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Robustness of topology of digital images and point clouds
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Abstract

Such modern applications of topology as digital image
analysis and data analysis have to deal with noise and
other uncertainty. In this environment, the data struc-
tures often appear "filtered" into a sequence of cell com-
plexes. We introduce the homology group of the filtra-
tion as a generalization of the homology group of a single
cell complex. It is the group of all possible homology
classes of all elements of the filtration with a certain
equivalence relation. This relation equates the classes
that represent the same homology class of the original
data structure. The persistent homology group of the
filtration is obtained similarly with an equivalence re-
lation that equates the classes the differences of which
falls outside of user’s choice of the acceptable level of
noise.

1 Introduction

Since Poincaré, homology has been used as the main
descriptor of the topology of geometric objects. In the
classical context, however, all homology classes receive
equal attention. Meanwhile, applications of topology
in analysis of images and data have to deal with noise
and other uncertainty. This uncertainty appears usually
in the form of a real valued function defined on the
topological space. Persistence is a measure of robustness
of the homology classes of the lower level sets of this
function [6], [2], [4], [3].
Since it’s unknown beforehand what is or is not noise

in the dataset, we need to capture all homology classes
including those that may be deemed noise later. In this
paper we introduce an algebraic structure that contains,
without duplication, all these classes. Each of them
is associated with its persistence and can be removed
when the threshold for acceptable noise is set. The last
step can be carried out repeatedly in order to find the
best possible threshold. The construction follows the
approach to analysis of digital images presented in [8].

2 Backgound

The topological spaces subject to such analysis are cell
complexes. A cell complex is a combinatorial structure
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that describes how k-dimensional cells are attached to
each other along (k − 1)-dimensional cells. Cell com-
plexes come from the following two main sources.
First, a gray scale image is a real-valued function f

defined on a rectangle. Given a threshold r, the lower
level set f−1((−∞, r)) can be thought of as a binary
image. Each black pixel of this image is treated as a
square cell in the plane. These 2-dimensional cells have
to be combined with their edges (1-cells) and vertices
(0-cells) while in the n-dimensional case the image is
decomposed into a combination of 0-, 1-, ..., n-cubes.
This process is called thresholding. The result is a cell
complex K for each r, see [7].
Second, a point cloud is a finite set S in some Euclid-

ean space of dimension d. Given a threshold r, we deem
any two points that lie within r from each other as
"close". In this case, this pair of points is connected by
an edge. Further, if three points are "close", pairwise,
to each other, we add a face spanned by these points.
If there are four, we add a tetrahedron, and, finally,
any d + 1 "close" points create a d-cell. The process
is called the Vietoris-Rips construction. The result is a
cell complex K for each r [6].
Next, we would like to quantify the topology of the

cell complex K. It is done via the Betti numbers of K:
B0 is the number of connected components in K; B1
is the number of holes or tunnels (1 for letter O or the
donut; 2 for letter B and the torus); B2 is the number of
voids or cavities (1 for both the sphere and the torus),
etc.
The Betti numbers are computed via homology the-

ory [1]. One starts by considering the collection Ck(K)
of all formal linear combinations (over a ring R) of k-
cells in K, called k-chains. Combined they form a fi-
nitely generated abelian group called the chain com-
plex Ck(K), or collectively C∗(K). A k-chain can be
recorded as an Nk-vector, where Nk is the total num-
ber of k-cells in K. The boundary of a k-chain is the
chain comprised of all (k − 1)-faces of its cells taken
with appropriate signs. Then the boundary operator
∂ : Ck(K) → Ck−1(K), k = 0, 1, ..., acts on the chain
complex and is represented by a Nk ×Nk−1 matrix.
From the chain complex C∗(K), the homology group

is constructed by means of the standard algebraic tools.
To capture the topological features one concentrates on
cycles, i.e., chains with zero boundary, ∂A = 0. Fur-
ther, one can verify whether two given k-cycles A and
B are homologous: the difference between them is the
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boundary of a (k + 1)-chain T : A − B = ∂T (such as
two meridians of the torus). In this case, A and B be-
long to the same homology class H = [A] = [B]. The
totality of these equivalence classes in each dimension
k is called the k-th homology group Hk(K) of K, col-
lectively H∗(K). Then, Betti number Bk is the rank of
Hk(K).

