
CCCG 2011, Toronto ON, August 10–12, 2011

Enumerating Minimal Transversals of Geometric Hypergraphs

Khaled Elbassioni∗ Imran Rauf† Saurabh Ray‡

Abstract

We consider the problem of enumerating all minimal
hitting sets of a given hypergraph (V,R), where V is a
finite set, called the vertex set andR is a set of subsets of
V called the hyperedges. We show that, when the hyper-
graph admits a balanced subdivision, then a recursive de-
composition can be used to obtain efficiently all minimal
hitting sets of the hypergraph. We apply this decom-
position framework to get incremental polynomial-time
algorithms for finding minimal hitting sets and minimal
set covers for a number of hypergraphs induced by a
set of points and a set of geometric objects. The set of
geometric objects includes half-spaces, hyper-rectangles
and balls, in fixed dimension. A distinguishing feature
of the algorithms we obtain is that they admit an effi-
cient global parallel implementation, in the sense that
all minimal hitting sets can be generated in polylogarith-
mic time in |V |, |R| and the total number of minimal
transversals T , using a polynomial number of proces-
sors.

1 Introduction

Let (V,R) be a hypergraph, where V is a finite set called
the vertices and R is a family of subsets of V called
the hyperedges. We say a vertex v ∈ V hits hyperedge
R ∈ R when v ∈ R. A subset of vertices X ⊆ V is
said to be a hitting set (or transversal) for R if every
hyperedge R in R is hit by an element x in X. A hitting
set is minimal if none of its proper subsets is a hitting
set.

In this paper, we will consider hypergraphs induced
by a set of points and certain families of geometric ob-
jects in Rd. When the hypergraph is arbitrary, we ob-
tain the well-known hypergraph transversal or dualiza-
tion problem [1], which calls for finding all minimal hit-
ting sets for a given hypergraph. This problem has re-
ceived considerable attention in the literature (see, e.g.,
[2, 8, 9, 17, 22, 24]), since it is known to be polynomially
or quasi-polynomially equivalent with many problems in
various areas.

∗Max-Planck-Institut für Informatik, Saarbrücken, Germany,
elbassio@mpi-inf.mpg.de
†Friedrich-Schiller-Universität, Jena, Germany,

imran.rauf@uni-jena.de
‡Max-Planck-Institut für Informatik, Saarbrücken, Germany,

saurabh@mpi-inf.mpg.de

Clearly, the number T of minimal transversals of a
hypergraph (V,R) can be exponential in |V | and |R|,
and hence one can only hope for an algorithm whose
efficiency is measured in terms of the parameters |V |,
|R| and T . The currently fastest known algorithm [15]
for solving the hypergraph transversal problem runs in
quasi-polynomial time |V |No(logN), whereN is the com-
bined input and output size N = |R|+T . Several quasi-
polynomial time algorithms with some other desirable
properties also exist [4, 12, 13, 16, 25]. While it is still
open whether the problem can be solved in polynomial
time for arbitrary hypergraphs, polynomial time algo-
rithms exist for several classes of hypergraphs, e.g. hy-
pergraphs of bounded edge-size [3, 8], of bounded degree
[7, 9], of bounded-edge intersections [3], of bounded con-
formality [3], of bounded treewidth [9], and read-once
(exact) hypergraphs [11].

Recently [14], this polynomiality frontier has been ex-
tended to a number of geometric hypergraphs. In par-
ticular, polynomial-time algorithms were given for enu-
merating minimal hitting sets and minimal set covers,
when the hyperedges are induced by hyper-rectangles
(in Rd for fixed d), or half-planes (in R2). We observe
that the algorithms in [14] depend on the types of ranges
considered. For instance, in the case of rectangles, two
different types of algorithms are used for the hitting set
and set covering versions, and a substantially modified
algorithm is needed for half-planes. Furthermore, it is
not clear, how these algorithms can be generalized to
other geometric objects, such as balls, or half-spaces in
fixed dimension d ≥ 3.

