
CCCG 2011, Toronto ON, August 10–12, 2011

Sliding labels for dynamic point labeling

Andreas Gemsa∗ Martin Nöllenburg? Ignaz Rutter?

Abstract

We study a dynamic labeling problem for points on a
line that is closely related to labeling of zoomable maps.
Typically, labels have a constant size on screen, which
means that, as the scale of the map decreases during
zooming, the labels grow relatively to the set of points,
and conflicts may occur due to overlapping labels. Our
algorithmic problem is a combined dynamic selection
and placement problem in a sliding-label model: (i) se-
lect for each label ` a contiguous active range of map
scales at which ` is displayed, and (ii) place each label
at an appropriate position relative to its anchor point
by sliding it along the point. The active range optimiza-
tion (ARO) problem is to select active ranges and slider
positions so that no two labels intersect at any scale and
the sum of the lengths of active ranges is maximized.
We present a dynamic programming algorithm to solve
the discrete k-position ARO problem optimally and an
FPTAS for the continuous sliding ARO problem.

1 Introduction

With the increasing practical importance of dynamic
maps that allow continuous operations like zooming,
panning, or rotations, dynamic labeling of map features
becomes a critical aspect of the visual quality of a map.
Examples of dynamic maps range from maps on small-
screen mobile devices to professional desktop GIS appli-
cations. The map dynamics add new dimensions to label
placement, which result in challenging geometric opti-
mization problems that are quite different from static
labeling problems. Changes in dynamic maps due to con-
tinuous map movements need to be smoothly animated
in order to preserve a coherent context and minimize
the user’s cognitive load for re-orientation [12]. This
requirement is also known as “frame coherency” [2] or
“temporal continuity” [5]. Hence we cannot simply solve
the arising labeling problems independently for each in-
termediate map view during the animation; rather we
need to solve the labeling problem globally such that the
animations of all possible trajectories using the given set
of navigation operations satisfy the quality constraints.

In order to avoid distraction and irritation of the user
a dynamic map should—according to Been et al. [3]—

∗Department of Computer Science, Karlsruhe Insti-
tute of Technology (KIT), Germany, {gemsa, noellenburg,

rutter}@kit.edu

adhere to the following quality constraints or consistency
desiderata for dynamic map labeling: During mono-
tone map movement labels should neither “jump” (non-
continuously change position or size) nor “pop” (vanish
when zooming in or appear when zooming out); more-
over, the labeling should be a function of the selected
map viewport and not depend on the navigation his-
tory. In this paper we are only interested in dynamic
labelings that are consistent in that sense. Of course
each static map view in a dynamic map also needs to
satisfy the quality standards for static maps [8], i.e., all
labels—usually modeled as rectangles—are pairwise dis-
joint, each label is close to its anchor point, and, globally
over all possible map views, the number of visible labels
is maximum.

Been et al. [4] presented a first extensive study of
algorithms for dynamic map labeling in several different
models for one- and two-dimensional input point sets.
However, they focused on the dynamic label selection
problem, i.e., which set of labels to select at which scale,
and assumed that for each label a single, fixed position
relative to the anchor point is given in the input. They
left dynamic label placement as an open problem, i.e.,
the problem where to place each label relative to its
anchor point. One model for label placement is the k-
position or fixed-position model, where each label can
be placed at a position from a set of k (usually 4 or 8)
possible positions [1,6, 17]. Another more general model
is the slider model, where the finite-position assumption
is dropped and each label can take any position such
that the anchor point coincides with a point on the label
boundary [15, 16]. In this paper we present labeling
algorithms in a dynamic scenario that allows continuous
zooming for the visualization of a one-dimensional input
point set. To the best of our knowledge our algorithms
are the first to combine the dynamic label selection
problem with label placement in both the fixed-position
and the slider model, thus answering (partially) an open
question of Been et al. [4].

Related Work. Most previous algorithmic research
on automated label placement deals with static fixed-
position or slider models for point, line, or area features.
The problem of maximizing the number of selected la-
bels is NP-hard even for the simplest labeling models,
whereas there are efficient algorithms for the decision
problem that asks whether all points can be labeled in

23d Canadian Conference on Computational Geometry, 2011

some of the simpler models (see, e.g., the discussion by
Klau and Mutzel [9] or the comprehensive map label-
ing bibliography [19]). Approximation results [1, 16],
heuristics [18], and exact approaches [9] are known for
many variants of the static label number maximization
problem.