3 Prior work and outline

The methods for computing homology groups are well
developed. In real-life applications however both digital
images and point clouds may be noisy and one needs to
evaluate the significance of their homology classes. The
approach to this problem has been the following. In-
stead of using a single threshold and studying a single
cell complex, one considers all thresholds and all possi-
ble cell complexes. Since increasing threshold r enlarges
the corresponding complex, we have a sequence of com-
plexes:

K1 /→ K2 /→ K3 /→ K4 /→ . . . /→ Ks,

where the arrows represent the inclusions: in,n+1 :
Kn /→ Kn+1. Let inm : Kn /→ Km, n ≤ m, also be
the inclusion. This structure {Kn, inm} is called a fil-
tration.
Now, each of these inclusions generates a homomor-

phism inm∗ : H∗(K
n) → H∗(K

m) called the homology
map induced by inm. As a result, we have a sequence of
homology groups connected by these homomorphisms:

H∗(K
1)→ H∗(K

2)→ . . . → H∗(K
s) −→ 0.

These homomorphisms record how the homology
changes as the complex grows at each step. For ex-
ample, a component appears, grows, and then merges
with another one, or a hole is formed, shrinks, and then
is filled. We refer to these events as birth and death of
the corresponding homology class.
In order to evaluate the robustness of an element of

one of these groups the persistence of a homology class is
defined as the number of steps in the homology sequence
it takes for the class to end at 0. In other words,

persistence = death date - birth date.

The p-persistent homology group of Ki is defined as the
image of ii,i+p∗ . It is what’s left fromH∗(K

i) after p steps
in the filtration. Now the robustness of the homology
classes of the filtration is evaluated in terms of the set of
intervals [birth, death] representing the life-spans, called
barcodes, of the homology classes [5].
Our approach is similar but more algebraic. It con-

sists of two steps.
First stage: we pool all possible homology classes in

all elements of the filtration together in a single alge-
braic structure (Sections 4 and 5). The presence of noise

at this point is ignored. The homology groupH∗({Kn})
of filtration {Kn} captures all homology classes in the
whole filtration — without double counting. The latter
is achieved by an equivalence relation that equates the
classes that, in a sense, represent the same homology
class in the filtration: y = in,n+1∗ (x).
Second stage: for a given positive integer p, the p-

noise group Np
∗ ({Kn}) is comprised of the homology

classes in H∗({Kn}) with the persistence less than p.
Next, we "remove" the noise from the homology group
of filtration by using the quotient (Sections 6 and 7):

Hp
∗ ({Kn}) = H∗({Kn})/Np

∗ ({Kn}).

In other words: if the difference between two homology
classes is deemed noise, they are equivalent. This is
the persistent homology group of filtration. The second
stage can be repeated as needed.
The (persistent) homology group of filtration is a

graded group and is intended to stand for the homol-
ogy group of the data set that is behind the fil-
tration.
The main contribution of the present paper is an alge-

braic treatment of persistence that is alternative to the
persistence module [3]. In the case of image analysis,
the homology group of the image, unlike the barcodes,
captures only the topology independent from the gray
levels. This is why one might say that our approach
provides a coarser classification of the homology of fil-
trations.
We also discuss the computational aspects of this ap-

proach (Section 8) and multiparameter filtrations (Sec-
tion 9).

4 Motivation: the homology of a gray scale image

In this section we will try to understand the meaning of
the homology of the gray scale image in Figure 1. For
simplicity we assume that there are only 2 levels of gray
in addition to black and white. A visual inspection of
the image suggests that it has three connected compo-
nents each with a hole. Therefore, its 0- and 1-homology
groups should have three generators each. We now de-
velop an algebraic procedure to arrive at this result.