In this paper, we present a simple and unified algo-
rithm that works for both the hitting set and set cover-
ing versions, and extends to more general objects, such
as balls, half-spaces, and polytopes with fixed number
of facets. In fact, as we will see, all that is needed is
that the hypergraph admits a certain balanced subdivi-
sion which can be shown to exist in several geometric
instances. One more important property of the algo-
rithms we obtain, is that they admit a global parallel
implementation, in the sense that all minimal hitting
sets can be generated in polylogarithmic time (in |V |,
|R| and the total number of minimal transversals T ) us-
ing a polynomial number of processors (in the PRAM
model). Among all polynomially solvable classes of hy-
pergraphs, only very few are known to exhibit this nice
property, see [20, 21]. We remark that the general algo-
rithms given in [4, 13] do not satisfy this global paral-



23rd Canadian Conference on Computational Geometry, 2011

lelism property, in the sense that they only produce each
output in parallel, that is, the time needed to produce T
minimal transversals is polylogarithmic in |V |, |R|, but
can be linear (or super-linear) in T . Finding a global
parallel algorithm (even with a quasi-polynomial num-
ber of processors) for the general case is an outstanding
open problem, and is very useful in practice since the
number of minimal transversals is typically very large.

Theorem 1 Let (V,R) be a hypergraph defined by a
set of points P ∈ Rd and set of ranges R ⊆ Rd. If
R is a set of half-planes, balls, or a polytopes with a
fixed number of facets, in fixed dimension d = O(1),
then there is an algorithm that enumerates all T mini-
mal hitting sets (resp., set covers) of R in parallel time
polylog(|V |, |R|, T ) on poly(|V |, |R|, T ) number of pro-
cessors.

Even though the bound in Theorem 1 is stated in
terms of the total number of minimal hitting sets T , we
will see that our algorithm can be modified to work in
an incremental setting, i.e, for a given integer T ′ ≤ T ,
it finds T ′ minimal hitting sets (resp., set covers) of
R in time polylog(|R|, T ′) · τ(|V |) on poly(|V |, |R|, T ′)
number of processors, where τ(|V |) is the time needed
to find a single minimal hitting set. The currently best
known parallel implementation for the latter problem
[19] has τ(|V |) = O(

√
|V |).

Our algorithm builds on and extends the covering de-
composition approach initially suggested in [20, 21], and
used in a number of subsequent works [12, 4]. So far,
the use of such decompositions has been successful for
developing polynomial time dualization algorithms for
limited cases, such as hypergraphs of bounded size or
bounded degree. In this paper, we show that the limi-
tations of the previous approaches can be overcome us-
ing a modified version. This allows us to obtain a large
class of hypergraphs for which covering decompositions
are effective.

The enumeration of minimal geometric hitting sets,
as the ones described above, arises in various areas such
as computational geometry, machine learning, and data
mining [10]. Moreover, our efficient enumeration algo-
rithms might be useful in developing exact algorithms,
fixed-parameter tractable algorithms, and polynomial-
time approximation schemes for the corresponding op-
timization problems (see, e.g., [18]).

2 Notation

In this paper, we will often write R for a hypergraph
(V,R) for notational convenience. Also, we will often
refer to hypergraphs as range spaces in accordance with
the terminology in the Computational Geometry liter-
ature. Accordingly, we will refer to the vertex set as

the ground set and the hyperedges as ranges. Given
a range spaces R, we will denote by Tr(R) the set of
all minimal hitting sets of R. Given a range (V,R),
and a subset V ′ ⊆ V , we will denote by R|V ′ the set
{R ∩ V ′ : R ∈ R}. The hypergraph (V ′,RV ′) is called
the projection of the hypergraph (V,R) on V ′.

3 Balanced Subdivisions

Given any range space (V,R), we say that a subset V ′ ⊆
V is stabbed by a range R ∈ R if there exist x, y ∈
V ′ s.t. x ∈ R and y /∈ R. A balanced subdivision for a
range space (V,R) is a collection of a constant number
of subsets V1, V2, . . . , Vk of V such that

1. For each i ∈ {1, . . . , k}, |Vi| ≥ ε|V | for some con-
stant 0 < ε ≤ 1.

2. For each range R ∈ R, there are two disjoint
subsets Vi and Vj in the collection which are not
stabbed by R.

Remark 1 In the above definition, the fact that a sub-
set V ′ ⊂ V is not stabbed by R ∈ R implies that V ′ is
also not stabbed by V \ R. Consequently, we conclude
that a balanced subdivision for any range space (V,R) is
also a balanced subdivision for the range space (V,Rc),
where Rc denotes the hypergraph defined by compliments
of ranges in R, i. e., Rc = {V \R | R ∈ R}.