More recently, dynamic map labeling has emerged as a
new research topic that gives rise to many unsolved algo-
rithmic problems. Petzold et al. [13] used a preprocessing
step to generate a reactive conflict graph that represents
possible label overlaps for maps of all scales. For any
fixed scale and map region, their method computes a
conflict-free labeling in the slider model using heuristics.
Poon and Shin [14] described algorithms for labeling
one- and two-dimensional point sets that precompute a
hierarchical data structure storing solutions for a number
of different scales; this allows them to answer adaptive
zooming queries efficiently. Mote [10] presented another
fast heuristic method for dynamic conflict resolution in
label placement that does not require preprocessing and
assumes a 4-position model. The consistency desiderata
of Been et al. [3] for dynamic labeling, however, are
not satisfied by any of these three methods. Been et
al. [4] showed NP-hardness of the label number maxi-
mization problem in the consistent labeling model and
presented several approximation algorithms for labeling
two-dimensional point sets and an exact algorithm for
one-dimensional point sets. They focused on dynamic
label selection, i.e., assumed a 1-position model for la-
bel placement. Nöllenburg et al. [11] recently studied
a dynamic version of the alternative boundary labeling
model allowing continuous zooming and panning, where
labels are placed at the sides of the map and connected
to their points by leaders. Algorithms and complexity
results for dynamic label selection in fixed-scale rotating
maps that satisfy similar consistency desiderata were
presented by Gemsa et al. [7].

Contribution. In this paper we present algorithms for
labeling a set of points on a line with labels of arbitrary,
non-uniform length in a dynamic scenario that supports
continuous zooming of the points’ visualization. Un-
like previous efforts [4] we consider label placement in
a k-position and slider model: we must select both an
interval of scales at which each label is selected (dynamic
selection problem) and an admissible label position for
each label relative to its anchor point (dynamic place-
ment problem). We require that the label position re-
mains the same for all scales. In Section 2 we introduce
a model for dynamic point labeling with sliding labels in
the framework of Been et al. [3]. Section 3 presents a dy-
namic programming algorithm for dynamically labeling
points in the k-position model. Our main contribution
is the fully polynomial-time approximation scheme (FP-
TAS) described in Section 4 for the more general sliding

model. We conclude in Section 5 with several remaining
open questions that arise from our results.

2 Preliminaries

In this section we describe our model for dynamic label-
ing in the general framework of Been et al. [3, 4].

Model. Let P = {p1, . . . , pn} be a set of points on the
x-axis (also called the base line) together with a set
L = {`1, . . . , `n} of labels. The point pi is called the
anchor point of the label `i. Each label `i is a rectangle
of (target) width wi modeling the bounding box of the
text describing the point pi. Since we focus on labeling
a one-dimensional point set, we can think of each label
`i as actually being a line segment of width wi. During
zooming of the points’ visualization we wish to keep the
label size constant on screen, which means that if we
scale the map by a factor of 1/s we need to increase the
label size by a factor of s in order to maintain its width
on screen constant. This is the label size invariance
property of Been et al. [3]. So the width of `i on the
base line required for a map of scale 1/s is given by the
linear function wi(s) = wis.

The label proximity constraint in map labeling says
that each label must be close to its anchor point [8], i.e.,
we require for each label that the anchor point coincides
with a point of the label. We consider sliding labels
and define the shift position ti ∈ [0, 1] of a label `i as
the fraction of `i that is to the right of pi. For ti = 0
the label is in its leftmost position, and for ti = 1 it is
in its rightmost position. In the fixed-position model
only a finite subset of positions from [0, 1] is allowed. In
this paper we consider invariant point placements [3],
i.e., once a shift position t is selected for a label `, `
maintains that position relative to its anchor point. This
immediately prevents the labels from jumping. Figure 1
shows a set of five points with labels zoomed to four
different scales. Note that as the scale decreases, the
points move closer together and some labels must be
removed to avoid conflicting labels.

GeometryCanadian

GeometryComputationalCanadian

GeometryComputationalonConferenceCanadian

GeometryComputationalonConferenceCanadian

Figure 1: Five (partially) labeled points on a line zoomed
from smaller (top) to larger scales (bottom).

