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Computing k-Link Visibility Polygons in Environments with a Reflective Edge
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Abstract

In this paper we consider the k-link visibility polygon of
an object inside a polygonal environment with a reflec-
tive edge called a mirror. The k-link visibility polygon
of an object inside a polygon P is the set of all points in
P , which are visible to some points of that object with
at most k − 1 intermediate points, under the property
that consecutive intermediate points are mutually vis-
ible. We propose an optimal linear time algorithm for
computing the k-link visibility polygon of an object in-
side a polygon P with a reflective edge. The object can
be a point, a segment or a simple polygon. We observed
that in computing k-link visibility polygons the mirror
can affect in only two levels. We explain how to handle
these levels efficiently to achieve an optimal algorithm.

1 Introduction

The visibility problem is a fundamental topic in com-
putational geometry and different versions of it, such as
art gallery problems, have been studied. The visibility
polygon of an object is defined as the set of all points
visible to some points of that object. Several linear time
algorithms have been proposed to compute the visibil-
ity polygon of a point [8], a segment [4] or a polygon
[7]. The minimum link path between two points of a
polygon P is a path inside P that connects these points
and has the minimum number of straight edges, called
links. The link distance between two points is the num-
ber of links in their minimum link path. Suri [10] gave
an O(n) time algorithm for computing the minimum
link path between two points in a simple polygon. The
k-link visibility polygon of a point q can be defined by
using the minimum link distance concept; it is the set
of all points having the link distance of at most k from
q. Using the window partitioning the k-link visibility
polygon of a point can be computed in linear time [9].
In the visibility literature, reflective surfaces were first
mentioned by Klee [5]. He asked if every polygon whose
all edges are reflective can be illuminated from any in-
terior point. Tokarsky [11] answered no to this question
by constructing a polygon for which there exists a dark
point by putting a light source at a particular position.
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In this polygon the dark point is collinear with both the
light source and an edge of the polygon.
When all the edges of the polygon are reflective but each
light beam is allowed to reflect once, Aronov et al. [2]
showed that the resulting visibility polygon of a source
light may not be simple. They present an O(n2 log2 n)
algorithm for computing visibility polygons in such en-
vironments. Later they allowed at most r reflections for
each light beam and presented an O(n2r logn) time and
O(n2r) space algorithm to compute visibility polygons
of a source light [1].
Recently Kouhestani et al. [6] showed how to compute
visibility polygons in environments with a single reflec-
tive edge in an optimal O(n) time. In this paper, we
extend this study and achieve a linear time algorithm
for computing k-link visibility polygons in such environ-
ments. If the polygon is entirely contained within one
of the 2 half-spaces determined by the line on which the
mirror lies, the k-link visibility polygon of an arbitrary
point can be easily computed by gluing P and the reflec-
tion of P in the mirror (called P ′) together along the
reflective edge. Known algorithms for computing the
k-link visibility polygon [9] can be slightly modified to
operate in such a polygon. To return the visibility poly-
gon, the union of two visibility polygons is computed in
linear time using the algorithm of Kouhestani et al. [6].
In the case that the polygon intersects both these half-
spaces and vertices of the mirror are reflex, the resulting
polygon from gluing P and P ′ is not simple anymore.
Apart from the difficulties to adopt known algorithms
to operate in this polygon, this method needs improve-
ments to run in an optimal time. Consider the smallest
value of k for which the k-link visibility polygon enters
P ′. In the computation of (k + 1)-link visibility poly-
gon, points of P which are visible from points of k-link
visibility polygon located in P must be added to those
points of P visible from the part of k-link visibility poly-
gon located in P . We have a similar situation for the
points of (k + 1)-link visibility polygon located in P ′.
Therefore, in order to return the (k + 1)-link visibility
polygon the union of four polygons must be computed.
It is not clear how to accomplish this task in linear time
to obtain an optimal algorithm.
Suppose the k-link visibility polygon is constructed in-
crementally and for example in ith level the i-link visi-
bility polygon is computed from the resulting polygon of
the previous level. We observed that the reflective edge
affects only two levels, therefore handling these levels ef-
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ficiently can produce a linear time algorithm. We clarify
this observation in the first lemma of section 4.2.
This paper is organized as follows: Section 2 describes
notation and preliminaries, section 3 shows how to com-
pute the 2-visibility polygon of an object inside a poly-
gon with a reflective edge, from which in section 4 an
algorithm to compute k-link visibility polygons in such
an environment is proposed. Section 5 contains conclu-
sions and discussions.

