Uc if possible. For each proper diagonal δ we
have Rδ ⊆ [n] but obviously not every subset of [n] is
of this type if n > 2. We set

z̃cI :=

{
|I|(|I|+1)

2 if I = Rδ, δ proper diagonal,

−∞ else.

In [8] it is shown that Pn({z̃cI}) is in fact an associahe-
dron of dimension n− 1 realised in Rn for every choice
of c and the inequalities that correspond to finite val-
ues z̃cI are precisely the non-redundant facet-defining in-
equalities of Ascn−1. This ends the summary of results
found in [8].

To compute the coefficients of the Minkowski decom-
position of Ascn−1 according to Proposition 1, we have
to find tight values for zI that correspond to all inequal-
ities (redundant and non-redundant) first. Fortunately
enough, this is not necessary. As outlined by the au-
thor in an extended abstract, [11], it suffices to know
the finite values of z̃cI defined above. To state and prove
Theorem 4, we have to review some facts from [11] and
start with two key definitions given there.

Suppose from now on that [n] = DctUc is a partition
of [n] induced by a Coxeter element c with

Dc = {d1 = 1 < d2 < · · · < d` = n}
and

Uc = {u1 < u2 < · · · < um}.

Definition 1 (up and down intervals)
(a) A set S ⊆ [n] is a non-empty interval of [n] if S =
{r, r + 1, · · · , s} for some 0 < r ≤ s < n. We write
S as closed interval [r, s] (end-points included) or as
open interval (r−1, s+1) (end-points not included).
An empty interval is an open interval (k, k + 1) for
some 1 ≤ k < n.

(b) A non-empty open down interval is a set S ⊆ Dc
such that S = {dr < dr+1 < · · · < ds} for some
1 ≤ r ≤ s ≤ `. We write S as open down
interval (dr−1, ds+1)Dc where we allow dr−1 = 0
and ds+1 = n + 1, i.e. dr−1, ds+1 ∈ Dc. For

1 ≤ r ≤ ` − 1, we have the empty down inter-
val (dr, dr+1)Dc .

(c) A closed up interval is a non-empty set S ⊆ Uc
such that S = {ur < ur+1 < · · · < us} for some
1 ≤ r ≤ s ≤ m. We write [ur, us]Uc .

We emphasize that up intervals are always non-empty,
while down intervals may be empty. Moreover, it turns
out to be convenient to distinguish the empty down in-
tervals (dr, dr+1)Dc and (ds, ds+1)Dc if r 6= s although
they are equal as sets.

Definition 2 (up & down interval decomposition)
Let I be a non-empty subset of [n].
(a) An up and down interval decomposition of type

(v, w) of I is a partition of I into disjoint up and
down intervals IU1 , · · · , IUw and ID1 , · · · , IDv obtained
by the following procedure.
1. Suppose there are ṽ non-empty inclusion maxi-

mal down intervals contained in I that we denote
by ĨDk = (ãk, b̃k)Dc , 1 ≤ k ≤ ṽ, with b̃k ≤ ãk+1

for 1 ≤ k < ṽ. Let ED
i = (dri , dri+1)Dc denote

all empty down intervals with b̃k ≤ dri < dri+1 ≤
ãk+1 for 0 ≤ k ≤ ṽ, b̃0 = 0, and ãṽ+1 = n + 1.
Denote the open intervals (ãi, b̃i) and (dri , dri+1)
of [n] by Ĩi and Ei respectively.

2. Consider all up intervals of I which are con-
tained in (and inclusion maximal within) some
interval Ĩi or Ei obtained in Step 1 and denote
these up intervals by

IU1 = [α1, β1]Uc , · · · , IUw = [αw, βw]Uc .

We assume αi ≤ βi < αi+1.
3. A down interval IDi = (ai, bi)Dc , 1 ≤ i ≤ w,

is a down interval obtained in Step 1 that is ei-
ther a non-empty down interval ĨDk or an empty
down interval ED

k with the additional property
that there is some up interval IUj obtained in

Step 2 such that IUj ⊆ Ek. Without loss of gen-
erality, we assume bi ≤ ai+1 for 1 ≤ i < w.

(b) An up and down interval decomposition of
type (1, w) is called nested. A nested component of I
is an inclusion-maximal subset J of I such that the
up and down decomposition of J is nested.

The up and down interval decomposition of I ⊆ [n]
enables us to compute tight values z̃cI of Ascn−1 for all I
using only z̃cI that correspond to non-redundant inequal-
ities. These values can be substituted in the formula
for yI of Proposition 1 and the formula can be simpli-
fied significantly. Before we state the resulting theorem,
it makes sense to extend our notion of Rδ and z̃cRδ to
non-proper and degenerate diagonals δ.

For a diagonal δ = {x, y} that is not proper, we set

Rδ :=

{
∅ if x, y ∈ Dc

[n] otherwise,
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and

z̃cRδ :=

{
0 if Rδ = ∅
n(n+1)

2 if Rδ = [n].