Following Been et al. [3, 4] we define an extended two-
dimensional coordinate system defined by the x-axis,

CCCG 2011, Toronto ON, August 10–12, 2011

Canadian Conference on Computational Geometry

y

x

s0

Figure 2: Triangular truncated extrusions (shaded blue)
induced by the example of Figure 1.

which models the positions of the points P , and the
y-axis, which models the inverse s of the scale 1/s. We
denote s as the scale factor that is used to enlarge the
labels before the whole base line (including the labels)
is scaled down by the target scale 1/s to produce the
actual visualization. We say a label is active at scale
factor s if it is selected as being visible at s; otherwise
it is inactive. The (static) placement of an active label `
with target width w and anchor point p at scale factor s
is determined by a shift position t ∈ [0, 1], i.e., the label
is represented by the interval [p− (1− t)ws, p+ tws]. A
dynamic placement of ` is a placement of ` for each scale
factor s at which ` is active. Since we consider invariant
point placements, the shift position is the same for all
scales. If we extrude the growing label segment with its
constant shift position t along the y-axis from y = 0 to
some maximum scale factor smax we obtain a triangle
whose apex is placed at the point p and whose top side is
parallel to the x-axis, see Figure 2. We call this triangle
the extrusion E of `. The shift position t determines the
slant of E, but for a label ` of width w the width of E at
any fixed scale factor s is ws independent of t. Let the
trace trs(E) of E at scale factor s be the intersection of
E with the horizontal line y = s. By definition trs(E)
corresponds to the placement of ` at s if ` is active at s.

If the extrusions E and E′ of two labels intersect at
some scale factor s this means that the two labels `
and `′ overlap at scale 1/s. A standard requirement
in point labeling, however, is that all labels must be
pairwise disjoint [8]. Accordingly, at most one of ` or
`′ can be active at scale factor s. Since one of the
desiderata for consistent dynamic map labeling is that
labels do not ‘pop’ during monotonous zooming in order
to avoid flickering effects [3] we require that labels never
vanish when zooming in and never appear when zooming
out. This lets us define the active range of a label
`i as an interval of scale factors [0, ai) for which `i is
active. This active range implies that when zooming in
the label `i appears exactly once at scale factor ai and
then remains active, or, conversely, when zooming out it
disappears exactly once at scale factor ai and remains
inactive. The truncated extrusion Ti is the restriction
of the extrusion Ei of `i to its active range [0, ai), see
Figure 2 for an example. Now a consistent dynamic

labeling for the points P corresponds to an assignment
of a scale-independent shift position ti and an active
range [0, ai) for each label `i such that the truncated
extrusions T = {T1, . . . , Tn} are pairwise disjoint. Hence
we need to solve both a dynamic selection problem and a
dynamic placement problem according to Been et al. [3].
Informally speaking, we can adjust the slant and the
height of the truncated extrusions as long as they do not
intersect each other.

Objective. A common objective in point labeling is to
maximize the number of labeled points, and accordingly
our goal is to maximize the total active range length,
which is defined as the sum H =

∑n
i=1 ai of all active

range lengths. Maximizing H corresponds to displaying
a maximum number of labels integrated over all scale
factors s ∈ [0, smax]. This problem is known as the active
range optimization problem (ARO) [4]. We consider
two one-dimensional variants of ARO: In the discrete
k-position 1d ARO problem the set of admissible shift
positions is restricted to a subset Si ⊂ [0, 1] of cardinality
|Si| ≤ k. In the general sliding 1d ARO problem any
shift position in [0, 1] is admissible.

3 A dynamic program for k-position 1d ARO

In this section we give a dynamic program for computing
an optimal solution for the k-position version of the 1d
ARO problem. For ease of notation we define two dummy
points p0 and pn+1, where p0 = min{pi − smaxwi | 1 ≤
i ≤ n} and pn+1 = max{pi + smaxwi | 1 ≤ i ≤ n}. The
only shift position of `0 is S0 = {0} and the only shift
position of `n+1 is Sn+1 = {1}. Both labels have width 1.
It is easy to see that in any optimal solution the height
of T0 and Tn+1 must be smax since none of the extrusions
Ti can intersect T0 or Tn+1.