2 Notation and Preliminaries

Let P be a simple polygon with n vertices. int(P ) and
bd(P ) denote the interior and boundary of P , respec-
tively. Two points x, y ∈ P are mutually visible (or can
see each other directly), if the open line segment, xy, lies
completely in int(P ). An alternative definition used in
many visibility papers, allows the line segment to touch
the bd(P ). Throughout this paper we use the former
definition which is sometimes called the clear visibility.
Two points x and y inside P are k-link visible (or for
simplicity k-visible), if they can reach each other using
k−1 intermediate points a1, ..., ak−1, under the property
that ai and ai+1 are mutually visible for 1 ≤ i ≤ (k− 2)
and x sees a1 and y sees ak−1. The visibility polygon of
a point q in P , denoted by VP (q) is the set of all points
in P visible to q. An edge of VP (q) that is not a part of
an edge of P is called a window of VP (q). Suppose wi is
a window of VP (q). wi partitions P into two subpoly-
gons. The subpolygon which does not contain VP (q) is
called the pocket of wi (pocket(wi)).
The k-link visibility polygon of a point q in P , denoted
by V k

P (q) is the set of all points in P which are k-visible
to q. The weak visibility polygon of a segment s de-
noted by WVP (s) is the set of all points of P visible to
some points on s, except the endpoints. In the same
manner, the k-(weak)visibility polygon of a segment s,
V k
P (s) can be defined. Let q be a point inside P . P

can be partitioned into regions such that all points in
the same region have the same link distance from q.
This partitioning is called the window partitioning with
respect to the point q and can be done in O(n) time
[9]. Two regions are neighbors if they share a common
window. The dual graph of the window partitioning is
achieved by considering a node for each region and con-
necting each two nodes if their corresponding regions
are neighbors.
Suppose one of the edges of P is reflective, this edge is
called a mirror. Two points x and y can see each other
through the mirror e (or indirectly), if and only if there
exist a point r lying on e, visible to both x and y such
that xr and yr lie on the opposite sides of the inward
normal at r and make the same angle with it. r is not
considered as an intermediate point and hence x and y

are 1-link visible. Figure 1 illustrates two points y and

z which are 2-link visible to the point x with the inter-
mediate points i1 and i2, respectively.

Figure 1: An illustration of 2-link visibility when one of
the edges of the polygon is reflective.

Let VP,e(q), (resp. V
k
P,e(q)) denote the visibility polygon

(resp. the k-link visibility polygon) of a point q inside
P with the reflective edge e. Note that in V k

P,e(q), con-
secutive intermediate points can see each other directly
or by using the mirror e.

3 The 2-visibility polygon of objects in a polygon

with a single reflective edge

We first concentrate on computing the 2-visibility poly-
gon of an object when an edge of the polygon is reflec-
tive. Let P be a simple polygon with n vertices and e

be the reflective edge of P . Let O be an object inside
P . The general idea of computing V 2

P,e(O) is to com-
pute VP,e(O) and identify parts of P that are 1-visible
to VP,e(O). It is easy to see that any point of these parts
is visible to a window of VP,e(O). If O is a point or a
segment VP,e(O) is computed in O(n) time [6]. When
O is a simple polygon with m vertices, we use the fol-
lowing process to compute VP,e(O):
First we compute VP (O) in O(n+m) time by using the
algorithm of Langetepe et al. [7], and then determine
the parts of P that O sees through e. This can be done
with a slight modification to the algorithm of Kouhes-
tani et al. [6]. The union of these parts is VP,e(O)
which can be computed in O(n+m) time [6].

Lemma 1 Let Q be a simple polygon with m vertices

inside the simple polygon P . VP,e(Q) can be computed

in O(n +m) time.

V 2
P,e(O) is the set of all points in P which see some

points of O using at most one intermediate point. The
points of V 2

P,e(O) can be categorized into four groups:
(a) The points which see the intermediate point directly
for which the intermediate point sees the object directly.
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(b) The points which see the intermediate point using
the mirror, but for which the intermediate point sees
the object directly.
(c) The points which see the intermediate point directly,
but for which the intermediate point sees the object us-
ing the mirror.
(d) The points which see the intermediate point using
the mirror for which the intermediate point sees the ob-
ject using the mirror.
We denote these groups by {−e,−e}, {+e,−e},
{−e,+e}, {+e,+e}, in which −e means seeing directly
and +e means seeing through the mirror e.