Figure 1: A gray scale image and the corresponding
filtration

First the image is "thresholded". The lower level sets
of the gray scale function of the image form a filtration:
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a sequence of three binary images, i.e., cell complexes:
K1 /→ K2 /→ K3, where the arrows represent the inclu-
sions. Suppose Ai, Bi, Ci are the homology classes that
represent the components of Ki and ai, bi, ci are the
holes, clockwise starting at the upper left corner. The
homology groups of these images also form sequences —
one for each dimension 0 and 1.
Suppose F1, F2 are the two homology maps, i.e., ho-

momorphisms of the homology groups generated by the
inclusions of the complexes, with F3 = 0 included for
convenience. These homomorphisms act on the genera-
tors, as follows:

A1 → A2 → A3 → 0, B1 → B2 → B3 → 0,

C2 → C3 → 0, a1 → a2 → a3 → 0,

b1 → 0, c3 → 0.

To avoid double counting, we want to count only the ho-
mology classes that don’t reappear in the next homology
group. As it turns out, a more algebraically convenient
way to accomplish this is to count only the homology
classes that go to 0 under these homomorphisms. These
classes form the kernels of F1, F2, F3. Now, we choose
the homology group of the original, gray scale image to
be the direct sum of these kernels:

H0({Ki}) =< A3, B3, C3 >, H1({Ki}) =< b1, a3, c3 > .

Thus the image has three components and three holes,
as expected.

5 Homology groups of filtrations

In the following sections we provide formal definitions.
All cell complexes are finite.
Suppose we have a one-parameter filtration:

K1 /→ K2 /→ K3 /→ . . . /→ Ks.

HereK1,K2, . . . ,Ks are cell complexes, the arrows rep-
resent the inclusions in,n+1 : Kn /→ Kn+1, and so do
inm : Kn /→ Km, n ≤ m. We will denote the filtra-
tion by {Kn, inm : n,m = 1, 2, ..., s, n ≤ m}, or simply
{Kn}. Next, homology generates a "direct system" of
groups and homomorphisms:

H∗(K
1)→ H∗(K

2)→ . . . → H∗(K
s) −→ 0.

We denote this direct system by {H∗(Kn), inm∗ : n,m =
1, 2, ..., s, n ≤ m}, or simply {H∗(Kn)}. The zero is
added in the end for convenience.
Our goal is to define a single structure that captures

all homology classes in the whole filtration without dou-
ble counting. The rationale is that if x ∈ H∗(K

n), y ∈
H∗(K

m), y = inm∗ (x), and there is no other x satisfy-
ing this condition, then x and y may be thought of as

representing the same homology class of the geometric
object behind the filtration.
The homology group of filtration {Kn} is defined as

the product of the kernels of the inclusions:

H∗({Kn}) = ker i1,2∗ ⊕ ker i2,3∗ ⊕ . . .⊕ ker is,s+1∗ .

Here, from each group we take only the elements that
are about to die. Since each dies only once, there is
no double-counting. Since the sequence ends with 0,
we know that everyone will die eventually. Hence every
homology class appears once and only once.
These are a few simple facts about this group.

Proposition 1 If in,n+1∗ is an isomorphism for each
n = 1, 2, ..., s− 1, then H∗({Kn}) = H∗(K

1) .

Proposition 2 If in,n+1∗ is a monomorphism for each
n = 1, 2, ..., s− 1, then H∗({Kn}) = H∗(K

s).

Proposition 3 Suppose {Kn, inm, n,m = 1, 2, ..., s}
and {Ln, jnm, n,m = 1, 2, ..., s} are filtrations. Then
H∗({Kn t Ln}) = H∗({Kn})⊕H∗({Ln}).