For a pair of points pi and pj with i < j and shift
positions ki ∈ Si and kj ∈ Sj we define the free space
∆(i, j, ki, kj) as the polygon bounded by the line s = 0,
the supporting line of the right edge of Ti in shift position
ki, the supporting line of the left edge of Tj in shift posi-
tion kj , and, if the two supporting lines of Ti and Tj do
not intersect below smax, the line s = smax. See Figure 3
for an example. Let A[i, j, ki, kj] be the maximum total
active range height for the points pi+1, . . . , pj−1, where
all truncated extrusions Ti+1, . . . Tj−1 are contained in
∆(i, j, ki, kj).

We observe that the tallest truncated extrusion Tl
(i < l < j) in any optimal solution of the subinstance I
induced by ∆(i, j, ki, kj) must touch the left, right, or
top boundary of ∆(i, j, ki, kj), otherwise we could im-
prove the total active range height. We use Tl in order
to split I into two smaller independent subinstances I ′

and I ′′ induced by ∆(i, l, ki, kl) and ∆(l, j, kl, kj), see

Figure 3. For each l = i+1, . . . , j−1 let h
i,j,ki,kj
l,kl

denote

23d Canadian Conference on Computational Geometry, 2011

pi pj

smax

pl

Ti TjTl

∆(i, l, ki, kl)

∆(l, j, kl, kj)

h
i,j,ki,kj

l,kl

Figure 3: The subinstance induced by ∆(i, j, ki, kj) is
split into two smaller independent subinstances by Tl.

the height at which Tl at shift position kl ∈ Sl first
hits a non-bottom edge of ∆(i, j, ki, kj). We initialize
A[i, i + 1, ·, ·] = 0 for all i = 0, . . . , n and then recur-

sively defineA[i, j, ki, kj] = max{A[i, l, ki, kl]+h
i,j,ki,kj
l,kl

+
A[l, j, kl, kj] | i < l < j and kl ∈ Sl}. By definition of A
the solution to the ARO problem is A[0, n+ 1, 0, 1]. We
can compute the value A[0, n+ 1, 0, 1] by dynamic pro-
gramming in O(n3k3) time: each of the O(n2k2) values
in A is defined as the maximum of a set of O(nk) values,
each of which can be computed by two table look-ups
and two O(1)-time line intersection queries.

The correctness of the above dynamic program follows
by induction on the number of points in a subinstance.
Clearly for an empty subinstance ∆(i, i+ 1, ki, ki+1) the
maximum total active range height A[i, i+1, ki, ki+1] is 0.
Let’s consider a subinstance induced by ∆(i, j, ki, kj),
where j − i = r and assume by induction that the val-
ues in A are correct for all subinstances ∆(i′, j′, ki′ , kj′),
where j′ − i′ < r. Let B be an optimal active range
assignment of the labels `i+1, . . . , `j−1 within the free
space ∆(i, j, ki, kj) and let H(B) be its value. Let further
Tl be a tallest truncated extrusion with shift position

kl in B. Obviously Tl must have height h
i,j,ki,kj
l,kl

if B
is optimal. Since our algorithm explicitly considers all
labels and all shift positions as candidates for the tallest
truncated extrusion, it also considers Tl and its shift
position kl, which splits the given instance into two inde-
pendent subinstances with free spaces ∆(i, l, ki, kl) and
∆(l, j, kl, kj). Since l− i < r and j− l < r we know that

A[i, j, ki, kj] ≥ A[i, l, ki, kl] + h
i,j,ki,kj
l,kl

+ A[l, j, kl, kj] =
H(B).

Since the free space ∆(0, n + 1, 0, 1) is chosen such
that none of the truncated extrusions T1, . . . , Tn can
touch T0 or Tn+1, A(0, n + 1, 0, 1) indeed contains the
value of an optimal solution to the k-position ARO
problem. We can easily augment the algorithm to keep
track of the pair (l, kl) that achieved the maximum value
in order to reconstruct the solution by backtracking
from A(0, n+ 1, 0, 1). We summarize this result in the
following theorem.

Theorem 1 Given n points P = {p1, . . . , pn} on the
x-axis, a label `i of base width wi for each point pi, and

a set Si ⊂ [0, 1] of at most k shift positions for each label
`i, we can compute an optimal solution to the k-position
1d ARO problem in O(n3k3) time and O(n2k2) space.