In the next section, we show that if we can compute a
balanced subdivision for a range space then we can enu-
merate its minimal hitting sets in global parallel time.

In this section, we show that several geometrically
induced range spaces admit balanced subdivisions which
can be computed efficiently (in parallel). We consider
range spaces induced by a set of points P and a set of
geometric objects H in Rd. There are two natural range
spaces defined by them depending on whether we let the
points or the objects form the ground set. We denote
by (P,H) the range space in which P is the ground set
and each H ∈ H defines the range H ∩P . Similarly, we
denote by (H, P ) the range space in which the ground
set is H and each p ∈ P defines the range {H ∈ H | p ∈
H}.

We now show that for any point set P ⊂ Rd, a bal-
anced subdivision exists and can be computed efficiently
for both (P,H) and (H, P ) if H is a family of objects of
the following kind: (i) Half-Spaces in Rd (ii) Polytopes
with at most a constant number of facets in Rd and (iii)
Balls in Rd.

We will use the following results:

Theorem 2 (Fine Simplicial Partitions [23])
Given any set P of n points in Rd and any pa-
rameter 1 ≤ r ≤ n, there exists a partition



CCCG 2011, Toronto ON, August 10–12, 2011

Π = {P1, P2, . . . , Pt} of t ≤ r disjoint subsets of
P and a set ∆ = {∆1, . . . ,∆t} of simplices with the
following properties: (i) Pi ⊆ ∆i (ii)

⋃
i Pi = P , (iii)

n/r ≤ |Pi| ≤ 2n/r for all i ∈ {1, . . . , t} and (iv) no
half-space in Rd intersects more than Cdr

1−1/d of the
simplices in ∆, where Cd is a constant for any fixed d.
The last property also implies that no half-space in Rd
stabs more than Cdr

1−1/d of the sets in Π. Further, for
any δ > 0, such a Π can be computed in time O(n1+δ).
When r is bounded by a constant, Π can be computed
in O(n) time.

Theorem 3 (Cuttings [5]) Given any set of n half-
spaces in Rd and any parameter 1 ≤ r ≤ n, there exists
a partition of Rd into r simplices such that none of the
simplices is stabbed by more than C ′dn/r

1/d of the given
half-spaces. Further, for any δ > 0, such a partition can
be computed deterministically in time O(nr1−1/d).

Parallel Implementation: Even though we only
mention sequential running times above, such fine
simplicial partitions and cuttings can be computed
in polylog(n) time using poly(n) processors. For
example, in the case of cuttings in any fixed dimension
d, while the simplices are allowed to be arbitrary, it
can be argued that they can always be chosen so that
they are among a polynomial number of canonical
simplices. In fact, it is not hard to argue that we can
restrict to simplices whose corners are defined by the
intersection of d of the hyperplanes defining the given
set of halfspaces and indeed the construction in [5]
does restrict to such simplices. The number of such
simplices is at most O(nd(d+1)). Once we have a poly-
nomial bound on the number of canonical simplices,
we can check all possible sets of t canonical simplices
in parallel using a polynomial number of proces-
sors and find a simplicial partition in polylogarithmic
time. A similar argument holds for simplicial partitions.

Half-Spaces. Let us first consider the case when H
is a set of half-spaces in Rd. Given any set P with n
points in Rd, we can set r to be a large enough constant
so that Cdr

1−1/d ≤ r−2. Then, clearly, the collection Π
given by Theorem 2 also gives us a balanced subdivision
of (P,H) with ε = 1/r and k ≤ r. To get a balanced
subdivision of (H, P ), we apply Theorem 3 to the half-
spaces in H. Assuming that |H| = n, we set r to be a
large enough constant so that C ′dn/r

1/d ≤ n/2. Theo-
rem 3 gives a partition of Rd into r regions R1, . . . , Rr
each of which is stabbed by at most n/2 half-spaces in
H. Consequently, for each region Ri, we either have at
least n/4 half-spaces of H each of which contains Ri or
we have at least n/4 half-spaces of H none of which in-
tersects Ri. Let Hi be a set of those half-spaces. Then
|Hi| ≥ n/4. We arbitrarily partition each Hi into two
disjoint sets H1

i and H2
i each of size at least n/8. These

sets H1
i and H2

i for i ∈ {1, . . . , r} give us a balanced
subdivision of (H, P ) with k = 2r and ε = 1/8 since
each point p ∈ P lies in some region Rj and hence does
not stab the disjoint sets H1

j and H2
j .