Let I ⊆ [n] be a non-empty subset with up and down
interval decomposition of type (v, k). If I has a nested
up and down interval decomposition, then, in particular,
v = 1 and

I = (a, b)Dc ∪
⋃k
i=1[αi, βi]Uc

with αk < βk ≤ αk+1 as before. In this situation, we
denote the smallest (respectively largest) element of I
by γ (respectively Γ) and consider the diagonals

δ1 := {a, b}, δ2 := {a,Γ},
δ3 := {γ, b}, and δ4 := {γ,Γ}.

We can now state the main result of [11] which we use
to prove Theorem 4.

Theorem 2 ([11, Theorem 3.1])
Let I be a non-empty subset of [n] with a nested up and
down interval decomposition of type (1, k). Then

yI = (−1)|I\Rδ1 |
(
zcRδ1

− zcRδ2 − z
c
Rδ3

+ zcRδ4

)
.

Corollary 3 ([11, Corollary 3.2])
Let I be a non-empty subset of [n] with an up and down
interval decomposition of type (v, k) and v > 1. Then
yI = 0.

3 Main theorem and examples

We continue to use the notation introduced in the pre-
vious section. Moreover, we need the notion of signed
lengths Kγ and KΓ for sets I with interval decomposi-
tion of type (1, k) that is needed in Step 2. (b) of The-
orem 4. They denote integers and have the following
meaning: |KΓ| is the length, i.e. the number of edges,
of the path in ∂Q connecting b and Γ that does not use
the vertex labeled a and KΓ is negative if and only if
Γ ∈ (a, b)D. Similarly, |Kγ | is the length of the path con-
necting a and γ that does not use the vertex labeled b
and Kγ is negative if and only if γ ∈ (a, b)D.

Theorem 4 Let Q be the (n+ 2)-gon labeled according
to the construction of Ascn−1 and I ⊆ [n] be non-empty.
To compute yI perform the following two steps:
1. Determine the type (v, w) of the up and down interval

decomposition of I.
2. (a) If v > 1 then yI = 0.

(b) If v = 1 then

yI = (−1)|I\(a,b)D| (KγKΓ − (n+ 1))

if |I| = 1 and I ⊆ U, while

yI = (−1)|I\(a,b)D|KγKΓ

otherwise.
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Asc12 = ∆{1,2,3} +
(

∆1+∆2+∆3

+∆{1,2}+∆{2,3}

)
Figure 2: The Minkowski decomposition of the 2-
dimensional associahedron Asc12 into faces of the stan-
dard simplex is in fact a Minkowski sum.

Theorem 4 is the third to relate combinatorics of la-
beled n-gons to different aspects of realisations of asso-
ciahedra. Firstly, the coordinates of the vertices can be
extracted, [12, 8]. Secondly, the facet normals and the
right-hand sides for their inequalities can be read off, [8].
Thirdly, the coefficients of a Minkowski decomposition
are obtained according to Theorem 4.

Before giving the proof, we give an example of two
2-dimensional associahedra Asc12 and Asc22 . The first ex-
ample Asc12 corresponds to Dc1 = [n] and Uc1 = ∅.
Minkowski decompositions of Asc12 and its higher dimen-
sional analogues were already studied earlier as men-
tioned by A. Postnikov and it is known that yI ∈ {0, 1},
so these polytopes are actually a Minkowski sum of faces
of the standard simplex. We have

Asc12 = ∆{1} + ∆{2} + ∆{3} + ∆{1,2} + ∆{2,3} + ∆{1,2,3},

see Figure 2. Although Asc22 is isometric to Asc12 , it does
not decompose into a Minkowski sum of dilated faces
of a standard simplex but into a Minkowski sum and
difference of dilated faces of the standard simplex:

Asc22 =
(

∆{1}+∆{3}+2·∆{1,2}
+∆{1,3}+2·∆{2,3}

)
− ∆{1,2,3},

see Figure 3. The up and down sets in this situation are

Uc = {2} and Dc = {1, 3},

so we obtain the following labeled pentagon Q:

4

2

0

1 3 .
We now compute the coefficients y{2}, y{1,2}, and
y{1,2,3} in order to demonstrate Theorem 4.

The up and down interval decompositions for {2},
{1, 2}, and {1, 2, 3} are of type (1, 1):

{2} = (1, 3)D t [2, 2]U,

{1, 2} = (0, 3)D t [2, 2]U,

{1, 2, 3} = (0, 4)D t [2, 2]U.

Hence we obtain the following table:
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Asc22 + ∆{1,2,3} =
(

∆1+∆3+∆{1,3}
+2·∆{1,2}+2·∆{2,3}

)
Figure 3: The Minkowski decomposition of the 2-
dimensional associahedron Asc22 into dilated faces of
the standard simplex.

I a b γ Γ Kγ KΓ |I \ (a, b)D|
{2} 1 3 2 2 2 2 1
{1,2} 0 3 1 2 −1 2 1
{1,2,3} 0 4 1 3 −1 −1 1

Since n = 3 in this example, we compute

y{2} = (−1)1(2 · 2− (3 + 1)) = 0,

y{1,2} = (−1)1 · (−1) · 2 = 2,

y{1,2,3} = (−1)1 · (−1) · (−1) = −1.