We note that this algorithm generalizes theO(n3)-time
algorithm of Been et al. [4] for the 1-position 1d ARO
problem, where each label has only a single available
shift position.

4 An FPTAS for general 1d sliding ARO

In this section we present an FPTAS for approximating
the optimal solution of the sliding 1d ARO problem
within a factor of (1 − ε). The idea of the FPTAS is
based on uniformly discretizing the interval [0, 1] of shift
positions. Let k > 0 be an integer and define the set
of shift positions Sk = {i/k | i ∈ Z, 0 ≤ i ≤ k}. For
an instance I of the sliding 1d ARO problem consisting
of a point set P = {p1, . . . , pn} and corresponding label
set L, we consider instead the (k + 1)-position 1d ARO
problem for the instance I ′ consisting of P , L, and
the shift position sets Si = Sk for 1 ≤ i ≤ n. By
Theorem 1 this instance I ′ can be solved in O(n3k3)
time and O(n2k2) space using the dynamic programming
algorithm of Section 3. In the following theorem we
show that this approach gives an FPTAS for the original
sliding 1d ARO problem.

Theorem 2 Given n points P = {p1, . . . , pn} on the
x-axis and a corresponding label set L = {`1, . . . , `n},
where label `i has base width wi, we can compute a (1−ε)-
approximate solution to the sliding 1d ARO problem in
O(n3(1/ε)3) time and O(n2(1/ε)2) space.

Proof. We need to show that for a suitably chosen
parameter k = k(ε) the optimal solution for the (k + 1)-
position 1d ARO instance I ′ as defined above is actually
a (1− ε) approximate solution for the sliding 1d ARO
instance I. Let us assume that we know an optimal
solution A? for I, i.e., a shift position ti ∈ [0, 1] and an
active range [0, ai) ⊆ [0, smax] for each label `i. Since A?

is optimal, each truncated extrusion Ti has either height
ai = smax or touches the left or right supporting line
of another, taller, truncated extrusion Tj . In the latter
case ai is the smallest scale factor, where the extrusions
Ei and Ej intersect.

For proving the approximation factor we derive a
discretized solution A′ from A?, where each shift position
t′i ∈ Sk and the active ranges are shortened to [0, a′i) ⊆
[0, ai) as to satisfy the label disjointness property. For
every shift position ti in A? we define the new shift
position t′i in A′ as follows

t′i =

{
bktic/k if ti < 1/2

dktie/k if ti ≥ 1/2.

CCCG 2011, Toronto ON, August 10–12, 2011

In other words, we tilt Ti towards its “heavier” side until
it reaches a shift position in the set Sk. Due to the
tilting the truncated extrusions are no longer necessarily
disjoint and we need to shorten the active ranges for
some labels. Figure 4 shows an example.

ai

pi pj

(a)

wit
′
iai

α β

ai

pi pj

(b)

Figure 4: Discretizing the shift positions of two labels
for k = 4.

Let T ′i and T ′j be two tilted truncated extrusions that
intersect in their interior. Without loss of generality let
T ′i be the smaller one such that, before the tilting, its
top right corner was touching the left edge of T ′j as in
Figure 4a. We first consider the case that T ′i and T ′j are
tilted towards each other. Then the right edge of T ′i ,
the left edge of T ′j , and the horizontal line y = ai define
a triangle D as in Figures 4b and 5. We decrease the
active range of label `i to [0, a′i), where a′i = ai − h for
the height h of D. Obviously the truncated extrusions
T ′i and T ′j no longer intersect in their interior for the
new active range [0, a′i).

αβ

h

c }x

Figure 5: Intersection triangle D.

Next, we bound the height h of D. Let α be the
angle between the right edge of T ′i and the x-axis. The
same angle α is found at the top right corner of D.
From Figure 4b we obtain that tan(α) = ai/(wit

′
iai) =

1/(wit
′
i) and from Figure 5 that tan(α) = h/x, where x

is distance between the base point of the height h on the
top side c and the top right corner. Since T ′i is tilted
to the right and T ′j to the left we have t′i ≥ 1/2 and
(1− t′j) ≥ 1/2. By definition of the new shift positions
t′i and t′j we know that the length of the top side c of
D is at most (wiai + wjai)/k. This is because at scale
factor s the tilt moves each truncated extrusion with
base width w horizontally by at most a 1/k fraction of

its width ws at s. With x ≤ c this yields

h =
x

wit′i
≤ c

wi/2
≤ 2ai

k

wi + wj
wi

.