Proposition 4 Suppose {Kn, inm, n,m = 1, 2, ..., s}
and {Ln, jnm, n,m = 1, 2, ..., s} are filtrations and f :
Ks → Ls is a cell map. Then the homology map of the
homology groups of these filtrations f∗ : H∗({Kn}) →
H∗({Ln}) is well defined as

f∗(x1, x2, ..., xs) = (f
1
∗ (x1), f

2
∗ (x2), ..., f

s
∗ (xs)),

where fn is the restriction of f to Kn.

The stability of the homology group of a filtration fol-
lows from the stability of its persistence diagram, i.e.,
the set of points {(birth, death)} ⊂ R2 for the gen-
erators of the homology groups of the filtration, plus
the diagonal. It is proven in [5] that dB(D(f),D(g)) ≤
||f − g||∞, where dB is the "bottle-neck distance" be-
tween the persistence diagrams D(f),D(g) of two fil-
trations generated by tame functions f, g. Function
F (x, y) = y − x creates an analogue bottle-neck dis-
tance for the set of points {persistence} ⊂ R and its
stability follows from the continuity of F .

6 Motivation: the high contrast homology of a gray
scale image

To justify our approach to persistence, we observe that
some of the features in the gray scale image in Figure
1 are more prominent than others. Specifically, some of
the features have lower contrast. These are the holes
in the second and the third rings as well as the third
ring itself. By contrast of a lower level set of the gray
level function we understand the difference between the
highest gray level adjacent to the set and the lowest gray
level within the set.
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An easy computation shows that the homology gen-
erators with persistence of 3 or higher among the gen-
erators are: A1, B1, a1. However, the set of the classes
of high persistence isn’t a subgroup of the homology
group of the respective complex. Instead, we look at
the classes with low persistence, i.e., classes that rep-
resent the noise. In particular, the classes in H∗(K

1)
of persistence 2 or lower form the kernel of F2F1. We
now "remove" this noise from the homology groups of
the filtration by considering their quotients over these
kernels. In particular, the 3-persistent homology groups
of the image are:

H3
0 ({Ki}) =< A1, B1 > /0 =< A1, B1 >,

H3
1 ({Ki}) =< a1, b1 > / < b1 >=< a1 > .

It is important that the output is identical to the ho-
mology of a single complex, i.e., a binary image, with
two components and one hole. The way persistence is
defined ensures that we can never remove a component
as noise but keep a hole in it.
This approach to image analysis was tested with real-

life images in [8].
Observe now that the holes in the second and third

rings have the same persistence (contrast) and, there-
fore, occupy the same position in the homology group
regardless of their birth dates (gray level). Second, if we
shrunk one of these rings, its persistence and, therefore,
its place in the homology group wouldn’t change. These
observations confirm the fact that the homology group
of the gray scale image, unlike the barcodes, captures
only its topology.
In the case of a Vietoris-Rips complex, not only the

barcode, the interval [birth, death], but also the per-
sistence, the number death - birth, of a homology class
contains information about the size of representatives of
these classes. For example, a set of points arranged in
a circle will produce a 1-cycle with twice as large birth,
death, and persistence than the same set shrunk by a
factor of 2. However, persistence defined as death/birth
will have the desired property of scale independence.
The same result can be achieved by an appropriate re-
parametrizing of the filtration.

7 Persistent homology groups of filtrations

In the general context of filtrations the measure of im-
portance of a homology class is its persistence which
is the length of its lifespan within the direct system of
homology of the filtration.
Given filtration {Kn}, we say that the persistence

P (x) of x ∈ H∗(K
n) is equal to p if in,n+p∗ (x) = 0

and in,n+p−1∗ (x) 6= 0. Our interest is in the "robust"
homology classes, i.e., the ones with high persistence.
However, the collection of these classes is not a group
as it doesn’t even contain 0. So we deal with "noise"

first. Given a positive integer p, the p-noise (homology)
group Np

∗ (Kn) of {Kn} is the group of all elements of
Kn with persistence less than p.