Lemma 2 Let P be a simple polygon with a reflective

edge e, and O be an object completely inside P . At most

two windows of VP,e(O) can intersect e.

Proof. Any line segment in P , can intersect with at
most two windows of a visibility polygon [3]. There-
fore, the edge e intersects at most two windows of
VP,e(O). �

Figure 2: The windows w1 = (c, i1, d) and w2 = (a, i2, b)
with interior points i1, i2. The shaded regions show the
pocket of w1 and w2.

Note that some windows of VP,e(O) may have an interior
point (see Figure 2).

Lemma 3 Suppose wi is a window of VP,e(O) and its

pocket dose not intersect the mirror edge e. Then, all

points of V 2
P,e(O) which are located in pocket(wi), are

directly visible from wi. Therefore, other windows of

VP,e(O) can not see additional points in pocket(wi) and
wi can not see new points in pocket(wi) through the

mirror.

Proof. Let wj be a window of VP,e(O) and wj 6= wi. If
a point x in pocket(wi) is visible to wj (either directly
or by using the mirror), the line segment (or the path)
wjx will intersect wi in a point y. Therefore, x and
y are visible and x can see wi directly (see Figure 3).
With a similar argument wi can not see new points in
its pocket through the mirror. �

Figure 3: The illustration of Lemma 3.

Lemma 4 Let wi be a window of VP,e(O) whose

pocket intersects the reflective edge e. The set of

points of V 2
P,e(O) located in pocket(wi) is equal to

Vpocket(wi),e(wi).

Proof. The proof is similar to the proof of the previous
lemma. �

Lemma 5 Let Q be a polygon constructed by adding

all Vpocket(wi),ei(wi) to VP,e(O), where wi is a pocket of

VP,e(O) and ei is the intersection of e and pocket(wi).
Then, Q is V 2

P,e(O).

Proof. Windows of VP,e(O) are 1-visible to O, so newly
added points are 2-visible to O. Therefore, Q is a subset
of V 2

P,e(O). As mentioned before, points of V 2
P,e(O) can

be categorized into four groups. We show that a point
of each group lies in Q:
Case 1: {−e,−e}; a point of type {−e} is in VP (O), and
{−e,−e} is a point which is directly visible to VP (O), so
it is visible to a window of VP (O) and is located in the
pocket of this window. VP (O) is a subset of VP,e(O),
therefore, the point is in Q.
Case 2: {+e,−e}; a point of type {+e} is in VP,e(O),
{+e,−e} is a point which is directly visible to a window
of VP,e(O), so it is located in the pocket of this window,
therefore, it is in Q.
Case 3: {−e,+e}; a point of type {−e,+e} is visible to
VP (O) by using the mirror, VP (O) is a subset of VP,e(O),
so this point is visible to a window of VP,e(O) by using
the mirror, and therefore, it is in Q.
Case 4: {+e,+e}; {+e,+e} is a point visible to a win-
dow of VP,e(O) by using the mirror, so it is in Q. �

Now we can present an algorithm to compute the
2-visibility polygon of an object O in linear time.
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Algorithm 3

1. Compute VP,e(O).

2. Let {w1, ..., wd} be the windows of VP (O) and ei be
the intersection of e and pocket(wi) for i = 1, 2, ..d.

3. Compute all Vpocket(wi),ei(wi) and add them to
VP,e(O).

4. Return the resulting polygon.

The time complexity of the algorithm:

Step 1 is computed in O(n +m) time due to Lemma1.
Suppose ni is the number of vertices of pocket(wi) for
i = 1, 2, ..d. Vpocket(wi),ei(wi) is computed in O(ni)
time. Each two pockets of VP,e(O) can at most share
one vertex, therefore, the sum of vertices of these pock-
ets is O(n) and step 3 is computed in linear time.
Therefore, we can conclude the following theorem.

Theorem 6 The 2-visibility polygon V 2
P,e(O) of an ob-

ject O inside a simple polygon P with a reflective edge

e, can be computed in O(n + m) time, where n is the

number of vertices of P and m is the complexity of O.