Remark 2 In the case of half-spaces, one may also re-
duce the problem of finding minimal set covers to that of
finding minimal hitting sets by using geometric duality,
which maps points in Rd to hyperplanes and vice versa
(see e.g. [6], Chapter 8). However this method does not
work for polytopes.

Polytopes. Suppose now that H is a set of polytopes
in Rd, each with at most f facets. In this case the
collection Π given by Theorem 2 with r being a large
enough constant so that f · Cdr1−1/d ≤ r − 2 gives us
the required balanced subdivision for (P,H). This is be-
cause each facet of a polytope can stab at most Cdr

1−1/d

members of Π and therefore a polytope with at most f
facets can stab at most f · Cdr1−1/d ≤ r − 2 members
of Π. To get a balanced subdivision for (H, P ), we con-
sider for each H ∈ H, the set of at most f half-spaces
whose intersection forms H. Let H′ be the set of all
these half-spaces. Assuming that |H| = n, we have that
|H′| ≤ fn. We then invoke Theorem 3 for the half-
spaces in H′ with r being a large enough constant so
that C ′d(nf)/r1/d ≤ n/2. The regions in the resulting
partition are stabbed by at most n/2 half-spaces in H′
and hence at most n/2 polytopes in H. We can then
construct the balanced subdivision for (H, P ) consist-
ing of sets H1

i and H2
i , i ∈ {1, . . . , r}, as in the last

paragraph.

Balls. Finally assume that H is a set of balls in Rd.
There is a standard lifting (veronese map) which maps
each point in Rd to a point in Rd+1 and each ball in Rd
to a half-space in Rd+1 so that the incidence relations
among them are preserved. Since balanced subdivisions
exist for half-spaces in Rd+1, we can conclude that bal-
anced subdivisions exist for balls in Rd as well (for both
(P,H) and (H, P )). The same trick can be applied to
other algebraically defined sets like ellipses, parabolas
etc.

Since we invoke Theorems 2 and 3 with r being a
constant, the collection in Theorem 2 and the partition
in Theorem 3 can be computed in time O(n). It follows
that balanced subdivisions for the above range spaces
can be computed in O(n+m) time where n is the size
of the ground set and m is the number of ranges.

4 The Enumeration Algorithm

Given a range space (V,R), a divide-and-conquer algo-
rithm to enumerate all minimal hitting sets of R is pre-
sented in Figure 1. If |V | is at most some fixed constant
µ, all minimal hitting sets of R can be enumerated by



23rd Canadian Conference on Computational Geometry, 2011

just enumerating all subsets of V and outputting those
which form a minimal hitting set of R. We assume the
existence of a procedure Enumerate-Small for the enu-
meration of minimal hitting sets in these trivial cases.

Algorithm 1 Procedure Enumerate(V,R):

Input: A finite range space (V,R)
Output: The set of all minimal hitting sets of R
1: if |V | ≤ µ then
2: return Enumerate-Small(V,R)
3: end if
4: Type1-Set:=∅
5: Compute a balanced subdivision V1, . . . , Vλ of

(V,R)
6: for i = 1, . . . , λ do
7: Type1-Set := Type1-Set ∪ Enumerate(V \

Vi,R|V \Vi)
8: end for
9: Type1-Set := Remove-Duplicates(Type1-Set)

10: Type2-Set := ∅
11: for i = 1, . . . , λ do
12: Xi := Enumerate(V \ Vi,Ri)
13: end for
14: for each (M1, . . . ,Mλ) ∈ X1 × . . .×Xλ do
15: M :=

⋃
iMi

16: if M is a type 2 minimal hitting set of R then
17: Type2-Set := Type2-Set ∪ {M}
18: end if
19: end for
20: Type2-Set := Remove-Duplicates(Type2-Set)
21: return Type1-Set ∪ Type2-Set

When |V | > µ, we assume the existence of a balanced
subdivision Π = (V1, . . . , Vλ), where λ is a constant and
for each i ∈ {1, . . . , λ}, |Vi| ≤ ε|V | where 0 < ε < 1
is another constant. We classify the minimal hitting
sets of R into two types. Type 1 minimal hitting sets
are those that have an empty intersection with one of
the Vis. The remaining minimal hitting sets which con-
tain elements from each Vi are of type 2. Since each Vi
contains a constant fraction of the elements in V , type
1 hitting sets are easily enumerated recursively. This is
done in line 7 of Figure 1. Enumerating Type 2 minimal
hitting sets require more work.