Alternatively, we can define these groups via kernels
of the homomorphisms of the inclusions: Np

∗ (Kn) =
ker in,n+p∗ .

Proposition 5 Np+1
∗ (Kn) ⊂ Np

∗ (Kn).

Next, we "remove" the noise from the homology
group. The p-persistent (homology) group of Kn with
respect to the filtration {Kn} is defined as

Hp
∗ (K

n) = H∗(K
n)/Np

∗ (K
n).

The point of this definition is that, given a threshold for
noise, if the difference between two homology classes is
noise, they should be equivalent.
Next, just as in the case of noise-less analysis, we

define a single structure to capture all (robust) ho-
mology classes. Let p be a positive integer. Suppose
x ∈ ker ik,k+p∗ and let y = ik,k+1∗ (x). Then

ik+1,k+1+p∗ (y) = ik+1,k+1+p∗ (ik,k+1∗ (x))

= ik,k+1+p∗ (x) = ik+p,k+p+1∗ (ik,k+p∗ (x))

= ik+p,k+p+1∗ (0) = 0.

Hence y ∈ ker ik+1,k+1+p∗ . We have proved that

ik,k+1∗ (ker ik,k+p∗ ) ⊂ ker ik+1,k+1+p∗ .

It follows that the homomorphism ik,k+1∗ : ker ik,k+p∗ →
ker ik+1,k+1+p∗ generated by the inclusion is well-defined.
Next, we use these homomorphisms to define the p-

noise (homology) group Np
∗ ({Kn}) of filtration {Kn}

as

Np
∗ ({Kn}) = ker i1,2∗ ⊕ . . .⊕ ker is,s+1∗ .

Observe that the formula is the same as the one in
the definition of Hp

∗ ({Kn}). Since ik,k+1∗ : ker ik,k+p∗ →
ker ik+1,k+1+p∗ is a restriction of ik,k+1∗ : Hp

∗ (Kk) →
Hp
∗ (Kk+1), each term in the above definition is a sub-

group of the corresponding term in the definition of
H∗({Kn}). The proposition below follows.

Proposition 6 Np
∗ ({Kn}) ⊂ H∗({Kn}).

Finally, the p-persistent (homology) group of filtration
{Kn} is

Hp
∗ ({Kn}) = H∗({Kn})/Np

∗ ({Kn}).

The results about Hp
∗ ({Kn}) analogous to the ones

about H∗({Kn}) in Section 5 hold.
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8 Computational aspects

For 2-dimensional gray scale images, this approach to
homology and persistence has been used in an image
analysis program. The algorithm described in [8] has
complexity of O(n2), where n is the number of pixels in
the image, in the worst case. As a result, the processing
time for images of common sizes is several seconds on a
typical PC.
For the general case, the analysis algorithm may be

outlined as follows:

1. The input is a filtration.

2. The homology groups of its members and the ho-
momorphisms induced by inclusions are computed.

3. The homology group of the filtration is computed.

4. The persistence of all elements of the homology
groups is computed.

5. The user sets a threshold p for persistence and the
p-noise group of the filtration is computed.

6. The p-persistent homology group of the filtration is
computed and given as output.

If the user changes the threshold, the last two steps
are repeated as necessary without repeating the rest.
The algorithm above computes the homology group of

filtration, as defined, incrementally. This may be both
a disadvantage and an advantage. In comparison, the
persistence complex [3] also contains information about
all homology classes of the filtration but its computa-
tion does not require computing the homology of each
complex of the filtration. Meanwhile, the above algo-
rithm may have to compute the same homology over
and over if consecutive complexes are identical. Hence,
the algorithm has a disadvantage in terms of processing
time. On the other hand, the incremental nature of the
algorithm makes its use of memory independent from
the length of the filtration. Another advantage is that
multi-parameter filtrations are dealt with in the exact
same manner (see next section).
The inefficiency of the above algorithm can be ad-

dressed with a proper algebraic tool. This tool is the
mapping cone [9]. Suppose, for simplicity, that our fil-
tration has only two elements: i : K1 /→ K2. The map-
ping cone is, in a sense, a combination of the kernel and
the cokernel of i∗. It captures the difference between
K1 and K2 on the chain level: everything in C∗(K