Similar reasoning for the angle β in Figures 4b and 5
yields tan(β) = ai/(wj(1− t′j)ai) = h/(c− x) and sub-
sequently h ≤ 2ai/k · (wi + wj)/wj . Again without
loss of generality we assume that wi ≥ wj and obtain
min{(wi + wj)/wi, (wi + wj)/wj} = (wi + wj)/wi ≤ 2.
So we can finally bound the height of D by h ≤ 4ai/k.

We still need to consider the case that both truncated
extrusions are tilted in the same direction, say to the left
(the case that both are tilted to the right is symmetric).
A conflict can still occur if T ′j is tilted further to the left
than T ′i . The triangle D is defined as before, but now
we know that the length of the side c is at most wjai/k.
Since T ′j is tilted to the left we still have (1− t′j) ≥ 1/2.
Now we argue about the angle β using the same identities
as before and obtain h ≤ c/(wj(1− t′j)) ≤ 2ai/k.

In the case that T ′i and T ′j are tilted away from each
other obviously no conflict can occur. Furthermore, the
analysis still holds for conflicts involving the top left
corner of T ′i instead of the top right corner.

So each truncated extrusion Ti of height ai is shortened
by at most 4ai/k due to the discretization of the shift
positions, or, equivalently, a′i ≥ (1 − 4/k)ai. If we set
k = 4/ε we arrive at

∑n
i=1 a

′
i ≥ (1− ε)

∑n
i=1 ai. �

5 Discussion

In this paper we studied an extension of the initial
ARO problem, introduced by Been et al. [4], where we
additionally allow to slide the labels. Our dynamic
programming approach for discrete k-position 1d ARO
is a generalization of their approach to solve simple 1d
ARO with proportional dilation. It shows that k-position
1d ARO can be solved in polynomial time.

Based on the dynamic program for k-position 1d ARO,
we further derived an FPTAS for sliding 1d ARO by
suitably discretizing the set of allowed shifts for the
labels. While this shows that we can approximate the
optimal value arbitrarily closely in polynomial time, the
complexity of sliding 1d ARO is still open. The main
difficulty in devising an NP-hardness proof is that the
problem becomes efficiently solvable when every label has
only a polynomial number of relevant sliding positions.
It thus seems difficult to encode binary decisions as label
positions.

Note that in our model the shift position of each label,
once selected, remains fixed for all scales. For the k-
position model this is actually required in order to avoid
jumping labels, whereas in a more general sliding model
we leave as an open problem to determine a continuous
function that defines the label position for every scale.
Here we might require that this function is monotone or
that its slope is bounded.

23d Canadian Conference on Computational Geometry, 2011

In practice it is common that some points are more
important than others and hence the active ranges of
their labels should be more influential in the objective
function. More precisely, let γi > 0 be a weight for each
point pi. We can then optimize the weighted total active
range length Hγ =

∑n
i=1 γiai instead of H. It is easy to

see that both the dynamic programming algorithm and
the FPTAS remain valid for optimizing Hγ .

Another problem variant is to use a non-linear ob-
jective function, motivated by the observation that H
favors active labels at large values of s, i.e., in maps with
small scales 1/s. It might be reasonable in practice to
choose a logarithmic function over a linear function for
measuring the active ranges. Using the objective func-
tion Hlog =

∑n
i=1 log ai instead of H has the effect that

doubling the scale range at which a label is active has a
fixed impact on the objective function regardless of the
actual scale. The dynamic programming algorithm can
immediately deal with Hlog. Even the approximation
scheme of Section 4 remains an FPTAS under the mild
additional assumptions that the minimum scale factor
is 1 (instead of 0), that each ai ≥ 2, and that ε ≤ 1/2.