4 Proof of the main theorem

The strategy of the proof is clear: Suppose I ⊆ [n] is
non-empty, we compute the up and down interval de-
composition (Step 1. of Theorem 4) and then reinter-
pret Theorem 2 and Corollary 3 in terms of Kγ and KΓ.
If the up and down decomposition of I is of type (v, w)
with v ≥ 2 then the claim of Step 2. (a) follows immedi-
ately from Corollary 3. We therefore assume that I has
an up and down interval decomposition of type (1, k),
the associated down interval is (a, b)D and the minimal
and maximal elements of I are γ and Γ. We also use
the notation of δi, 1 ≤ i ≤ 4, from Section 2 and define

K̃Γ := |Rδ2 | − |Rδ1 | as well as K̃γ := |Rδ3 | − |Rδ1 |.

A simple case-by-case analysis shows
1. K̃γ > 0 if and only if γ ∈ Uc.

2. K̃Γ > 0 if and only if Γ ∈ Uc.
3. K̃γ = −1 if and only if γ ∈ Dc.

4. K̃Γ = −1 if and only if Γ ∈ Dc.
as well as KΓ = K̃Γ and Kγ = K̃γ . We additionally
define K := |Rδ1 | and a direct computation allows to
express zcRδi

, 1 ≤ i ≤ 3, in terms of K, KΓ, and Kγ :

zcRδ1
=
K(K + 1)

2
,

zcRδ2
=

(K +KΓ)(K +KΓ + 1)

2
,

and zcRδ3
=

(K +Kγ)(K +Kγ + 1)

2
.

Another direct computation yields

KΓKγ = zRδ1 − zRδ2 − zRδ3

+
(K +KΓ +Kγ)(K +KΓ +Kγ + 1)

2
.

To express z̃cRδ4
in terms of K, KΓ, and Kγ , we observe

(K +KΓ +Kγ)(K +KΓ +Kγ + 1)

2

=

{ |Rδ4 |(|Rδ4 |+1)

2 if I 6= {us},
|Rδ4 |(|Rδ4 |+1)

2 + (n+ 1) if I = {us},

and obtain

zcRδ4
=

(K +KΓ +Kγ)(K +KΓ +Kγ + 1)

2

if I 6= {us}, and

zcRδ4
=

(K +KΓ +Kγ)(K +KΓ +Kγ + 1)

2
− (n+ 1)

if I = {us}. The claim follows now from Theorem 2.

5 A Remark on Cyclohedra

Cyclohedra are also known as Bott-Taubes polytopes or
type B generalised associahedra, [3, 4, 19]. They can be
realised using some Ascn−1 by intersection with type B
hyperplanes xi + x2n+1−i = 2n+ 1, 1 ≤ i < n. We refer
to [8] for details. A 2-dimensional cyclohedron Cyc2 ob-
tained from some Asc3 by intersection with x1 + x4 = 5
is shown in Figure 4. Tight right-hand sides for Cyc2
are the right-hand sides of Asc2 except z{1,4} and z{2,3}
whose tight value is 5 instead of 2. The inequalities
x1 + x4 ≥ 2 and x2 + x3 ≥ 2 are redundant for Asc2
and altering the level sets for these inequalities from 2
(for Asc2) to 5 (for Cyc2) means that we move past the
four vertices A, B, C, and D. As explained in [15], this

A B

C

D

Figure 4: A 2-dimensional cyclohedron Cyc2 (indi-
cated in black) obtained from an associahedron Asc3
by intersection with type B hyperplanes.
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implies that Cyc2 is not in the deformation cone of the
classical permutahdron. Applying Proposition 1 to the
function zI on the boolean lattice for Cyc2, we compute
the Möbius inverse yI . We obtain

Cyc2 +
(

∆2+4∆123

+3∆124+2∆134+∆234

)
=
(

∆1+∆3+∆4+3∆12+∆13

+3∆14+5∆23+∆34+5∆1234

)
if Proposition 1 were true for polytopes Pn({zI}) not
contained in the deformation cone of the classical per-
mutahedron. One way to see that this equation does
not hold is to compute the number of vertices of the
polytope on the left-hand side (27 vertices) and on the
right-hand side (20 vertices) using polymake, [7].

6 Concluding remarks

There are some questions related to the coefficients yI .
Firstly, how do Minkowski decompositions of gener-
alised associahedra obtained in [9] look like and how
can we compute them if they exit? In particular, how
to decompose the cyclohedron of [8]?

Secondly, the computation of the Minkowski decom-
position depends on a good understanding of compu-
tational aspects of Möbius inversions. Efficient compu-
tations of Möbius functions on lattices were studied by
A. Blass and B. Sagan, [2]. Does this extend somehow
to Möbius inversion? Moreover, Möbius inversions are
often used in proofs but because of the computational
complexity rarely used in computations. Is there some
theory to compute the Möbius inverse more efficiently?
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