1) is
killed unless it also appears in C∗(K

2) under i∗. Then
the algorithm is to construct the homology group from
the chain complexes C∗(K1), C∗(K

2) of the elements of
the filtration and the chain map i∗ : C∗(K1)→ C∗(K

2).

9 Multiparameter filtrations

Multiparameter filtrations come from the same main
sources as one-parameter filtrations. First, color images
are thresholded according to their three color channels.
Second, point clouds are thresholded by the closeness of
their points and, for example, the density of the points.
Let’s limit our attention to the two-parameter case.

A (finite) two-parameter filtration {Knm} is a table of
complexes connected by inclusions

i(n,m, n+ p,m+ q) : Knm → Kn+p,m+q, p, q ≥ 0,

These inclusions generate homomorphisms

i∗(n,m, n+ q,m+ p) : H∗(K
nm)→ H∗(K

n+q,m+p),

with 0s added in the end of each row and each column.
Define the homology group of the filtration {Knm} as

H∗({Knm})

=
M
nm

ker i∗(n,m, n+ 1,m) ∩ ker i∗(n,m,n,m+ 1).

The analogues of the results in Section 5 hold.
There are many ways to define persistence in the mul-

tiparameter setting. For example, we can evaluate the
robustness of a homology class x ∈ H∗(K

nm) in terms
of the pairs (p, q) of positive integers satisfying

i∗(n,m,n+ p,m)(x) = 0 and i∗(n,m, n,m+ q)(x) = 0.

Next, just as in Section 7, we restrict the homomor-
phisms generated by the inclusions to the homology
classes of low persistence:

i∗(n,m, n+ 1,m) :

ker i∗(n,m, n+ p,m)→ ker i∗(n+ 1,m, n+ 1 + p,m),

i∗(n,m, n,m+ 1) :

ker i∗(n,m, n,m+ q)→ ker i∗(n+ 1,m, n,m+ 1 + q).

Then the (p, q)-noise group of Knm is defined via these
homomorphisms:

Npq
∗ ({Knm})

=
M
nm

ker i∗(n,m, n+ 1,m) ∩ ker i∗(n,m,n,m+ 1).

Finally, the (p, q)-persistent (homology) group of filtra-
tion {Knm} is defined as

Hpq
∗ ({Kn}) = H∗({Knm})/Npq

∗ ({Knm}).

The results about Hpq
∗ ({Knm}) analogous to the ones

about Hp
∗ ({Kn}) in Section 7 hold.
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10 Summary and further research

The main contributions of the present paper are the
following.

• Homology group of filtration is defined to serve as
a substitute for the homology group of the dataset
that produced the filtration.

• This group is an algebraic treatment of persistence
alternative to the persistence module. It is ar-
guably easier to compute as it is simply the sum
of kernels.

• The algorithm has been tested with real-life images
and proven practical in terms of both output and
processing time.

• For analysis of point clouds, the approach provides
the output that is scale independent.

• For image analysis, the approach provides the out-
put that is both scale independent and gray-level
independent.

• Unlike the persistence module, our approach yields
a natural generalization to multiparameter filtra-
tions.

The following issues will be addressed in a forthcom-
ing paper:

• the stability of the homology group of filtration;

• the functoriality properties of the homology group
of filtration;

• the relation between the homology group of filtra-
tion and the persistence complex;

• the mapping cone construction for the homology
group of filtration;

• the homology group of multiparameter and poset
filtrations.

I thank the reviewers for their comments that helped
improve this paper.
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