Ultimately, the challenge in 2d dynamic map labeling
is to consistently support multiple modes of interaction
(zooming, panning, rotations) using a slider model for the
labels. In this sense, our results are a first step towards
consistent dynamic labeling of 2d zoomable maps with
sliding labels. Unfortunately, our algorithms do not
easily generalize to 2d point sets. In fact, it can be easily
seen that k-position 2d ARO and sliding 2d ARO are
both NP-hard. The result of Been et al. [4] essentially
shows that 1-position 2d ARO, and thus also k-position
2d ARO is NP-hard. For the sliding 2d ARO problem
deciding whether all labels may be active at all scales
amounts to deciding whether all labels can be placed
at scale smax. A slight modification of the NP-hardness
proof for map labeling in the four-slider model [16] shows
that this problem is NP-hard, even if all labels are unit
squares.

Acknowledgments

We thank an anonymous reviewer for helpful sugges-
tions. A. Gemsa and M. Nöllenburg are supported by
the Concept for the Future of KIT under project YIG
10-209 within the framework of the German Excellence
Initiative and by a Google Research Award.

References

[1] P. K. Agarwal, M. van Kreveld, and S. Suri. Label
placement by maximum independent set in rectangles.
Comput. Geom. Theory Appl., 11:209–218, 1998.

[2] K. Ali, K. Hartmann, and T. Strothotte. Label layout
for interactive 3D illustrations. Journal of the WSCG,
13(1):1–8, 2005.

[3] K. Been, E. Daiches, and C. Yap. Dynamic map label-
ing. IEEE Transactions on Visualization and Computer
Graphics, 12(5):773–780, 2006.

[4] K. Been, M. Nöllenburg, S.-H. Poon, and A. Wolff.
Optimizing active ranges for consistent dynamic map
labeling. Comput. Geom. Theory Appl., 43(3):312–328,
2010.

[5] B. Bell, S. Feiner, and T. Höllerer. View management
for virtual and augmented reality. In ACM Sympos.
on User Interface Software and Technology (UIST’01),
pages 101–110, 2001.

[6] M. Formann and F. Wagner. A packing problem with
applications to lettering of maps. In Proc. 7th Annual
ACM Sympos. on Computational Geometry (SoCG’91),
pages 281–288, 1991.

[7] A. Gemsa, M. Nöllenburg, and I. Rutter. Consistent
labeling of rotating maps. In Proc. 12th Algorithms and
Data Structures Symposium (WADS’11). To appear,
2011.

[8] E. Imhof. Positioning names on maps. The American
Cartographer, 2(2):128–144, 1975.

[9] G. W. Klau and P. Mutzel. Optimal labeling of point
features in rectangular labeling models. Mathematical
Programming (Series B), pages 435–458, 2003.

[10] K. D. Mote. Fast point-feature label placement for
dynamic visualizations. Information Visualization,
6(4):249–260, 2007.

[11] M. Nöllenburg, V. Polishchuk, and M. Sysikaski. Dy-
namic one-sided boundary labeling. In Proc. 18th ACM
SIGSPATIAL Int’l Conf. Advances in Geographic Infor-
mation Systems, pages 310–319. ACM Press, 2010.

[12] K. Ooms, W. Kellens, and V. Fack. Dynamic map label-
ing for users. In Proc. 24th Int’l Cartographic Conference
(ICC’09), Santiago, Chile, 2009.

[13] I. Petzold, G. Gröger, and L. Plümer. Fast screen map
labeling—data-structures and algorithms. In Proc. 23rd
Internat. Cartographic Conf. (ICC’03), pages 288–298,
Durban, South Africa, 2003.

[14] S.-H. Poon and C.-S. Shin. Adaptive zooming in point
set labeling. In Proc. 15th Internat. Sympos. Fundam.
Comput. Theory (FCT’05), volume 3623 of Lecture Notes
Comput. Sci., pages 233–244. Springer-Verlag, 2005.

[15] T. Strijk and M. van Kreveld. Practical extensions
of point labeling in the slider model. GeoInformatica,
6(2):181–197, 2002.

[16] M. van Kreveld, T. Strijk, and A. Wolff. Point labeling
with sliding labels. Comput. Geom. Theory Appl., 13:21–
47, 1999.

[17] F. Wagner and A. Wolff. A practical map labeling
algorithm. Comput. Geom. Theory Appl., 7:387–404,
1997.

[18] F. Wagner, A. Wolff, V. Kapoor, and T. Strijk. Three
rules suffice for good label placement. Algorithmica,
30(2):334–349, 2001.

[19] A. Wolff and T. Strijk. The Map-Labeling Bibliography,
1996.