Let us first observe that any minimal hitting set M
of R and for any v ∈ M , there is always some range
R ∈ R which requires v, i.e., R ∩M = {v}. We call
such a range a certificate range for v in M . Clearly,
M is also a minimal hitting set for the set of certificate
ranges of its elements.

Let M be any type 2 minimal hitting set and let R ∈
R be any range that has a nonempty intersection with
each of the Vis. Since Π is a balanced subdivision, there
are at least two sets Vj and Vk which are not stabbed
by R. Since R has a nonempty intersection with both

of them, it must contain both the sets as subsets. Now,
since M contains an element from each Vi, R contains
at least two elements of M implying that R cannot be a
certificate range for any element of M . This means that
for the purpose of enumerating type 2 minimal hitting
sets, we can discard all ranges which have a non-empty
intersection with each of the Vis. Let Ri = {R ∈ R :
R ∩ Vi = ∅} and let R̃ =

⋃
iRi.

Let M be any type 2 minimal hitting set of R. Since
R̃ contains all certificate ranges of M , M is also a min-
imal hitting set for R̃. Also, since the ranges in Ri do
not contain any element of Vi, M \ Vi is a hitting set
(not necessarily minimal) for Ri and therefore contains
some Mi ⊆M \Vi which is a minimal hitting set for Ri.

Notice that each element of M appears in at least one
of the Mis. This is because each v ∈ M has a certifi-
cate range R which belongs to some Ri implying that
v ∈Mi. In other words, M =

⋃
iMi. This suggests the

following algorithm for enumerating the minimal hitting
sets of type 2. For each i ∈ {1, . . . , λ}, recursively com-
pute the set Xi of all minimal hitting sets of (V \Vi,Ri).
Then, try all possible ways of picking one minimal hit-
ting set Mi ∈ Xi from each Xi and output M =

⋃
iMi

if it is a type 2 minimal hitting set for R. This way we
surely enumerate all type 2 minimal hitting sets. Now,
we need to bound the number of combinations we try.
We do it by proving an upper bound on each |Xi|.

Lemma 4 Let T be the number of minimal hitting sets
of R. Then, |Xi| ≤ T .

Proof. We show that each N ∈ Xi can be extended to
N ′ = N ∪ S for some S ⊆ Vi so that N ′ is a minimal
hitting set of R. The lemma then follows since each
distinct N ∈ Xi is extended to a distinct minimal hitting
set N ′ of R. Given any N ∈ Xi, let R̄ be the set of
ranges in R that are not hit by N . Clearly, each range
in R̄ has a non-empty intersection with Vi (otherwise it
would be in Ri and thus would be hit by N). Therefore,
there exists a set S ⊆ Vi which is a minimal hitting set
for R̄. Now, N ′ = N ∪ S is certainly a hitting set of
R. Furthermore, it is also minimal since each element
of N ′ has a certificate range. The certificate ranges for
each element v in N are also certificate ranges for v in
N ′ since these ranges belong to Ri and hence do not
contain any elements of S. Also, the certificate ranges
for each v in S are certificate ranges for v in N ′, since
these ranges belong to R̄ and hence do not intersect
N . �

It follows from the above lemma that the number of
combinations of Mi’s we need to try is at most Tλ. After
we find all type 1 minimal hitting sets we run a proce-
dure called Remove-Duplicates to remove any duplicates
we may have generated. Similarly, after we find all type
2 minimal hitting sets, we run Remove-Duplicates to



CCCG 2011, Toronto ON, August 10–12, 2011

remove any duplicates. This ensures that in the end we
do not output any duplicates.