4 k-visibility polygons

4.1 The k-visibility polygon of an object

Let O and s = xy be an object and a segment inside a
simple polygon P with n vertices. The minimum link
path between O and s, is a path in P , connecting some
points of O to s, which has the minimum number of
links. The link distance between O and s, is the num-
ber of the links in their minimum link path. The set
of all points with the link distance of 1 from O is the
visibility polygon of O. Let wi be the window of VP (O)
which its pocket completely contains s. If there is no
such a window then the link distance between O and s

is 1. Otherwise, the link distance between O and s is
1 + the link distance between s and wi. The link dis-
tance between two segments can be computed in O(n)
time [10, 9]. Therefore, the link distance between an
object and a segment can be computed in linear time.
Note that the window partitioning is computed using
the link distance concept [9], so the time complexity of
the window partitioning of an object is linear.

Lemma 7 Let P be a simple polygon with n vertices

and O be an object inside P with the complexity of m.

V k
P (O) can be computed in O(n+m) time.

Proof. A point x inside P is in V k
P (O) if the link dis-

tance between O and x is less or equal to k. By using
the window partitioning of O all points with the link dis-
tance of at most k from O can be computed in O(n+m)
time. �

4.2 The k-visibility polygon of an object inside an

environment with a single reflective edge

Let e be a reflective edge in P . Two points in P are
k-visible if they can see each other using at most k − 1
intermediate points. Consecutive intermediate points
see each other directly or by using e. V k

P,e(O) is the set
of all points which are k-visible to some points of O. By
using the computation of the 2-visibility polygon of O,
we present an algorithm to compute V k

P,e(O).
For an example of a 3-link visibility polygon of a point
in the presence of a mirror, see Figure 4. In this figure,
windows of each level are shown with the same color.

Lemma 8 Let P be a simple polygon with a reflective

edge e and O be an object inside P . Let m be the link

distance between O and e. Suppose Q = V m+1
P,e (O) is

constructed. VP,e(Q) is equal to VP (Q).

Proof. O and e are m-link visible, therefore, e is com-
pletely inside V m+1

P (O) and no pockets of V m+1
P (O) in-

tersect e. Let pocki be a pocket of V m+1
P (O). Similar to

Lemma 3, all points of V m+2
P (O) in pocki are directly

visible to the window of pocki. Therefore, VP,e(Q) is
equal to VP (Q). �

Now we present an algorithm to compute V k
P,e(O):

Algorithm 4.2

1. Compute the link distance between O and e and
store it in m.

2. If k < m, then, compute V k
P (O) and return.

3. If k ≥ m, then,

(a) Compute Q = V m−1
P (O).

(b) If k = m, compute VP,e(Q) and return.

(c) Compute R = V 2
p,e(Q)

(d) Let {w1, w2, ..., wd} be windows of R.

(e) Compute V k−m−1
pocket(wi)

(wi) for all i = 1, 2, ..., d

and add them to R

(f) Return the resulting polygon

Theorem 9 Let P be a simple polygon with n vertices

and O be an object inside P , with the complexity of m.

Let e be a reflective edge of P . V k
P,e(O) can be computed

in O(n +m) time.

Proof. The algorithm 4.2 computes V k
P,e(O). Lemma 8

ensures the correctness of the algorithm. We show that
the time complexity of this algorithm is O(n+m). Steps
3(a), 3(b), 3(c) and 3(d) are computed in O(n+m) time
due to Lemma 7, Lemma 1 and Theorem 6. Suppose
the number of vertices of pocket(wi) is ni, for all i =
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Figure 4: The 3-link visibility polygon of a point, when
one of the edges of the polygon is reflective.

1, 2, ..., d. V k−m−1
pocket(wi)

(wi) is computed in O(ni). The

sum of all ni for i = 1, 2, ..., d is less or equal to n.
Therefore, step 3(e) runs inO(n) time and the algorithm
has the time complexity of O(n+m). �

Note that the time complexity of computing V k
P,e(O) is

independent to the value of k and for any k = 1, ..., n,
V k
P,e(O) is computed in O(n+m) time.

5 Conclusion

In this paper we presented a linear time algorithm to
compute the k-link-visibility polygon of an object inside
a polygonal environment with a reflective edge. The
object is considered to be a point, a segment or a simple
polygon. If the polygon has two or more reflective edges,
a light beam can be reflected repeatedly between these
mirrors. It is not clear how to compute the visibility
polygon of a point when there is no restriction on the
number of the reflections. An interesting question will
be how to compute the k-link visibility polygon of a
point in a polygon with m reflective edges when each
light beam can reflect at most t time. This question is
the subject of our future study.
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