We now do an analysis of the running time of the al-
gorithm. In the analysis, we treat the number of ranges
m = |R| and the number T of the number of mini-
mal hitting sets of R as constants. We denote by t(n),
the running time of the procedure Enumerate on a hy-
pergraph (V,R) where |V | = n. The recursive calls in
Line 7 of Algorithm 1 for enumerating the type 1 min-
imal hitting sets take time λt((1 − ε)n). Similarly, the
total time spent in Line 12 is λt((1 − ε)n). The loop
starting on Line 14 is executed at most Tλ times. In
each iteration, checking whether M is a type 2 minimal
hitting set of R takes O(mn) time. Hence the total time
spent in the loop is O(mnTλ). Since there are at most T
distinct minimal hitting sets ofR, when we reach Line 9,
Type1-Set has at most λT minimal hitting sets. Each
of these have to be tested against a set of at most T dis-
tinct minimal hitting sets to see if it has already been
reported. Therefore, this takes O(λT 2n) time assuming
that it takes O(n) to check if two minimal hitting sets
are the same. Similarly, when we reach Line 20, the size
of Type2-Set is at most Tλ and each of the hitting sets
in it is compared against a set of at most T minimal
hitting sets to see if it has been reported before. This
takes O(Tλ+1n) time. We therefore have the following
recursion:

t(n) ≤ 2λt((1− ε)n) + λnT 2 +mnTλ + nTλ+1 + τ,

where τ is the time required to find a balanced sub-
division. Using the fact that t(n) is a constant when
n is smaller than some constant µ, we see that t(n) =

O((τ +nTλ+1 +nmTλ) ·n
log λ

log 1/(1−ε) ). We therefore have
the following theorem.

Theorem 5 Procedure Enumerate(V,R) finds all min-
imal hitting sets of a range space (V,R) which admits
a balanced subdivision V1, . . . , Vλ with each |Vi| ≥ ε|V |,
whenever |V | is larger than a fixed constant µ, in time

O((τ + nTλ+1 + nmTλ) · n
log λ

log 1/(1−ε) ), where n = |V |,
m = |R|, T is the number of minimal hitting sets of R
and τ is the time required to compute a balanced subdi-
vision.

Remark 3 The way the above algorithm is described
gives an output polynomial algorithm for generating
Tr(R). Using techniques from [20], we can modify the
algorithm to become incremental polynomial, that is, for
every M ′ ≤M the algorithm outputs M ′ transversals in
time polynomial in n, m and M ′.

Parallel Implementation of the Algorithm: Algo-
rithm 1 can be parallelized in an obvious way. Each
of the For loops can be executed in parallel, i.e., all
the iterations are done in parallel. Using poly(n,m, T )

processors, each of the other steps can be executed in
polylog(n,m, T ) time. If we denote by t‖(n) the run-
ning time of such a parallel algorithm, again treating
m and T as constants, we get the following recurrence:
t‖(n) = t‖((1 − ε)n) + polylog(n,m, T ). We therefore
have that t‖(n) is in polylog(n,m, T ). It can be checked
that the total number of processors required is only
poly (n,m, T ).

Using the techniques in [20], we can also get an incre-
mental version of this, i.e., for any M ′ ≤M , the running
time depends polylogarithmically on M ′, provided that
there is an efficient parallel algorithm for finding a single
minimal transversal of the input hypergraphR. The ex-
istence of the latter algorithm for general hypergraphs,
and in particular for range spaces, is an outstanding
open question (see e.g. [19]). The currently best known
parallel implementation for the later problem is due to
Karp, Upfal, and Wigderson [19] who gave a randomized
algorithm which makes only O(

√
n) parallel oracle calls

on O(n3/2) processors to compute a maximal indepen-
dent set (complement of a minimal transversal, in the
case of explicitly given hypegraphs) of an independence
system given by an oracle on n vertices.

The running time of the algorithm described above is
super-linear in the output size and hence not ideal for
some applications. Similarly, previous algorithms for
generating minimal hitting sets of half-planes [14] suf-
fer from the same short-coming. In some simple cases,
however, there exist algorithms which produce output
with polynomial delay i.e. the time spent between enu-
merating two minimal hitting sets is polynomial in the
size of the input and does not depend on the size of the
output. Such algorithms clearly have a running time
linear in the size of the output. We state the following
result without proof.

Theorem 6 Let P be a set of n points and R be a set
of m half-planes in R2. Then all minimal hitting sets of
the range spaces (P,R) and (R, P ) can be generated in
poly(n,m) · k time where k is the size of the output.

References

[1] C. Berge. Hypergraphs. Elsevier-North Holand,
Amsterdam, 1989.

[2] J. C. Bioch and T. Ibaraki. Complexity of iden-
tification and dualization of positive boolean func-
tions. Information and Computation, 123(1):50–63,
1995.

[3] E. Boros, K. Elbassioni, V. Gurvich, and
L. Khachiyan. Generating maximal indepen-
dent sets for hypergraphs with bounded edge-
intersections. In LATIN ’04, pages 488–498, 2004.



23rd Canadian Conference on Computational Geometry, 2011

[4] E. Boros and K. Makino. A fast and simple parallel
algorithm for the monotone duality problem. In
ICALP ’09, to appear, 2009.

[5] Bernard Chazelle. Cutting hyperplanes for divide-
and-conquer. Discrete & Computational Geometry,
9:145–158, 1993.

[6] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry, Algo-
rithms and Applications. SpringerVerlag, Amster-
dam, 1997.

[7] C. Domingo, N. Mishra, and L. Pitt. Efficient read-
restricted monotone cnf/dnf dualization by learn-
ing with membership queries. Machine Learning,
37(1):89–110, 1999.

[8] T. Eiter and G. Gottlob. Identifying the minimal
transversals of a hypergraph and related problems.
SIAM J. Computing, 24(6):1278–1304, 1995.

[9] T. Eiter, G. Gottlob, and K. Makino. New
results on monotone dualization and generating
hypergraph transversals. SIAM J. Computing,
32(2):514–537, 2003.

[10] T. Eiter, K. Makino, and G. Gottlob. Computa-
tional aspects of monotone dualization: A brief sur-
vey. Discrete Applied Mathematics, 156(11):2035–
2049, 2008.

[11] Thomas Eiter. Exact transversal hypergraphs and
application to Boolean µ-functions. Journal of
Symbolic Computation, 17(3):215–225, 1994.

[12] K. Elbassioni. On the complexity of the multiplica-
tion method for monotone CNF/DNF dualization.
In ESA ’06, pages 340–351, 2006.

[13] K. Elbassioni. On the complexity of mono-
tone dualization and generating minimal hyper-
graph transversals. Discrete Applied Mathematics,
156(11):2109–2123, 2008.

[14] K. Elbassioni, K. Makino, and I. Rauf. Output-
sensitive algorithms for enumerating minimal
transversals for some geometric hypergraphs. In
ESA, 2009.

[15] M. L. Fredman and L. Khachiyan. On the complex-
ity of dualization of monotone disjunctive normal
forms. Journal of Algorithms, 21:618–628, 1996.

[16] D. R. Gaur and R. Krishnamurti. Average case self-
duality of monotone boolean functions. In Cana-
dian AI ’04, pages 322–338, 2004.

[17] G. Gottlob. Hypergraph transversals. In FoIKS
’04: Proc. of the 3rd International Symposium on
Foundations of Information and Knowledge Sys-
tems, pages 1–5, 2004.

[18] F. Hüffner, R. Niedermeier, and S. Wernicke. Tech-
niques for practical fixed-parameter algorithms.
Comput. J., 51(1):7–25, 2008.

[19] R. M. Karp, E. Upfal, and A. Wigderson. The
complexity of parallel search. Journal of Computer
and System Sciences, 36(2):225–253, 1988.

[20] L. Khachiyan, E. Boros, K. Elbassioni, and V. Gur-
vich. A global parallel algorithm for the hypergraph
transversal problem. Information Processing Let-
ters, 101(4):148–155, 2007.

[21] L. Khachiyan, E. Boros, V. Gurvich, and K. El-
bassioni. Computing many maximal independent
sets for hypergraphs in parallel. Parallel Process-
ing Letters, 17(2):141–152, 2007.

[22] L. Lovász. Combinatorial optimization: some prob-
lems and trends. DIMACS Technical Report 92-53,
Rutgers University, 1992.

[23] Jiŕı Matousek. Efficient partition trees. Discrete &
Computational Geometry, 8:315–334, 1992.

[24] C. Papadimitriou. NP-completeness: A retrospec-
tive. In ICALP ’97, 1997.

[25] H. Tamaki. Space-efficient enumeration of mini-
mal transversals of a hypergraph. Technical Report
IPSJ-AL 75, 2000.


